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Abstract
This paper brings together methods from two different disciplines: statistics and machine learn-
ing. We address the problem of estimating the variance of cross-validation (CV) estimators of
the generalization error. In particular, we approach the problem of variance estimation of the CV
estimators of generalization error as a problem in approximating the moments of a statistic. The
approximation illustrates the role of training and test sets in the performance of the algorithm. It
provides a unifying approach to evaluation of various methods used in obtaining training and test
sets and it takes into account the variability due to different training and test sets. For the simple
problem of predicting the sample mean and in the case of smooth loss functions, we show that the
variance of the CV estimator of the generalization error is afunction of the moments of the random
variablesY = Card(Sj

T

Sj ′) andY∗ = Card(Sc
j
T

Sc
j ′), whereSj , Sj ′ are two training sets, andSc

j ,
Sc

j ′ are the corresponding test sets. We prove that the distribution of Y and Y* is hypergeometric
and we compare our estimator with the one proposed by Nadeau and Bengio (2003). We extend
these results in the regression case and the case of absoluteerror loss, and indicate how the methods
can be extended to the classification case. We illustrate theresults through simulation.

Keywords: cross-validation, generalization error, moment approximation, prediction, variance
estimation

1. Introduction

Progress in digital data acquisition and storage technology has resulted in the growth of very large
databases. At the same time, interest has grown in the possibility of tapping these data and of
extracting information from the data that might be of value to the owner of the database. A variety
of algorithms have been developed to mine through these databases with the purpose of uncovering
interesting characteristics of the data and generalizing the findings to other data sets.

One important aspect of algorithmic performance is the generalization error. Informally, the
generalization error is the error an algorithm makes on cases that has never seen before. Thus, the
generalization performance of a learning method relates to its prediction capability on the indepen-
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dent test data. The assessment of the performance of learning algorithmsis extremely important in
practice because it guides the choice of learning methods.

The generalization error of a learning method can be easily estimated via eithercross-validation
or bootstrap. However, providing a variance estimate of the estimator of this generalization error
is a more difficult problem. This is because the generalization error depends on the loss function
involved, and the mathematics needed to analyze the variance of the estimator are complicated.
An estimator of variance of the cross-validation estimator of the generalizationerror is proposed
by Nadeau and Bengio (2003). In a later section of this paper we will discuss this estimator and
compare it with the newly proposed estimator.

In this paper we address estimation of the variance of the cross validation estimator of the
generalization error, using the method of moment approximation. The idea is simple. The cross
validation estimator of the generalization error is viewed as a statistic. As such,it has a distribution.
We then approximate the needed moments of this distribution in order to obtain an estimate of
the variance. We present a framework that allows computation of the variance estimator of the
generalization error for k fold cross validation, as well as the usual random set selection in cross
validation. We address the problem of loss function selection and we show that for a general class
of loss functions, the class of differentiable loss functions with certain tail behavior, and for the
simple problem of prediction of the sample mean, the variance of the cross validation estimator
of the generalization error depends on the expectation of the random variablesY = Card(Sj

T

Sj ′)
andY∗ = Card(Sc

j
T

Sc
j ′). HereSj , Sj ′ are two different training sets drawn randomly from the data

universe andSc
j , Sc

j ′ are their corresponding test sets taken to be the complement ofSj andSj ′ with
respect to the data universe. We then obtain variance estimators of the generalization error for the
k-fold cross validation estimator, and extend the results to the regression case. We also indicate how
the results can be extended to the classification case.

The paper is organized as follows. Section 2 introduces the framework and discusses existing
literature on the problem of variance estimation of the cross validation estimatorsof the generaliza-
tion error. Section 3 presents the moment approximation method for developingthe new estimator.
Section 4 presents computer experiments and compares our estimator with the estimator proposed
by Nadeau and Bengio (2003). Section 5 presents discussion and conclusions.

2. Framework and Related Work

In what follows we describe the framework within which we will work.

