
Fast Algorithms for Projected Clustering

Charu C. Aggarwal Cecilia Procopiuc
IBM T. J. Watson Research Center Duke University

Yorktown Heights, NY 10598 Durham, NC 27706
magda@cs.duke.edu charu@watson.ibm.com

Joel L. Wolf, Philip S. Yu
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
{ jlw, psyu)@watson.ibm.com

Abstract

The clustering problem is well known in the database
literature for its numerous applications in problems such
as customer segmentation, classification and trend analysis.
Unfortunately, all known algorithms tend to break down in
high dimensional spaces because of the inherent sparsity
of the points. In such high dimensional spaces not all
dimensions may be relevant to a given cluster. One way
of handling this is to pick the closely correlated dimensions
and find clusters in the corresponding subspace. Traditional
feature selection algorithms attempt to achieve this. The
weakness of this approach is that in typical high dimensional
data mining applications different sets of points may cluster
better for different subsets of dimensions. The number of
dimensions in each such cluster-specific subspace may also
vary. Hence, it may be impossible to find a single small
subset of dimensions for all the clusters. We therefore
discuss a generalization of the clustering problem, referred
to as the projected clustering problem, in which the subsets
of dimensions selected are specific to the clusters themselves.
We develop an algorithmic framework for solving the
projected clustering problem, and test its performance on
synthetic data.

1 Introduction

The clustering problem has been discussed extensively
in the database literature as a tool for similarity
search, customer segmentation, pattern recognition,
trend analysis and classification. Various methods have
been studied in considerable detail by both the statistics
and database communities [3, 4, 7, 8, 9, 13, 21, 261.
Detailed surveys on clustering methods can be found in
[6, 17, 18, 20, 251.

The problem of clustering data points is defined
as follows: Given a set of points in multidimensional

Permission to make digital or hard copies of all or part of this work fit
personal or classroom use is granted without fee provided that copies
are not made or distributed liar profit or commercial advantage anti that
copies hear this notice and the full citation on the lirst page. TO COPY
othcrwisc, to republish, to post on scrvcrs or to redistribute to lists,
requires prior specific permission andior a fee.

SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 l-581 13-084-8/99/05...$5.00

Jong Soo Park
Sungshin Women’s University

Seoul, Korea
jpark@cs.sungshin.ac.kr

space, find a partition of the points into clusters so
that the points within each cluster are close to one
another. (There may also be a group of outlier points.)
Some algorithms assume that the number of clusters
is prespecified as a user parameter. Various objective
functions may be used in order to make a quantitative
determination as to how well the points are clustered.
Alternatively, distribution based methods [15, 241 may
be used in order to find clusters of arbitrary shape.

Most clustering algorithms do not work efficiently
in higher dimensional spaces because of the inherent
sparsity of the data [l, 221. In high dimensional
applications, it is likely that for any given pair of
points there exist at least a few dimensions on which
the points are far apart from one another. So
a clustering algorithm is often preceded by feature
selection (see for example [19]). The goal is to find the
particular dimensions on which the points in the data
are correlated. Pruning away the remaining dimensions
reduces the noise in the data. The problem of using
traditional feature selection algorithms is that picking
certain dimensions in advance can lead to a loss of
information. Furthermore, in many real data examples,
some points are correlated with respect to a given set
of dimensions and others are correlated with respect to
different dimensions. Thus it may not always be feasible
to prune off too many dimensions without at the same
time incurring a substantial loss of information. We
demonstrate this with the help of an example.

In Figure 1 we have illustrated two different projected
cross sections for a set of points in 3-dimensional space.
There are two patterns in the data. The first pattern
corresponds to a set of points that are close to one
another in the z-y plane, while the second pattern
corresponds to a set of points that are close to one
another in the c-z plane. We would like to have some
way of discovering such patterns. Note that traditional
feature selection does not work in this case, as each
dimension is relevant to at least one of the clusters. At
the same time, clustering in the full dimensional space
will not discover the two patterns, since each of them is
spread out along one of the dimensions.

61

I xX
x x

X
X

Y axis XX
X $2
XX

x x
x x
xx

x axllS

(a) Cross Section on X-Y axis

t

XX
xx

X
X

Z axis
F xx

x x
I X

XX

I e
X axis

@) Cross Section on X-Z axis

Figure 1: Difficulties Associated with Feature Preselec-
tion

In this context .we now define what we call a
projected cluster. Consider a set of data points in some
multidimensional space. A projected cluster is a subset
C of data points together with a subset p of dimensions
such that the points in C are closely clustered in the
subspace of dimensi,ons V. In Figure 1, two clusters
exist in two different projected subpaces. Cluster 1
exists in projected s-y space, while cluster 2 exists in
projected z-z space.

In this paper we focus on a method to find clusters in
small projected subspaces for data of high dimension-
ality. We call our algorithm PROCLUS to denote the
fact that it is a PRO$ected CLUStering algorithm. We
assume that the number k: of clusters to be found is an
input para.meter. The output of the algorithm will be
twofold:

a (k: + 1)-way partition {Cl, ,.., Ck, 0) of the data, so
that the points in each partition element except the
last form a cluste:r. (The points in the last partition
element are the outliers, which by definition do not
cluster well.)

a possibly different subset Vi of dimensions for each
cluster Ci, 1 _< i 5 Ic, so that the points in Ci are
correlated with respect to these dimensions. (The
dimensions for the outlier set 0 can be assumed

to be the empty set.) For different clusters, the
cardinality of the corresponding set ‘Di can be
different.

In addition to the number of clusters Jz the algorithm
takes as input the average number of dimensions 1
in a cluster. The two parameters can be varied
independently of one another. (The only restriction
is that the total number of dimensions Ic . 1 must be
integral.)

