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Abstract 

Non-negative matrix factorization (NMF) has previously been shown to 
be a useful decomposition for multivariate data. Two different multi­
plicative algorithms for NMF are analyzed. They differ only slightly in 
the multiplicative factor used in the update rules. One algorithm can be 
shown to minimize the conventional least squares error while the other 
minimizes the generalized Kullback-Leibler divergence. The monotonic 
convergence of both algorithms can be proven using an auxiliary func­
tion analogous to that used for proving convergence of the Expectation­
Maximization algorithm. The algorithms can also be interpreted as diag­
onally rescaled gradient descent, where the rescaling factor is optimally 
chosen to ensure convergence. 

1 Introduction 

Unsupervised learning algorithms such as principal components analysis and vector quan­
tization can be understood as factorizing a data matrix subject to different constraints. De­
pending upon the constraints utilized, the resulting factors can be shown to have very dif­
ferent representational properties. Principal components analysis enforces only a weak or­
thogonality constraint, resulting in a very distributed representation that uses cancellations 
to generate variability [1, 2]. On the other hand, vector quantization uses a hard winner­
take-all constraint that results in clustering the data into mutually exclusive prototypes [3]. 

We have previously shown that nonnegativity is a useful constraint for matrix factorization 
that can learn a parts representation of the data [4, 5]. The nonnegative basis vectors that are 
learned are used in distributed, yet still sparse combinations to generate expressiveness in 
the reconstructions [6, 7]. In this submission, we analyze in detail two numerical algorithms 
for learning the optimal nonnegative factors from data. 

2 Non-negative matrix factorization 

We formally consider algorithms for solving the following problem: 

Non-negative matrix factorization (NMF) Given a non-negative matrix 
V, find non-negative matrix factors Wand H such that: 

V~WH (1) 



NMF can be applied to the statistical analysis of multivariate data in the following manner. 
Given a set of of multivariate n-dimensional data vectors, the vectors are placed in the 
columns of an n x m matrix V where m is the number of examples in the data set. This 
matrix is then approximately factorized into an n x r matrix Wand an r x m matrix H. 
Usually r is chosen to be smaller than nor m, so that Wand H are smaller than the original 
matrix V. This results in a compressed version of the original data matrix. 

What is the significance of the approximation in Eq. (1)? It can be rewritten column by 
column as v ~ Wh, where v and h are the corresponding columns of V and H. In other 
words, each data vector v is approximated by a linear combination of the columns of W, 
weighted by the components of h. Therefore W can be regarded as containing a basis 
that is optimized for the linear approximation of the data in V. Since relatively few basis 
vectors are used to represent many data vectors, good approximation can only be achieved 
if the basis vectors discover structure that is latent in the data. 

The present submission is not about applications of NMF, but focuses instead on the tech­
nical aspects of finding non-negative matrix factorizations. Of course, other types of ma­
trix factorizations have been extensively studied in numerical linear algebra, but the non­
negativity constraint makes much of this previous work inapplicable to the present case 
[8]. 

Here we discuss two algorithms for NMF based on iterative updates of Wand H. Because 
these algorithms are easy to implement and their convergence properties are guaranteed, 
we have found them very useful in practical applications. Other algorithms may possibly 
be more efficient in overall computation time, but are more difficult to implement and may 
not generalize to different cost functions. Algorithms similar to ours where only one of the 
factors is adapted have previously been used for the deconvolution of emission tomography 
and astronomical images [9, 10, 11, 12]. 

At each iteration of our algorithms, the new value of W or H is found by multiplying the 
current value by some factor that depends on the quality ofthe approximation in Eq. (1). We 
prove that the quality of the approximation improves monotonically with the application 
of these multiplicative update rules. In practice, this means that repeated iteration of the 
update rules is guaranteed to converge to a locally optimal matrix factorization. 

3 Cost functions 

To find an approximate factorization V ~ W H, we first need to define cost functions 
that quantify the quality of the approximation. Such a cost function can be constructed 
using some measure of distance between two non-negative matrices A and B . One useful 
measure is simply the square of the Euclidean distance between A and B [13], 

IIA - BI12 = L(Aij - Bij)2 
ij 

This is lower bounded by zero, and clearly vanishes if and only if A = B . 

Another useful measure is 

( k· ) D(AIIB) = 2: Aij log B:~ - Aij + Bij 
"J 

(2) 

(3) 

Like the Euclidean distance this is also lower bounded by zero, and vanishes if and only 
if A = B . But it cannot be called a "distance", because it is not symmetric in A and B, 
so we will refer to it as the "divergence" of A from B. It reduces to the Kullback-Leibler 
divergence, or relative entropy, when 2:ij Aij = 2:ij Bij = 1, so that A and B can be 
regarded as normalized probability distributions. 