2.1 The Framework and the Cross Validation Estimator of the Generalization Error

Let dataX1,X2, · · · ,Xn be collected such that the data universe,Zn
1 = {X1,X2, · · · ,Xn}, is a set of

independent, identically distributed observations which follow an unknown probability distribution,
denoted byF . LetSrepresent a subset of sizen1, n1 < n, taken fromZn

1. This subset of observations
is called a training set; on the basis of a training set a rule is constructed. Thetest set contains all
data that do not belong inS, that is the test set is the setSc = Zn

1\S, the complement ofSwith respect
to the data universeZn

1. Denote byn2 the number of elements in a test set,n2 = n−n1, n2 < n.

Let L : R
p×R → R be a function, and assume thatY is a target variable and̂f (x) is a decision

rule. The functionL(Y, f̂ (X)) that measures the error between the target variable and the prediction
rule is called a loss function.
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As an example, consider the estimation of the sample mean. In this problem the learning algo-
rithm usesf̂ (x) = 1

n1
∑n1

i=1Xi = X̄Sj as a decision rule andL(X̄Sj ,Xi) = (X̄Sj −Xi)
2, Xi ∈Sc

j , the square
error loss, as a loss function. Other typical choices of the loss function include the absolute error
loss,|X̄Sj −Xi | and the 0−1 loss function mainly used in classification.

Our results take into account the variability in both training and test sets. The variance estimate
of the cross validation estimator of the generalization error can be computed under the following
cross validation schemes. The first is what we term ascomplete random selection. When this form
of cross validation is used to compute the estimate of the generalization error ofa learning method,
the training sets, and hence the test sets, are randomly selected from the available data universe. In
thenonoverlapping test set selectioncase, the data universe is divided into k nonoverlapping data
subsets. Each data subset is then used as a test set, with the remaining data acting as a training set.
This is the case of k-fold cross validation.

We now describe in detail the cross validation estimator of the generalization error whose vari-
ance we will study. This estimator is constructed under the complete random selection case.

Let A j be a random set ofn1 distinct integers from{1,2, · · · ,n}, n1 < n. Let n2 = n− n1

be the size of the corresponding complement set. Note here thatn2 is a fixed number and that
Card(A j) = n1 is fixed. LetA1,A2, · · · ,AJ be random index sets sampled independently of each
other and denote byAc

j , the complement ofA j , j = 1,2, · · · ,J. Denote also bySj = {Xl : l ∈ A j},
j = 1,2, · · · ,J. This is the training set obtained by subsamplingZn

1 according to the random index
setA j . Then the corresponding test set isSc

j = {Xl : l ∈ Ac
j}. Now defineL( j, i) = L(Sj ,Xi), where

L is a loss function. Notice thatL is defined by its dependence on the training setSj and the test set
Sc

j . This dependence on the training and test sets is through the statistics that are computed using
the elements of these sets. The usual average test set error is then

µ̂j =
1
n2

∑
i∈Sc

j

L( j, i), (2.1)

The cross validation estimator we will study is defined as

n2
n1

µ̂J =
1
J

J

∑
j=1

µ̂j . (2.2)

This version of the cross validation estimator of the generalization error depends on the value
of J, the size of the training and test sets and the size of the data universe. Theestimator has been
studied by Nadeau and Bengio (2003). These authors provided two estimators of the variance of
n2
n1

µ̂J. In the next section we review briefly the estimators presented by Nadeau and Bengio (2003) as
well as other work on this subject. In a later section we will see that, whenJ is chosen appropriately,
then the Nadeau and Bengio (2003) estimator is close to and performs similarly with the moment
approximation estimator in some of the cases we study.

2.2 Related Work

Related literature for the problem of estimating the variance of the generalization error includes
work by McLachlan (1972, 1973, 1974, 1976) and work by Nadeau and Bengio (2003) and Bengio
and Grandvalet (2004). Here, we briefly review this work.