1.1 Contributions of this paper

The contributions of this paper are as follows:

(1) We discuss the concept of projected clustering for
finding clusters in multidimensional spaces. Thus,
we compute clusters based not only on poi.nts
but also on dimensions. For data ir. a la.rge
number of dimensions this can result in a f,ignificant
improvement in the quality of the clustering.

(2) We propose an algorithm for the projected cluster-
ing problem which uses the so-called metEoid tech-
nique described in [21] to find the appropriate sets
of clusters and dimensions. The algorithm uses a lo-
cality analysis in order to find the set of di.mensions
associated with each medoid.

The fact that different points may cluster bet,ter
for different subsets of dimensions has been observed
for the first time by Agrawal et. al. in [l]. This
paper presents an effective method for finding regions
of greater density in high dimensional data in a way
which has good scalability and usability. The work in [l]
illustrates the merits of looking at different !bubspaces
for different clusters as opposed to a full dimensional
clustering. The algorithm, called CLIQUE, works
from lower to higher dimensionality subspaces and
discovers “dense” regions in each subspace. More
precisely, each dimension is divided into a number of
intervals t. For a given set of dimensions, a cross-
product of such intervals (one on each dimension in
the set) is called a unit in the respective subspace.
Units are dense if the number of points the:{ contain
is above a certain threshold 7. Both < and 7 are user
parameters. The algorithm discovers all dense units
in each b-dimensional subspace by building from the
dense units in (h - 1)-dimensional subspaces, and then
“connects” these axis-parallel units to form the reported
rectangular regions. Although such an approach can
discover interesting characteristics of the data, it does
not produce a clustering in the accepted definition of the
word, since the points are not partitioned int,, disjoint
groups. Rather, there is a large overlap among the
reported dense regions, due to the fact that fc’r a given
dense region all its projections on lower dimensionahty
subspaces are also dense and get reported.

62

While both CLIQUE and PROCLUS aim to discover
interesting correlations among data in various subspaces
of the original high dimensional space, their output
is significantly different. CLIQUE is successful in
exploring dense regions in all subspaces of some desired
dimensionality. For many applications in customer
segmentation and trend analysis, a partition of the
points is required. Furthermore, partitions provide
clearer interpretability of the results, as compared to
reporting dense regions with very high overlap. In such
cases, PROCLUS is preferable to CLIQUE.

The remainder of this paper is organized as follows.
Section 2 describes our clustering algorithm in detail.
In Section 3 we provide a theoretical analysis of the
robustness of PROCLUS. Empirical results based on
synthetic data are presented in Section 4. Section 5
contains conclusions and areas of future work.

1.2 Definitions and Notations

In order to describe our algorithm we introduce a few
notations and definitions. Let iV denote the total
number of data points, and d denote the dimensionality
of the data space. Let C = (~1, ~2,. . . , ~1) be the set
of points in a cluster. The cenfroid of a cluster is the
algebraic average of all the points in the cluster. Thus,
the centroid of the cluster C is given by 5~ = c,“,, rci/t.
Given a specific distance function d(., e), we define the
radius of a cluster to be the average distance of a point
from the centroid of the cluster: rc = C,“=, d&, q)/t.

Various distance functions have been used in full
dimensional clustering algorithms, depending on the
particular problem being solved. Two such well known
functions are the Manhattan distance and the euclidean
distance. The Manhattan distance between two points
Zl = (q1, * * .I ZI,~) and 52 = (az,~, . . .,zz,~) is given

by d:(xl,xz) = cfz, I 1c1,i - ~2~1, and the euclidean

distance is given by da(al, 82) = d’&(zl,i - a~+)~.

Both distance functions are derived from norms. In
general, the distance corresponding to the so-called Lp

norm is given by dk(al, 22) = (‘& Izl,i - ~2,il~)~lP.
Thus the Manhattan distance corresponds to the Ll
norm and the euclidean distance to the La norm.

In this paper we will use a variant of the Manhattan
distance, called Manhattan segmental distance, that is
defined relative to some set of dimensions 2). Specif-
ically, for any two points ~1 = (al,l, . . . , ZI,~) and
3J2 = (CZ,I,- - *, XZ,~), and for any set of dimensions
V, IDI 5 d, the Manhattan segmental distance be-
tween xl and x2 relative to 2, is given by dp(xl, ~2) =
(xi,=., Ixl,i-az,i1)/12)1. Employing the Manhattan seg-
mental distance as opposed to the traditional Manhat-
tan distance is useful when comparing points in two dif-
ferent clusters that have varying number of dimensions,
because the number of dimensions has been normalized
away. There is no comparably easy normalized vari-

ant for the euclidean metric. For many applications,
the Manhattan segmental distance often has physical
significance. One potential application is collaborative
filtering [lo], where customers need to be partitioned
into groups with similar interests for target marketing.
Here one needs to be able to handle a large number of di-
mensions (for different products or product categories)
with an objective function representing the average dif-
ference of preferences on the different objects.

2 The Clustering Algorithm

The problem of finding projected clusters is two-fold:
we must locate the cluster centers and find the appro-
priate set of dimensions in which each cluster exists.
In the full dimensionality setting, the problem of find-
ing cluster centers has been extensively investigated,
both in the database and in the computational geome-
try communities. A well known general approach is the
so-called K-Medoids method (see, for example, [18] for
a detailed discussion), which uses points in the original
data set to serve as surrogate centers for clusters during
their creation. Such points are referred to as medoids.
One method which uses the K-Medoids approach, called
CLARANS, was proposed by Ng and Han [21] for clus-
tering in full dimensional space. We combine the greedy
method of [14] with the local search approach of the
CLARANS algorithm [21] to generate possible sets of
medoids, and use some original ideas in order to find the
appropriate dimensions for the associated clusters. The
overall pseudocode for the algorithm is given in Figure
2.