We now consider two alternative formulations of NMF as optimization problems: 

Problem 1 Minimize IIV - W HI12 with respect to Wand H, subject to the constraints 
W,H~O. 

Problem 2 Minimize D(VIIW H) with re.lpect to Wand H, subject to the constraints 
W,H~O. 

Although the functions IIV - W HI12 and D(VIIW H) are convex in W only or H only, they 
are not convex in both variables together. Therefore it is unrealistic to expect an algorithm 
to solve Problems 1 and 2 in the sense of finding global minima. However, there are many 
techniques from numerical optimization that can be applied to find local minima. 

Gradient descent is perhaps the simplest technique to implement, but convergence can be 
slow. Other methods such as conjugate gradient have faster convergence, at least in the 
vicinity of local minima, but are more complicated to implement than gradient descent 
[8] . The convergence of gradient based methods also have the disadvantage of being very 
sensitive to the choice of step size, which can be very inconvenient for large applications. 

4 Multiplicative update rules 

We have found that the following "multiplicative update rules" are a good compromise 
between speed and ease of implementation for solving Problems 1 and 2. 

Theorem 1 The Euclidean distance II V - W H II is non increasing under the update rules 

(WTV)att (V HT)ia 
Hal' +- Hal' (WTWH)att Wia +- Wia(WHHT)ia (4) 

The Euclidean distance is invariant under these updates if and only if Wand H are at a 
stationary point of the distance. 

Theorem 2 The divergence D(VIIW H) is nonincreasing under the update rules 

H H 2:i WiaVitt/(WH)itt 2:1' HattVitt/(WH)itt 
att +- att " W Wia +- Wia " H (5) 

L..Jk ka L..Jv av 

The divergence is invariant under these updates if and only ifW and H are at a stationary 
point of the divergence. 

Proofs of these theorems are given in a later section. For now, we note that each update 
consists of multiplication by a factor. In particular, it is straightforward to see that this 
multiplicative factor is unity when V = W H, so that perfect reconstruction is necessarily 
a fixed point of the update rules. 

5 Multiplicative versus additive update rules 

It is useful to contrast these multiplicative updates with those arising from gradient descent 
[14]. In particular, a simple additive update for H that reduces the squared distance can be 
written as 

(6) 

If 'flatt are all set equal to some small positive number, this is equivalent to conventional 
gradient descent. As long as this number is sufficiently small, the update should reduce 
IIV - WHII· 



Now if we diagonally rescale the variables and set 

Halt 
"Ialt = (WTW H)alt ' 

(7) 

then we obtain the update rule for H that is given in Theorem 1. Note that this rescaling 
results in a multiplicative factor with the positive component of the gradient in the denom­
inator and the absolute value of the negative component in the numerator of the factor. 

For the divergence, diagonally rescaled gradient descent takes the form 

Halt f- Halt + "Ialt [~Wia (:;;)ilt - ~ Wia]. (8) 

Again, if the "Ialt are small and positive, this update should reduce D (V II W H). If we now 
set 

Halt 
"Ialt= ~ W. ' 

ui za 
(9) 

then we obtain the update rule for H that is given in Theorem 2. This rescaling can also 
be interpretated as a multiplicative rule with the positive component of the gradient in the 
denominator and negative component as the numerator of the multiplicative factor. 

Since our choices for "Ialt are not small, it may seem that there is no guarantee that such a 
rescaled gradient descent should cause the cost function to decrease. Surprisingly, this is 
indeed the case as shown in the next section. 

6 Proofs of convergence 

To prove Theorems 1 and 2, we will make use of an auxiliary function similar to that used 
in the Expectation-Maximization algorithm [15, 16]. 

Definition 1 G(h, h') is an auxiliary functionfor F(h) if the conditions 

G(h, h') ~ F(h), G(h, h) = F(h) (10) 

are satisfied. 

The auxiliary function is a useful concept because of the following lemma, which is also 
graphically illustrated in Fig. 1. 

Lemma 1 IfG is an auxiliary junction, then F is nonincreasing under the update 

ht+1 = argmlnG(h,ht ) (11) 

Proof: F(ht+1) ~ G(ht+1, ht) ~ G(ht, ht) = F(ht) • 

Note that F(ht+1) = F(ht) only if ht is a local minimum of G(h, ht). If the derivatives 
of F exist and are continuous in a small neighborhood of ht , this also implies that the 
derivatives 'V F(ht) = O. Thus, by iterating the update in Eq. (11) we obtain a sequence 
of estimates that converge to a local minimum hmin = argminh F(h) of the objective 
function: 

We will show that by defining the appropriate auxiliary functions G(h, ht) for both IIV -
W HII and D(V, W H), the update rules in Theorems 1 and 2 easily follow from Eq. (11). 



Figure 1: Minimizing the auxiliary function G(h, ht) 2:: F(h) guarantees that F(ht+1) :::; 
F(ht) for hn+1 = argminh G(h, ht). 