Let S2
µ̂j

= 1
J−1 ∑J

j=1(µ̂j − n2
n1

µ̂J)
2 be the sample variance of ˆµj , j = 1,2, · · · ,J. Then Nadeau and

Bengio (2003) show that
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E(S2
µ̂j

) =
Var(n2

n1
µ̂J)

(1
J + ρ

1−ρ)
, (2.3)

whereρ is the correlation between ˆµj andµ̂j ′ . Therefore, ifρ is known,

(
1
J

+
ρ

1−ρ
)S2

µ̂j
, (2.4)

is an unbiased estimator of theVar(n2
n1

µ̂J). Nadeau and Bengio (2003) observe that this estimator
depends on the correlationρ between the different ˆµjs which is difficult to estimate. Thus, they
propose an approximation to the correlation,ρ̂ = n2

n , wheren2 is the cardinality of the test set. The
final estimator of the variance ofn2

n1
µ̂J is given as

(
1
J

+
n2

n1
)S2

µ̂j
. (2.5)

Nadeau and Bengio (2003) note that the above suggested estimator is simple but it may have a
positive or negative bias with respect to the actualVar(n2

n1
µ̂J). That is, it will tend to overestimate or

underestimateVar(n2
n1

µ̂J) according to whether̂ρ = n2
n > ρ or ρ̂ < ρ. Therefore, this estimator is not

exactly unbiased.
Nadeau and Bengio (2003) also suggested another estimator of the variance of the cross-validation

estimator of the generalization error. This estimator is unbiased but overestimates theVar(n2
n1

µ̂J). It
is computed as follows. Letn be the size of the data universe and assume, without loss of general-
ity, thatn is even. Randomly split the data set into two, equal size, data subsets. Thencompute the
cross-validation estimator of the generalization error on these two data subsets. Notice that, the size
of the training set is nown′1 = [n

2]−n2 < n1, smaller than the original size of the training set, but the
test set size remains the same. Denote by ˆµ1 the estimatorn2

n′1
µ̂J computed on the first data subset and

µ̂2 the estimatorn2
n′1

µ̂J computed on the second data subset. To obtain an estimator of the variance of
the cross validation estimator of the generalization error compute the sample variance ofµ̂1 andµ̂2.
The splitting process can be repeatedM times and Nadeau and Bengio(2003) recommendM = 10.
The proposed unbiased estimator is then given as

1
2M

M

∑
m=1

(µ̂1,m− µ̂2,m)2. (2.6)

This is an unbiased estimator of theVar(n2
n′1

µ̂J).
Bengio and Grandvalet (2004) showed that there does not exist any unbiased and universal

estimator of the variance of k-fold cross-validation that is valid under all distributions. Here, we
derive estimators of the variance of the k-fold cross validation estimator of the generalization error
that are almost unbiased. However, we also notice that our estimators do depend on the distribution
of the errors and on the knowledge of the learning algorithm.

In a series of impressive papers McLachlan addressed the problem ofestimation of the variance
of the errors of misclassification of the linear discriminant function by developing a technique for
deriving asymptotic expansions of the variances of the errors of misclassification of Anderson’s
classification statistic. McLachlan also established an asymptotic expansion ofthe expectation of the
estimated error rate in discriminant analysis and obtained the distributions of theconditional error
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rate and risk associated with Anderson’s classification statistic in the contextof the two-population
discrimination problem. These derivations were carried out under the assumption of normality for
the population distribution.

Our work has similarities with the work by McLachlan in the sense that we derive approxima-
tions to the moments of the distribution of the cross validation estimator of the generalization error
and use these to obtain a variance estimator. However, we do not assume normality of the underly-
ing mechanism that generated the data.

In what follows, we first present the method of moment approximation for obtaining an estima-
tor of Var(n2

n1
µ̂J). We then study the performance of this estimator and compare it with the Nadeau

and Bengio (2003) estimator.