The algorithm proceeds in three phases: an initial-
ization phase, an iterative phase, and a cluster refine-
ment phase. The general approach is to find the best
set of medoids by a hill climbing process similar to the
one used in CLARANS, but generalized to deal with
projected clustering. By “hill climbing” we refer to
the process of successively improving a set of medoids,
which serve as the anchor points for the different clus-
ters. The purpose of the initialization phase is to re-
duce the set of points on which we do the hill climbing,
while at the same time trying to select representative
points from each cluster in this set. The second phase
represents the hill climbing process that we use in or-
der to find a good set of medoids. We also compute a
set of dimensions corresponding to each medoid so that
the points assigned to the medoid best form a cluster
in the subspace determined by those dimensions. The
assignment of points to medoids is based on Manhat-
tan segmental distances relative to these sets of dimen-
sions. Thus, we search not just in the space of possible
medoids but also in the space of possible dimensions
associated with each medoid. Finally, we do a cluster
refinement phase in which we use one pass over the data
in order to improve the quality of the clustering.

63

We detail each phase in the following.

2.1 Initialization Phase

We call a set of k medoids piercing if each point is
drawn from a different cluster. Clearly, finding such a
set together with appropriate sets of dimensions is the
key objective of our algorithm. The initialization phase
is geared towards finding a small enough superset of a
piercing set, so that it is possible to efficiently perform
hill-climbing on it, as opposed to the entire database of
points.

In full dimensional algorithms, one of the techniques
for finding a piercing set of medoids is based on a greedy
method. In this process medoids are picked iteratively,
so that the current :medoid is well separated from the
medoids that have been chosen so far. The greedy
technique has been :proposed in [14] and is illustrated
in Figure 3. In full dimensionality, if there are no
outliers and if the clusters are well enough separated,
this method always returns a piercing set of medoids.
However, it does not guarantee a piercing set for the
projected clustering problem.

In our algorithm we will use the greedy technique
in order to find a good superset of a piercing set of
medoids. In other words, if we wish to find k clusters
in the data, we will pick a set of points of cardinality a
few times larger than. k. We will perform two successive
steps of subset selection in order to choose our superset.
In the first step, we choose a random sample of data
points of size proportional to the number of clusters we
wish to generate. (In Figure 2, we denote this size by
A . k, where A is a constant.) We shall denote this
sample by S. In the second step, we apply the above-
mentioned greedy technique to S in order to obtain an
even smaller final set of points on which to apply the
hill climbing technique during the next phase. In our
algorithm, the final iset of points has size B . k, where
B is a small constant. We shall denote this set by M.
The reasons for choosing this two-step method are as
follows:

(1) The greedy technique tends to pick many outliers
due to its distance based approach. On the other
hand, the set S probably contains only a very small
number of outliers, and the greedy algorithm is likely
to pick some representatives from each cluster.

(2) The reduction to the sample set S significantly
reduces the running time of the initialization phase.

2.2 Iterative P’hase

We start by choosing a random set of k medoids from
M and progressively improve the quality of medoids by
iteratively replacing ithe bad medoids in the current set

with new points from M. The hill climbing technique
can be viewed as a restricted search on the complete

Algorithm PROCLUS(No. of Clusters: k, Avg. Dinmwiona: I)
{ C; is the ith cluster)
{ Vi is the set of dimensions associated with cluster I!; }

: tFnt

is the set of medoids in current iteration 1,
best 1s the best set of medoids found so far }

{ N is the fmal set of medoids with associated dimensions }
{ A, B are constant integers }
begin

{ 1. Initialization Phase}
S = random sample of siz;e A . k
M = GRBEDY(S, B.k)

{ 2. Iterative Phase}
BestObjective = 00
M current = Random set of medoids {ml, m2, . . . mk} C M
repeat

{ Approximate the optimal set of dimensions }
for each medoid mi E Mcvr+ent do

begin
Let 6; be distance to nearest medoid from rni
L; = Points in sphere centered at m; with ratis 6;
end;

L={Ll,...,Lk}

Pl,%l... Z)k) = FindDimensions(k,l, 13)

{ Form the clusters }

(Cl,..., Ck) = AssignPoints(D1,. . .2)k)
ObjectiveFunction = EvaluateClustets(C~, . . Ck, D1 . . . Z)k)
if ObjectiveFunction < Be&Objective then
begin

BestObjective = ObjectiveFunction
M test = Mcuvrent
Compute the bad medoids in i&*t

end

Compute Current by replacing the bad medoids in

M beat with random points from M
until (termination-criterion)

{ 3. Refinement Phase}
L = {C, r...tCk)

V”

2,. . . Dk) = FindDimensions(k,l, L)
1,. . . , Ck) = AssignPoints(&, . . . Z)k)