Lemma 2 If K(ht) is the diagonal matrix 

Kab(ht) = <5ab(WTwht)a/h~ (13) 

then 

G(h, ht) = F(ht) + (h - ht)T\l F(ht) + ~(h - ht)T K(ht)(h - ht) (14) 

is an auxiliary function for 

F(h) = ~ ~)Vi - L W ia ha)2 
i a 

(15) 

Proof: Since G(h, h) = F(h) is obvious, we need only show that G(h, ht) 2:: F(h). To 
do this, we compare 

F(h) = F(ht) + (h - htf\l F(ht) + ~(h - ht)T(WTW)(h - ht) (16) 
2 

with Eq. (14) to find that G(h, ht) 2:: F(h) is equivalent to 

0:::; (h - htf[K(ht) - WTW](h - ht) (17) 

To prove positive semidefiniteness, consider the matrix 1: 

(18) 

which is just a rescaling of the components of K - WTW. Then K - WTW is positive 
semidefinite if and only if M is, and 

VT M v = L VaMabVb 
ab 

(19) 

L h~(WTW)abh~v~ - vah~(WTW)abh~Vb (20) 
ab 

"( T ) t t [1 2 1 2 ] L...J W W abhahb 2" va + 2" Vb - VaVb 
ab 

(21) 

= ~ L(WTW)abh~h~(va - Vb)2 (22) 
ab 

> 0 (23) 

'One can also show that K - WTW is positive semidefinite by considering the matrix K (I-
1 T 1) 1 ./ (T ) 1 T K- 2 W W K- 2 K 2. Then v M W W ht a is a positive eigenvector of K- 2 W W K- with 

unity eigenvalue, and application of the Frobenius-Perron theorem shows that Eq. 17 holds. 



• 
We can now demonstrate the convergence of Theorem 1: 

Proof of Theorem 1 Replacing G(h, ht) in Eq. (11) by Eq. (14) results in the update rule: 

ht+1 = ht - K(ht)-l\1F(ht) (24) 

Since Eq. (14) is an auxiliary function, F is nonincreasing under this update rule, according 
to Lemma 1. Writing the components of this equation explicitly, we obtain 

ht+1 = ht (WT V )a 
a a (WTWht)a . 

(25) 

By reversing the roles of Wand H in Lemma 1 and 2, F can similarly be shown to be 
nonincreasing under the update rules for W .• 

We now consider the following auxiliary function for the divergence cost function: 

Lemma 3 Define 

G(h,ht) 
ia 

" Wiah~ ( Wiah~ ) 
- ~ Vi,"", W - ht logWiaha -log,"", W - ht 

ia ub ,b b ub ,b b 

This is an auxiliary function for 

F(h) = L Vi log (~ ~_ h ) - Vi + LWiaha 
i a 'l,a a a 

(26) 

(27) 

(28) 

Proof: It is straightforward to verify that G(h, h) = F(h) . To show that G(h, ht) 2: F(h), 
we use convexity of the log function to derive the inequality 

" "Wiaha -log ~ Wiaha ::; - ~ Q a log --
a a Q a 

which holds for all nonnegative Q a that sum to unity. Setting 

Wiah~ 
Q a = '"'" t ub Wibhb 

we obtain 

" " Wiah~ ( Wiah~ ) -log ~ Wiaha ::; - ~ '"'" W- ht log Wiaha - log,"", W- ht 
a a ub ,b b ub ,b b 

From this inequality it follows that F(h) ::; G(h, ht) .• 

Theorem 2 then follows from the application of Lemma 1: 

(29) 

(30) 

(31) 

Proof of Theorem 2: The minimum of G(h, ht) with respect to h is determined by setting 
the gradient to zero: 

_dG---,(,---,h,_h--,-t) __ " _ Wiah~ 1 "W- - 0 
- ~v, t + ~ za-

dha _ ~b Wibhb ha -, , 
(32) 

Thus, the update rule of Eq. (11) takes the form 

t+1 h~" Vi 
ha = '"'" w ~ '"'" W- ht W ia · ub kb i ub ,b b 

(33) 

Since G is an auxiliary function, F in Eq. (28) is nonincreasing under this update. Rewrit­
ten in matrix form, this is equivalent to the update rule in Eq. (5). By reversing the roles of 
Hand W, the update rule for W can similarly be shown to be nonincreasing .• 



7 Discussion 

We have shown that application of the update rules in Eqs. (4) and (5) are guaranteed to 
find at least locally optimal solutions of Problems 1 and 2, respectively. The convergence 
proofs rely upon defining an appropriate auxiliary function. We are currently working to 
generalize these theorems to more complex constraints. The update rules themselves are 
extremely easy to implement computationally, and will hopefully be utilized by others for 
a wide variety of applications. 
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