3. Moment Approximation Estimator for Var(n2
n1µ̂J)

Recall thatn2
n1

µ̂J = 1
J ∑J

j=1 µ̂j = 1
J ∑J

j=1(
1
n2

∑i∈Sc
j
L( j, i)). Thereforen2

n1
µ̂J is a statistic. An estimator

of Var(n2
n1

µ̂J) can thus be obtained by approximating the moments of the statisticn2
n1

µ̂J. A simple
calculation shows that

Var(n2
n1

µ̂J) =
1
J2

J

∑
j=1

Var(µ̂j)+
1
J2 ∑ ∑

j 6= j ′
Cov(µ̂j , µ̂j ′). (3.1)

From the formula we see that if we can approximate the two terms of(3.1) then we can obtain
an estimator for the variance ofn2

n1
µ̂J. To achieve this goal, we need to estimateE(µ̂j), E(µ̂2

j ) and
E(µ̂j µ̂j ′). In the following sections we will develop the theory that allows us to obtain the needed
moment approximations. To illustrate the methodology clearly we treat separatelythe case of simple
mean estimation and the regression case. We further treat separately the case where the loss function
is differentiable from the case of non-differentiable loss functions.

3.1 The Sample Mean Case

We start by analyzing the case of the sample mean. Here, the loss functionL depends onSj through
the statisticsX̄Sj , the sample mean computed using the elements ofSj , and onSc

j by elements
Xi ∈ Sc

j . One of the reasons for presenting the sample mean case separately is because it illustrates
clearly the contribution towards the estimator ofVar(n2

n1
µ̂J) that is due to the variability among the

different training and test sets. A second reason in favor of this case isbecause, under square error
loss, we obtain a “ golden standard” against which we can compare the newempirically computed
variance estimator and the Nadeau and Bengio (2003) estimator. This “golden standard” is the exact
theoretical value of theVar(n2

n1
µ̂J). The obtained results show that the estimator of the variance of

the cross validation estimator of the generalization error of the algorithms that use differentiable
functions of the mean as loss functions, depends on the expectation of the random variablesY =
Card(Sj

T

Sj ′) andY∗ = Card(Sc
j
T

Sc
j ′).

Let the loss functionL( j, i) = L(X̄Sj ;Xi) be differentiable. Below we list the conditions under
which our theory holds.

Assumption 1. The distribution ofL(X̄Sj ,Xi) does not depend on the particular realization ofSj

andi.
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Assumption 2. The loss functionL as a function ofX̄Sj is such that its first four derivatives
with respect to the first argument exist for all values of the variable that belongs inI , whereI is an
interval such thatP(v∈ I) = 1, andv indicates the first argument of the loss function.

Assumption 3. The fourth derivative ofL is such that|L(iv)(X̄Sj ;Xi)| ≤ M(Xi), E[M(Xi)] < ∞.
Assumption 1 is also used by Nadeau and Bengio (2003, p. 244). Assumptions 2 and 3 are

standard in the literature where approximations to the moments of a continuous, real function of the
mean are discussed. See, for example Cramer (1946), Lehmman (1991) and Bickel and Doksum
(2001). The boundedness of the fourth or some higher derivative is necessary for proposition 3.1 to
hold.

Alternative conditions where stronger assumptions on the distributions of thedataXi and weaker
conditions on the functionL are imposed exist in the literature (Khan (2004)). HereL is a loss func-
tion and it seems reasonable to assume boundedness on some of its higher derivatives.

Proposition 3.1 offers an approximation of the expectation ofL(X̄Sj ,Xi).

Proposition 3.1Let X1,X2, · · · ,Xn be independent, identically distributed random variables such
thatE(Xi) = µ, Var(Xi) = σ2 and finite fourth moment. Suppose thatL satisfies assumptions 1, 2
and 3. Then

E[L(X̄Sj ;Xi)] = E[L(µ,Xi)]+
σ2

2n1
E[(L′′(µ,Xi))]+O(

1

n2
1

),

where the remainderRn is such thatE(Rn) is O( 1
n2

1
), that is, there existsn0 andA < ∞ such that

E(Rn) < A
n2

1
,∀n > n0 and allµ. The prime indicates derivative with respect to the first argument of

L.

Proof: We will use a conditional expectation argument. Write

E[L(X̄Sj ;Xi)] = ESj ,i{EZn
1
[L(X̄Sj ;Xi)|Sj , i]}, (3.2)

j = 1,2, · · · ,J andi indicatesXi and is such thati ∈ Sc
j .