N = (Mbcstr VI, D2,. . . Dk)
return(N)
end

Figure 2: The Clustering Algorithm

64

Algorithm Greedy(Set of points: S, Number of medoids: k)
{ d(., .) is the distance function }
begin
M = {ml} { ml is a random point of S }
{ compute distance between each point and medoid ml }
for each t E S \ M

d&(r) = d(z,ml)
for i=2 to k
begin

{ choose medoid m; to be far from previous medoids }
let m; E S \ M be s.t. dist(mi) = max{dist(z) 1 t E S \ M}
M=Mu{mi}
{ compute distance of each point to closest medoid }
for eachxES\M

d&(z) = min{dist(z), d(z, m;)}
end
return M
end

Figure 3: The Greedy Algorithm

graph with vertex set defined by all sets of medoids of
cardinality k. The current node in the graph, denoted
Mt,,,t in Figure 2, represents the best set of medoids
found so far. The algorithm tries to advance to another
node in the graph as follows: It first determines the
bad medoids in it!&,t using a criterion we discuss
at the end of this subsection. Then it replaces the
bad medoids with random points from M to obtain
another vertex in the graph, denoted Mcurrent. If the
clustering determined by Mcurrent is better than the
one determined by Mbest, the algorithm sets Mbest =
M eur,.ent. Otherwise, it sets Mcurre,,t to another vertex
of the graph, obtained by again replacing the bad
medoids in &tb,,t with random points of M. If it!ft,,,t
does not change after a certain number of vertices have
been tried, the hill climbing phase terminates and i&,t
is reported.

In what follows, we detail how we evaluate the
clustering determined by a given set of k medoids. This
implies solving two problems: finding the appropriate
set of dimensions for each medoid in the set, and
forming the cluster corresponding to each medoid.

Finding Dimensions: Given a set of k medoids M =

Cm, -*-I mk}, PROCLUS evaluates the locality of the
space near them in order to find the dimensions that
matter most. More exactly, for each medoid rn+ let
Si be the minimum distance from any other medoid to
rn+, i.e. & = minjgid(m+,mj). For each i, we define
the locality Li to be the set of points that are within
distance & from m+. (Note that the sets Cr, lk need
not necessarily be disjoint, nor cover the entire set of
data points). We then compute the average distance
along each dimension from the points in .Ci to m. Let
Xi,j denote this average distance along dimension j. To
each medoid m we wish to associate those dimensions j
for which the values Xi,j are as small as possible relative

to statistical expectation, subject to the restriction that
the total number of dimensions associated to medoids
must be equal to Ice 1. We add the additional constraint
that the number of dimensions associated with a medoid
must be at least 2. Corresponding to each medoid
i we compute the mean Yi = (Cf=,Xi,j)/d and the

standard deviation ui = /F of the values

Xi,j. Note that Yi represents in fact the average of the
Manhattan segmental distances between the points in
J$ andx?,T;&ive to the entire space. Thus the value
Zi,j = *‘i, ’ indicates how the j-dimensional average
distance associated with the medoid m is related to the
average Manhattan segmental distance associated with
the same medoid. A negative value of Zi,j indicates
that along dimension j the points in Ci are more closely
correlated to the medoid w. We want to pick the
smallest values Zi,j so that a total of k - 2 values are
chosen, and at least 2 values are chosen for any fixed
i. This problem is equivalent to a so-called separable
convex resource allocation problem, and can be solved
exactly by a greedy algorithm [16]. Specifically, we sort
all the Zi,j values in increasing order, preallocate the
2 smallest for each i (giving a total of 21c values), and
then greedily pick the remaining lowest k + (l- 2) values.
(There are other algorithms for solving this problem
exactly that are even faster from a complexity point
of view. We employ a greedy algorithm here because
it is sufficiently fast in light of the typically expected
values of h and 1. However, see [16] for further details.)
With each medoid i we associate those dimensions j
whose corresponding Zi,j value was chosen by the above
algorithm. We denote the sets of dimensions thus found
by %,D,,... 2)k. This is illustrated in Figure 4.

Forming Clusters: Given the medoids and their
associated sets of dimensions, we assign the points to
the medoids using a single pass over the database. For
each i, we compute the Manhattan segmental distance
relative to Vi between the point and the medoid w, and
assign the point to the closest medoid. See Figure 5.

We evaluate the quality of a set of medoids as the
average Manhattan segmental distance from the points
to the centroids of the clusters to which they belong
(see Figure 6). Note that the centroid of a cluster will
typically differ from the medoid. We also determine
the bad medoids as follows: The medoid of the cluster
with the least number of points is bad. In addition,
the medoid of any cluster with less than (N/k) -
minDeviation points is bad, where minDeviation is a
constant smaller than 1 (in most experiments, we choose
minDeviation = 0.1).

We make the assumption that if a medoid forms
a cluster with less than (N/k) . minDeviation points
(where minDewiation is usually O.l), it is likely that
the medoid is either an outlier, or it belongs to a cluster

65

that is pierced by at least one other medoid in the set.
Conversely, we assume that an outlier is likely to form a
cluster with very few points. We also assume that if the
current set of medoids contains two or more medoids
from the same natural cluster, one of these medoids
(which is the most “central”) is likely to form a cluster
containing most of the points in the natural cluster,
while the remaining medoids that pierce that cluster
will form clusters with few points.

2.3 Refinement Phase

After the best set of medoids is found, we do one more
pass over the data to improve the quality of the cluster-
ing. Let {Cl,. . . , Ck]. be the clusters corresponding to
these medoids, formed during the Iterative Phase. We
discard the dimensions associated with each medoid and
compute new ones by a procedure similar to that in the
previous subsection. The only difference is that in order
to analyze the dimen.sions associated with each medoid,
we use the distribution of the points in the clusters at
the end of the iterative phase, as opposed to the local-
ities of the medoids. In other words, we use Ci instead
of .lZi. Once the new dimensions have been computed,
we reassign the points to the medoids relative to these
new sets of dimensions. The process is illustrated in
Figure 2.

Outliers are also handled during this last pass over
the data. For each medoid RC and new set of dimensions
Vi, we find the smallest Manhattan segmental distance
Ai to any of the other (k - 1) medoids with respect to
the set of dimensions ‘Di:

Ai = minj#i dvi(nt+, mj)
We also refer to ,Ai as the sphere of influence of

the medoid m. A point is an outlier if its segmental
distance to each medoid w, relative to the set of
dimensions Vi, exceelds Ai.