Now expandL(X̄Sj ;Xi) with respect toX̄Sj around the meanµ to obtain:

L(X̄Sj ;Xi) = L(µ,Xi)+L′(µ,Xi)(X̄Sj −µ)+
1
2

L′′(µ,Xi)(X̄Sj −µ)2

+
1
6

L′′′(µ,Xi)(X̄Sj −µ)3 +
1
24

L(iv)(µ∗,Xi)(X̄Sj −µ)4. (3.3)

Denote by
Rn = L(iv)(µ∗,Xi)(X̄Sj −µ)4

and
EZn

1
{Rn|Sj , i} = EZn

1
{L(iv)(µ∗,Xi)(X̄Sj −µ)4|Sj , i}, (3.4)

and since by assumption 1 the distribution ofL(iv)(µ∗,Xi)(X̄Sj −µ)4 does not depend on the particular
realization ofSj andi, we obtain

ESj ,i{EZn
1
[L(iv)(µ∗,Xi)(X̄Sj −µ)4|Sj , i]} = E[L(iv)(µ∗,Xi)]E(X̄Sj −µ)4 ≤ M ·E(X̄Sj −µ)4.
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This is because by assumption 3 we haveE[L(iv)(µ∗,Xi)] ≤ E[M(Xi)] < ∞. Now Lemma A.5 of the
appendix guarantees thatE(X̄Sj −µ)4 is of order 1/n2

1. Thus, taking expectations in (3.3) and using
(3.4) we obtain:

E[L(X̄Sj ;Xi)] = ESj ,i{EZn
1
[L(µ,Xi)|Sj , i]}+ESj ,i{EZn

1
[L′(µ,Xi)(X̄Sj −µ)|Sj , i]}

+ ESj ,i{EZn
1
[
1
2

L′′(µ,Xi)(X̄Sj −µ)2|Sj , i]}

+ ESj ,i{EZn
1
[
1
6

L′′′(µ,Xi)(X̄Sj −µ)3|Sj , i]}+O(
1

n2
1

).

By assumption 1 the distribution ofL(µ,Xi) does not depend on the particular realization ofSj and
Xi . Thus

ESj ,i{EZn
1
[L(µ,Xi)|Sj , i]} = EZn

1
[L(µ,Xi)].

Similar to the above arguments produce the approximation to the first moment givenby

E[L(X̄Sj ;Xi)] = E[L(µ,Xi)]+
σ2

2n1
E[(L′′(µ,Xi))]+O(

1

n2
1

).

Remark 1: Note that we do not impose distributional assumptions on the data. The only condi-
tion imposed is that samples come from distributions for which the fourth moment is finite. Many
of the standard families of distributions satisfy this condition.

Remark 2: The requirement of the finiteness of the fourth moment for proposition 3.1 tohold
implies limitations on the data sets on which this estimator can be computed. For example, itmay
be inappropriate to apply these methods to data sets which involve large variations, such as those
from insurance and finance. On the other hand, the results apply to some thick tail distributions,
such as thet-distribution with 5 or more degrees of freedom. Thet5-distribution, for example, is a
thick tail distribution, for which the fourth moment exists.

The following proposition approximates the variance of the lossL(X̄Sj ,Xi).

Proposition 3.2Let assumptions 1, 2 and 3 hold. If in addition the fourth derivative ofL2(X̄Sj ,Xi)
is bounded, then

Var[L(X̄Sj ;Xi)] = Var[L(µ,Xi)]+
σ2

n1
{E[(L′(µ,Xi))

2]+Cov(L(µ,Xi),L
′′(µ,Xi))}+O(1/n2

1),

where the remainder term isO( 1
n2

1
).

Proof: To obtain an expansion of the variance ofL(X̄Sj ;Xi) apply proposition 1 to the function
L2(X̄Sj ;Xi) using the fact that

[L2(µ,Xi)]
′′ =

∂2

∂µ2 [L2(µ;Xi)]

= 2(L′(µ,Xi))
2 +2L(µ,Xi)L

′′(µ,Xi). (3.5)
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Then substituting the expansion forL(X̄Sj ,Xi) and using formula (3.5), proposition 1 and the formula
of conditional variance we obtain:

Var[L(X̄Sj ;Xi)] = Var[L(µ,Xi)]+
σ2

n1
{E[(L′(µ,Xi))

2]+Cov(L(µ,Xi),L
′′(µ,Xi))}+O(1/n2

1).

To prove the above two propositions we use a series of lemmas that guarantee the rate of the
remainder term. These lemmas are presented in the appendix.

We now present a theoretical example that verifies the approximations presented in propositions
1 and 2.

Example. Assume thatL(X̄Sj ,Xi) = (X̄Sj −Xi)
2, the square error loss that is widely used. An

exact calculation of the expectation of(X̄Sj −Xi)
2 produces

E{L(X̄Sj ,Xi)} = Var(X̄Sj )+Var(Xi) = σ2 +
σ2

n1
.

On the other hand, if proposition 3.1 is used, we obtain:

E[L(X̄Sj ,Xi)] = E(Xi −µ)2 +
σ2

n1
= σ2 +

σ2

n1
,

and the two formulas coincide. Notice that in the case of square error loss,the second derivative of
the loss, with respect toµ, is bounded. The terms of order 1/n2

1 do not enter the formula as all higher
order than two derivatives of the quadratic loss are 0. Thus, the approximation formula agrees with
the exact computation.

We next turn to the variance formula. The exact computation is based on the formula

Var[L(X̄Sj ,Xi)] = ESj ,i{VarZn
1
[(X̄Sj −Xi)

2|Sj , i]}+VarSj ,i{EZn
1
[(X̄Sj −Xi)

2|Sj , i]}. (3.6)

Using this formula we obtain the exact variance as

Var[L(X̄Sj ,Xi)] = 2σ4 +
4σ4

n1
+

2σ4

n2
1

. (3.7)

Using the formula given in proposition 3.2 we obtain that the approximate variance is

Var[L( j, i)] = 2σ4 +
4σ4

n1
+O(

1

n2
1

). (3.8)

Comparing these two formulas we see that the variance approximation formula identifies all first
order terms.

The following proposition establishes the approximation formula for the covariance terms that
enter the computation of the variance of the cross validation estimators of the generalization error.

Proposition 3.3 Let Sj , Sj ′ be two training sets drawn independently and at random from the
data universeZn

1, andSc
j , Sc

j ′ the corresponding test sets. LetXi ∈ Sc
j ,Xi′ ∈ Sc

j ′ , D = Sj
T

Sj ′ and
Y = Card(D). Then, if i 6= i′

Cov[L(X̄Sj ,Xi),L(X̄Sj′ ,Xi′)] =
σ2

n2
1

E(Y)(E[L′(µ,Xi)])
2− σ4

4n2
1

(E[L′′(µ,Xi)])
2 +O(

1

n2
1

).
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If i = i′,

Cov[L(X̄Sj ,Xi),L(X̄Sj′ ,Xi′)] = Var(L(µ,Xi))+
σ2

n1
{E[L(µ,Xi)L

′′(ξ, i)]

− E[L(µ,Xi)]E[L′′(µ,Xi)]}+
σ2

n2
1

E(Y)E[L′(µ,Xi)]
2

− σ4

4n2
1

{E[L′′(µ,Xi)]}2 +O(
1

n2
1

),

whereE(Y) is the expectation of the random variableY with respect to its distribution.

This proposition indicates that the variability due to random sampling of the training setsSj is
quantified by the expectation of the random variableY = Card(Sj

T

Sj ′), j 6= j ′, j, j ′ ∈ 1,2, · · · ,J.
SinceSj , Sj ′ are random sets ofn1 elements,Y is such thatmax(0,2n1−n) ≤Y ≤ n1.

An additional random variable that enters the variance estimator of the cross validation esti-
mator of the generalization error isY∗ = Card(Sc

j
T

Sc
j ′), the cardinality of the intersection of two

different test sets. The following two lemmas derive the distribution of these two random variables.