3 Analyzing the Robustness of
PROCLUS

To ensure good accuracy of the output, PROCLUS
must be able to ac:hieve two essential results: find
a piercing set of medoids, and associate the correct
set of dimensions to each medoid. In our discussion
of the Initialization .Phase, we gave some insight into
why we expect the set M to contain a piercing set of
medoids. In the following, we will discuss some issues
related to the robustSness of the procedure for finding
dimensions. It is important to note that since the
locality of a medoid is used in order to determine the set
of dimensions corresponding to it, a sufficient number
of points must exists in the locality in order to have a
robust algorithm. The total number of points in the
localities of all the medoids is also useful in order to
estimate the number of dimensions for a given cluster.
To give some insight into how the localities of medoids

66

Algorithm FindDimensions(k,l, L)
begin
{ d is the total number of dimensions }
{ X;J is the average distance from the points in I$ tc
medoid m; , along dimension j}
for each medoid i do

begin

for e&h dimension j do Zi,j = (Xi,j - Y~)/u;
end

Pick the k. 1 numbers with the least (most negative) ~~alues
of Zi,j subject to the constraint that there are at least 2
dimensions for each cluster

if Z;#j is picked then add dimension j to Vi

return(VL,Vz,. . . Vk)
end

Figure 4: Finding the Dimensions

Algorithm AssignPoints(V1, V2, . . . Vk)
begin
foreachiE{l,...,k}doC;=+
for each data point p do

begin
Let dpi (p, m;) be Manhattan segmental distance of point p

from medoid m; relative to dimensions V;;
Find i with lowest value of dp,(p,m;) and add p to C;;
end;

return (Cl,. . . ,Ck)
end;

Figure 5: Assigning Points to the Various Clusters

Algorithm EvaluateClusters(C1,. . . ,Ck, VI,. . . Vk)
begin
for each Ci do

begin
for each dimension j E 2); do

begin
Yi8j = Average distance of points in C; to

centroid of C; along dimension j
end

ret;rn(C-f’-)
end

Figure 6: Evaluating the Clusters

look like, suppose
randomly from the
the more elaborate
the following.

first that the medoids are chosen
entire set of points, rather than by
procedure in PROCLUS. We prove

Theorem 3.1 Let k be the number of medoids and N
be the total number of data points. Then, for a random
set of k me&ids (ml,. . . ,mk}, the ezpected number of
points in J!I~ for the medoid m+ is N/k.

Proof: Let d”,, d$, . . . d$ denote the distances of the N
points from medoid mi. The problem is equivalent to
the following standard result in order statistics (see [2]
for details):

Given a set of N values (dii, d$, . . ., d&}, suppose
we choose k - 1 of them randomly. Then, the expected
number of values in the set that are smaller than the
k - 1 chosen values is equal to N/k.

The k - 1 randomly chosen values correspond to the
distances from the k - 1 other medoids to medoid rn+.

I
The above result shows that, if the medoids were

chosen at random from the entire data set, the expected
number of points in each locality would be sufficient
to ensure the robustness of the FindDimensions
procedure. Since our method for choosing the medoids
is not random, but rather biased towards ensuring that
the medoids are as far away from each other as possible

(i.e. their localities have large radii), we expect the
localities of the medoids to contain at least N/k points
each.

4 Empirical Results
The simulations were performed on a 233-MHz IBM
RS/SOOO computer with 128M of memory, running AIX
4.1.4. The data was stored on a 2GB SCSI drive.
We report results obtained for synthetic data. We
evaluate the accuracy of PROCLUS on synthetic data
and determine how the running time scales with:

- size of database.

- dimensionality of the data space.

- average dimensionality of clusters.

We also investigate the cases in which CLIQUE can be
used to return a partition of the data set. For those
cases, we compare its accuracy and running time to
those of PROCLUS.

4.1 Synthetic Data Generation

In order to generate the data we used a method similar
to that discussed by Zhang et. al. [26]. However, we
added generalizations to the data generation process in
order to take into account the possibility of different
clusters occurring in different subspaces. The points

have coordinates in the range [0, 1001 and are either
cluster points or outliers. The maximum percentage of
outliers is a simulation parameter and was chosen to be
F ,,,,trier = 5%. Outliers were distributed uniformly at
random throughout the entire space.

In order to generate cluster points the program takes
as input parameters the number of clusters k and a
Poisson parameter k that determines the number of
dimensions in each cluster, as we explain below. The
algorithm proceeds by defining so-called anchor points
around which the clusters will be distributed, as well as
the dimensions associated with each such anchor point.
Then, it determines how many points will be associated
with each cluster and finally it generates the cluster
points. We explain these steps in more detail below.

The anchor points of clusters are obtained by generat-
ing k uniformly distributed points in the d-dimensional
space. We shall denote the anchor point for the ith
cluster by ci.

The number of dimensions associated with a cluster
is given by the realization of a Poisson random variable
with mean CL, with the additional restriction that this
number must be at least 2 and at most d. Once the
number of dimensions di for the cluster i is generated,
the dimensions for each cluster are chosen using the
following technique: The dimensions in the first cluster
are chosen randomly. The dimensions for the ith
cluster are then generated inductively by choosing
min{di-1, di/2} d’ lmensions from the (i - l)st cluster
and generating the other dimensions randomly. This
iterative technique is intended to model the fact that
different clusters frequently share subsets of correlated
dimensions.