Lemma 3.1LetSj andSj ′ be random sets ofn1 distinct elements fromZn
! and letY =Card(Sj

T

Sc
j),

max(0,2n1−n) ≤Y ≤ n1. Then, the distribution ofY is

P(Y = y) =

(n1
y

)(n−n1
n1−y

)

( n
n1

) ,

a hypergeometric distribution.

Proof. We model the problem as the following 2×n table.

k 1 2 3 · · · n Total
Sj 0 1 1 · · · 0 n1

Sj ′ 1 0 1 · · · 0 n1

a1 a2 a3 · · · an 2n1

In the table we indicate whether thekth component ofZn
1 is sampled into the training setSj or Sj ′

by 1, otherwise we indicate it by 0. Denote byak the sum of the indicators for thekth component in
the populationZn

1 overSj andSj ′ . Then
{

a1 +a2 + · · ·+an = 2n1

0≤ ai ≤ 2 , i = 1, · · · ,n.

Now, P(Y = y) is equivalent toP(#{ai = 2}), i = 1, · · · ,n. GivenY = y, the number of{ai = 1}
is 2n1−2y and the number of{ai = 0} is n−2n1 + y. Since none of these three numbers could
be negative, we obtain the domain of Y asmax(0,2n1−n) ≤ Y ≤ n1. Recall also thatSj , Sj ′ are
sampled independently and each containsn1 elements. GivenY = y, the distribution of the column
totals is fixed; that isai can only take the values 0 ,1 or 2. The number of different tables with the
same column totals is then

(n
y

)( n−y
n1−y

)(n−n1
n1−y

)

. and hence

P(Y = y) =

(n
y

)( n−y
n1−y

)(n−n1
n1−y

)

( n
n1

)( n
n1

) =

(n1
y

)(n−n1
n1−y

)

( n
n1

) ,
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the hypergeometric distribution.

Lemma 3.2Let Sj andSj ′ be two training sets andSc
j andSc

j ′ are their corresponding test sets.
Let Y∗ = Card(Sc

j
T

Sc
j ′), 0≤Y∗ ≤ n−n1. Then

P(Y∗ = y) =

( n1
y−n+2n1

)( n−n1
n−n1−y

)

( n
n1

) =

( n2
n2−y

)( n−n2
n−n2−(n2−y)

)

( n
n−n2

) .

Proof. From the proof of lemma 3.1P(Y∗ = y) = P(#{ai = 0}), {i = 1, · · · ,n}. Moreover,
Y∗ = n−2n1 +Y. Then, the result follows.

Theorem 3.1 provides the estimator of the variance ofn2
n1

µ̂J. We first state the theorem.

Theorem 3.1.The variance of the estimator of the generalization errorn2
n1

µ̂J is given as

Var(n2
n1

µ̂J) =
1
J
Var(µ̂j)+

J−1
J

Cov(µ̂j , µ̂j ′),

where

Var(µ̂j) =
1
n2

[Var[L(µ,Xi)]+
σ2

n1
{E[(L′(µ,Xi))

2]+Cov(L(µ,Xi),L
′′(µ,Xi))}]

+
n2−1

n2

σ2

n1
{E[L′(µ,Xi)]}2 +O(1/n2

1),

Cov(µ̂j , µ̂j ′) = (1− E(Y∗)

n2
2

)
[σ2

n2
1

E(Y)(E[L′(µ,Xi)])
2− σ4

4n2
1

(E[L′′(µ,Xi)])
2 +O(

1

n2
1

)
]

+
E(Y∗)

n2
2

[

Var(L(µ,Xi))+
σ2

n1
{E[L(µ,Xi)L

′′(µ,Xi)]−E[L(µ,Xi)]E[L′′(µ,Xi)]}

+
σ2

n2
1

E(Y)E[L′(µ,Xi)]
2− σ4

4n2
1

{E[L′′(µ,Xi)]}2 +O(
1

n2
1

)
]

,

whereµ= EZn
1
Xi , σ2 = VarZn

1
(Xi).