To decide the number of points in each cluster, we
generate k exponential random variables with mean 1
and then assign to each cluster a number of points
proportional to these realizations. More exactly,
let 9, ~2,. . .rk be the realizations of the k random
variables, and let N, = N. (1 - Foutlic,.) be the number
of cluster points. Then, the number of points in cluster
i is given by N, . =FL, ri.

Finally, the points for a given cluster i are generated
as follows: The coordinates of the points on the non-
cluster dimensions are generated uniformly at random.
For a cluster dimension j, the coordinates of the
points projected onto dimension j follow a normal
distribution with mean at the respective coordinate of
the anchor point, and variance determined randomly in
the following manner: Fix a spread parameter r and
choose a scale factor sij E [l, s] uniformly at random,
where s is user defined. Then the variance of the normal
distribution on dimension j is (sij . T)“. For our data
generation we chose r = s = 2.

67

Dimensions

Found Dimensions 1 Points

n 1 11 4. 6. 11. 13. 14. 17. 19 1 18701 11

n Input I(Dimensions I Poinla Y
R A B 11 2, 3, 4, 2, 9, 3, 11, 7 14, 18

Dimensions

1 Outliers 11

Table 1: PROCLUS: Dimensions of the Input Clusters Table 2: PROCLUS: Dimensions of the Input Clusters
(Top) and Output Clusters (Bottom) for Case 1 (Top) and Output Clusters (Bottom) for Case 2

4.2 Accuracy Results

To test how accurately the algorithm performs we
compute the Confusion Mat& defined as follows: entry
(i, j) is equal to the number of data points assigned to
output cluster i, that were generated as part of input
cluster j. The last row and column of the matrix
represent output outliers, respectively input outliers,
and their entries are similarly defined. Obviously, we
want each row to have one entry that is much larger
than the others, which indicates a clear correspondence
between the input and output clusters. In the tables
below, the input clusters are denoted by letters, while
the output clusters are denoted by numbers. Another
significant result is the set of dimensions computed
for each output cluster, as compared to the set of
dimensions of the corresponding input cluster.

We divided the experiments in two classes. First,
we used input files :for which all clusters had been
generated in the same number of dimensions, but in
different subspaces (Case 1). Then, we used input
files containing clusters generated in different number
of dimensions (Case 2). We report below the results
for one experiment in each class. We obtained similar
quality in all the other experiments we performed. Both
files had iV = 100,000 data points in a 20dimensional
space, with k: = 5. The first input file had 1 = 7
(‘. . all input clust,ers were generated in some 7-
diizensional subspace:), while the second file had 1 = 4,
and the clusters were generated as follows: two clusters
were generated in different 2-dimensional subspaces,
one in a J-dimensional subspace, one in a 6-dimensional
subspace, and one in a 7-dimensional subspace.

In both cases PROCLUS discovers output clusters

in which the majority of points comes from o:ne input
cluster, as shown in Tables 3 and 4. In other words,
it recognizes the natural clustering of the points. VVe
note that for both files the output clusters pick some of
the original outliers and report them as cluste:: points.
This is not necessarily an error, since the outliers
were randomly placed throughout the entire space, and
it is probable that some of them have actually been
placed inside clusters. The output clusters j.n Table
4 also have some small number of points that should
have been assigned to other clusters. For example,
the 267 points in row 1 and column C should have
been assigned to cluster 4, because they were glmerated
as part of input cluster C, and output cluster 4 has
a clear correspondence to cluster C. However, the
percentage of misplaced points is very small so that it
does not influence the correspondence between input
and output clusters, nor would it significantly Jter the
result of any data mining application based on thLis
clustering. Moreover, there is a perfect correspondence
between the sets of dimensions of the output clusters
and their corresponding input clusters, as illustrated
by Tables 1 and 2. This is important for applicatio:ns
that require not only a good partitioning of the data,
but also additional information as to what dirnensio:ns
(or attributes) are relevant for each partition.

As we mentioned before, CLIQUE does not guarant’ee
that the result it returns represents a partitioning of the
points. To quantify how different its output is from an
actual partitioning, we compute the average ol.erlap <as
follows:

68

Table 3: PROCLUS: Confusion Matrix (same number of dimensions) for Case 1

Table 4: PROCLUS: Confusion Matrix (different number of dimensions) for Case 2

overlap = f$l ‘,“I,
rl +

where 4 is the number of output clusters. Thus, an
overlap of 1 means that on the average each point
that is not an outlier is assigned to only one cluster,
and so the result can be considered a partitioning.
On the other hand, a large overlap means that many
of the points are assigned to more than one output
cluster, so the result cannot be considered a reasonable
approximation for a partitioning. In the experiments
below we try to determine the cases in which CLIQUE
is likely to generate an output with small overlap. For
those cases we compare the results of CLIQUE and
PROCLUS in terms of quality and running time, to
decide which method is preferable. One problem we
have encountered during these experiments is that on
the average half of the cluster points are considered
outliers by CLIQUE. This is a consequence of the
density-based approach of the algorithm, since lower-
density areas in a cluster can cause some of its points to
be thrown away. Another reason is the fact that clusters
are considered to be axis-parallel regions. Such a region
generally offers a low coverage of the corresponding
input cluster, especially as the dimensionality of the
cluster increases. Hence, a significant percentage of
relevant data points are erroneously considered outliers
by CLIQUE. Of course, this percentage can be lowered

by tuning the input parameters < and T appropriately.
This leads to a tradeoff between quality of output and
running time. Moreover, the density threshold of a unit
must take into account both the number of intervals on
a dimension and the dimensionality of the space. Hence,
variation of one input parameter must be correlated
with the variation of the other parameter. No obvious
method is indicated in [l] for how to choose the two
parameters.

For files in which clusters exist in different number of
dimensions CLIQUE reported a large number of output
clusters, most of which were projections of a higher
dimensional cluster. As a result, the average overlap
was also large. It is unclear how one can differentiate
between, for example, a 2-dimensional output cluster
corresponding to a 2-dimensional input cluster, and the
2-dimensional projection of a 6-dimensional cluster. In
this case, CLIQUE cannot be used to obtain a good
approximation for a partitioning.

Below, we discuss the results we obtained with
CLIQUE for input files in which all clusters exist in
the same number of dimensions. As in [l], we set [
(the number of intervals on each dimension) to 10, and
we try various values for the density threshold r. We
present the results obtained on an input file with 1 = 7,
the same for which we reported the PROCLUS results
above. However, the issues we discuss were noted on
other input files and for different values of 2, as well. For

69

m B C D E Out.

n 2 II 11128 0 0 0 0 0

Table 5: CLIQUE: Matching between Input and
Output Clusters (small snapshot)

r = 0.5 and r = 0.8, the average overlap was 1, but the
percentage of cluster points discovered by CLIQUE was
low (42.7%, respectively 30.7%). We then experimented
with lower values for 7, more exactly 7 = 0.2 and
T = 0.1, expecting the percentage of cluster points to
increase. However, because of the low density, CLIQUE
reported output clusters in 8 dimensions (one dimension
more than they were generated), and the percentage of
cluster points decreased to 21.2% for T = 0.1. Two
of the original input clusters were entirely missed, and
all their points declared outliers. Of the remaining
three input clusters, at least 50% of the points in each
one were thrown away as outliers, and two of these
input clusters were split into four output clusters. We
finally ran CLIQUE with T = 0.1 and set it to find
clusters only in 7 dimensions, using an option provided
by the program. It reported 48 output clusters, with
a percentage of cluster points equal to 74.6%. The
average overlap was 3.63, which means that on the
average, an input point had been assigned to at least
3 output clusters. We present the results of this last
experiment in Table 5. Due to lack of space, we do
not provide the entire Confusion Matrix, but only a
small snapshot that reflects both “good” and “bad”
output clusters discovered by CLIQUE. We conclude
that, while there are cases in which CLIQUE returns
a partitioning of the points, PROCLUS is still useful
because of its better accuracy.

4.3 Scalability IResults

In what follows we will say that two input files are
similar if the following parameters are identical for both
files: number of points N, dimensionality of the space
d, number of clusters Ic, and average dimensionality of
a cluster 1.

As noticed in the previous subsection, the output of
CLIQUE could only be interpreted as an (approximate)
partitioning of the points when all clusters exist in
the same number of dimensions. Hence, we compare
the running times of CLIQUE and PRCCLUS only
on such files. However, we also tested PROCLUS on

Figure 7: Scalability with number of points

similar files in which clusters exist in different number of
dimensions, and found no significant difference between
the respective running times. Because of the random
nature of PROCLUS, each running time reported in
this section is averaged over three similar input files.
We want to mention that in each run the quality of
the results returned by PROCLUS was similar to that
presented in the previous subsection.

Number of points: All data files on which we
tested contained 5 clusters, each existing in some
5-dimensional subspace. The data space ‘was 20-
dimensional. We ran CLIQUE with < = 10 and T =
0.5. Figure 7 shows that PROCLUS scales linearly
with the number of input points, while outperforming
CLIQUE by a factor of approximately 10. The graph
has logarithmic scale along the y coordinate.

Average dimensionality of the clusters: All
files on which we tested had N = 100,000 points
and contained 5 clusters. The data space was 20-
dimensional. We ran CLIQUE with < = 10 and T = 0.5
for files in which the dimensionality of clusters was 4,5
or 6, and with 7 = 0.1 for dimensionality of clusters
equal to 7 and 8. We selected a lower r for the highler
dimensional clusters because, as the volume of the
clusters increases, the cluster density decreases. This
corresponds to the approach used for the experiments
in [l].

Figure 8 shows that the two algorithms have a
different type of dependency on the average cluster
dimensionality 1. The results we obtained for CLIQUE
are consistent with those reported in [l], where an
exponential dependency on 1 is proven. On the other
hand, the running time of PROCLUS is only slightly
influenced by 1. This happens because the main
contribution of 1 to the running time is during the
computation of segmental distances, which takes O(N .

70

Figure 8: Scalability with average dimensionality

Figure 9: Scalability with dimensionality of the space

k . I) for each iteration. Since we are also computing
distances in the full dimensional space in time O(N . km
d), the running time of an iteration is dominated by this
second term and only slightly influenced by a change in
1.

This very good behavior of PROCLUS with respect
to I is important for the situations in which it is not clear
what value should be chosen for parameter 1. Because
the running time is so small (about 150 seconds for each
point shown in the graph), it is easy to simply run the
algorithm a few times and try different values for 1.

Dimensionality of the space: We tested on files
with N = 100,000 points that contained 5 clusters, each
existing in a 5-dimensional space. The sensitivity with
respect to the dimensionality of the space is illustrated
in Figure 9. As expected, PROCLUS scales linearly
with the dimensionality of the entire space.

5 Conclusions

We have proposed a new concept, called projected clus-
tering, for discovering interesting patterns in subspaces
of high dimensional data spaces. This is a generaliza-
tion of feature selection, in that it allows the selection of
different sets of dimensions for different subsets of the
data. While feature selection algorithms do not work on
all types of data, projected clustering is general enough
to allow us to deal with different correlations among
various subsets of the input points.

We have also provided a projected clustering algo-
rithm called PROCLUS that returns a partition of the
data points into clusters, together with the sets of di-
mensions on which points in each cluster are correlated.
The CLIQUE algorithm, which was previously proposed
for a variant of this problem, successfully discovers pat-
terns in subspaces of the data space, but its output does
not guarantee a partition of the points. Such a partition
is often desired in classification and trend analysis prob-
lems for better interpretability of results. We conclude
that for these applications PROCLUS is the method of
choice.

6 Acknowledgements
We would like to thank Dimitrios Gunopulos for
providing us with the CLIQUE code.

References

LlI

PI

131

141

[51

k51

R. Agrawal, J. Gehrke, D. Gunopolos, P. Ragha-
van. Automatic Subspace Clustering of High Di-
mensional Data for Data Mining Applications. Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data, 1998.

D. Hand, Order Statistics. John Wiley and Sons,
New York, 1981.

M. Berger, I. Rigoutsos. An Algorithm for Point
Clustering and Grid Generation. IEEE Transac-
tions on Systems, Man and Cybernetics, Vol. 21,
5:1278-1286, 1991.

M. R. Brito, E. Chavez, A. Quiroz, J. Yukich. Con-
nectivity of the Mutual k-Nearest-Neighbor Graph
for Clustering and Outlier Detection. Statistics and
Probability Letters, 35 (1997) pages 33-42.

P. Cheeseman, J. Kelly, S. Matthew. AutoClass: A
Bayesian Classification System. Proceedings of the
5th International Conference on Machine Learning,
Morgan Kaufmann, June 1988.

R. Dubes, A. Jain. Clustering Methodologies in
Exploratory Data Analysis. Advances in Computers,
Edited by M. Yovits, Vol. 19, Academic Press, New
York, 1980.

71

W ,] D. Fisher. Knowledge Acquisition via Incremental
Conceptual Clustering. Machine Learning 2(2),

1987.

[7] M. Ester, H.-P. Kriegel, X. Xu. A Database
Interface for Clustering in Large Spatial Databases.
Proceedings of the first International Conference on
Knowledge Discovery and Data Mining, 1995.

[8] M. Ester, H.-P. Kriegel and X. Xu, Knowledge Dis-
covery in Large Spatial Databases: Focusing Tech-
niques for Efficient Class Identification. Proceedings
of the Fourth International Symposium on Large
Spatial Databases, Portland, Maine, U.S.A. 1995.

[9] M. Ester, H.-P. Kriegel, J. Sander, X. Xu. A
Density Based Algorithm for Discovering Clusters
in Large Spatial IDatabases with Noise. Proceedings
of the 2nd International Conference on Knowledge
Discovery in Databases and Data Mining, Portland,
Oregon, August 1.995.

[lo] U. Shardanand, P. Maes. Social information filter-
ing: algorithms for automating “word of mouth”.
Proceedings of the ACM Conference on Human Fac-
tors in Computkg Systems, pages 210-217, 1995.

[12] D. Fisher. Optirnization and Simplification of Hi-
erarchical Clusters. PTOCeedingS of the International
Conference on Knowledge Discovery and Data Min-
ing, August 1995.

[13] D. Gibson, J. Kleinberg, P. Raghavan. Clustering
Categorical Data: An Approach Based on Dynam-
ical Systems. Proceedings of the 84th VLDB Con-
feTence, pp. 311-3’22, 1998.

[14] T. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
Vol. 38, pp. 293-366, 1985.

[15] S. Guha, R. Rastogi, K. Shim. CURE: An
Efficient Clustering Algorithm for Large Databases.
PTOCeedingS of the 1998 ACM SIGMOD Conference,
pp. 73-84, 1998.

[16] T. Ibaraki, N. K.&oh. Resource Allocation Prob-
lems: Algorithmic Approaches. MIT Press,, Cam-
bridge, Massachus,etts, 1988.

[17] A. Jain, R. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood Cliffs, New Jersey, 1998.

[18] L. Kaufman, P. Rousseeuw. Finding Groups in
Data - An Introduction to Cluster Analysis. Wiley
Series in Probability and Mathematical Statistics,
1990.

[19] R. Kohavi, D. Sommerfield. Feature Subset
Selection Using the Wrapper Method: 0verfitt:ing
and Dynamic Search Space Topology. Plboceedings
of the First International Conference on B.nowIe,$ge
Discovery and Data Mining, 1995.

[20] R. Lee. Clustering Analysis and its applications.
Advances in Information Systems Science, edited by
J. Toum, Vol. 8, pp. 169-292, Plenum Press, New
York, 1981.

[21] R. Ng, J. Han. Efficient and Effective Clustering
Methods for Spatial Data Mining. Proceedings of
the 20th VLDB Conference, 1994, pp. 144.,155.

[22] D. Keim, S. Berchtold, C. B6hm, H.-P. Kriegel.
A cost model for nearest neighbor search in high-
dimensional data space. PTOCeedingS of the 18th
Symposium on Principles of Database Systems
(PODS), pages 78-86, 1997.

[23] S. Wharton. A Generalized Histogram Clustering
for Multidimensional Image Data. Pattern Recogni-
tion, Vol. 16, No. 2: pp. 193-199, 1983.

[24] X. Xu, M. Ester, H.-P. Kriegel, J. Sander. A
Distribution-Based Clustering Algorithm for Min-
ing in Large Spatial Databases. Proceedings of the
Fourteenth International Conference on Dda En!gi-
neering, 1998, pp. 324-331.

[25] M. Zait, H. Messatfa. A Comparative !%udy of
Clustering Methods. FGCS Journal, Special Issue
on Data Mining, 1997.

[26] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH:
An Efficient Data Clustering Method for Very Large
Databases. Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Montreal, Canada, June 1996.

72