The above formulas indicate clearly the dependence ofVar(n2
n1

µ̂J) on the first moment of the
random variablesY, Y∗. Since the distribution ofY andY∗ is known, we can substituteE(Y), E(Y∗)
by their corresponding values and simplify the above expressions. Because the distribution ofY, Y∗

is hypergeometricE(Y) =
n2

1
n andE(Y∗) =

n2
2

n . Then

Cov(µ̂j , µ̂j ′) = (1− 1
n
)
[σ2

n
(E[L′(µ,Xi)])

2− σ4

4n2
1

(E[L′′(µ,Xi)])
2 +O(

1

n2
1

)
]

+
1
n

[

Var(L(µ,Xi))+
σ2

n1
{Cov(L(µ,Xi),L

′′(µ,Xi))}

+
σ2

n
E[L′(µ,Xi)]

2− σ4

4n2
1

(E[L′′(µ,Xi)])
2 +O(

1

n2
1

)
]

.
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The final estimator of the variance ofn2
n1

µ̂J is a plug-in estimator and it can be computed using
theorem (3.1). We need to replace the unknown population meanµ and population varianceσ2

by their estimators, the sample mean and sample variance respectively. If it is not convenient to
compute the sample variance and mean based on the data universe we may compute X̄Sj and, if
there are many different training sets, take as an estimator of the sample meanX̄ = 1

J ∑J
j=1 X̄Sj .

Moreover,σ̂2
j = 1

n1−1 ∑n1
l=1(Xl − X̄Sj )

2, thus the variance estimate of the population variance will be

σ̂2 = 1
J ∑J

j=1 σ̂2
j .

Example. In the case of square error loss the approximations to the variance of ˆµj and the
Cov(µ̂j , µ̂j ′) are given as:

Var(µ̂j) =
1
n2

Var[(Xi −µ)2]+
4σ4

n1n2
=

1
n2

E[(xi −µ)4]− σ4

n2
+

4σ4

n1n2
, (3.9)

Cov(µ̂j , µ̂j ′) = (1− 1
n
)(−σ4

n2
1

)+
1
n
(
4σ4

n
− σ4

n2
1

+Var[(Xi −µ)2]). (3.10)

If the data are from aN(0,σ2) then the moment approximation estimator of the variance ofn2
n1

µ̂J

is given by

σ̂4{2(n1 +2)

n1n2

1
J

+(
J−1

J
)[

2(n+2)

n2 − 1

n2
1

]},

whereσ̂ is the sample standard deviation. Thus the estimator of the variancen2
n1

µ̂J is a multiple
of the sample variance and the multiplication factor indicates the dependence ofthe estimator on
n1, n2 andn.

Variance estimator of the k-fold CV estimator of the generalizationerror.
Here we present a variance estimator of the k-fold cross validation estimatorof the general-

ization error of a learning algorithm. Notice that this is a special case of theorem 3.1. Ink-fold
cross validation the data universe is divided intok different non-overlapping test sets, each of which
containsn

k elements. The number of elementsn1, in any given training set, is thenn− n
k = (k−1)n

k .

Therefore,Y = Card(Sj
T

Sj ′) = (k−2)n
k . Theorem 3.1 gives the approximations:

Var(µ̂j) =
k
n
[Var(L(µ,Xi))+

σ2

n
(

k
k−1

){E[(L′(µ,Xi))
2]+Cov(L(µ,Xi),L

′′(µ,Xi))}]

+
n−k

n
σ2

n
k

k−1
{E[L′(µ,Xi)]}2 +O(1/n2

1),

and

Cov(µ̂j , µ̂j ′) =
σ2

n
k(k−2)

(k−1)2 (E[L′(µ,Xi)])
2− σ4

4n2(
k

k−1
)2(E[L′′(µ,Xi)])

2 +O(
1

n2
1

).

Therefore, the variance estimate can be computed using relation (3.1), whereVar(µ̂j) andCov(µ̂j , µ̂j ′)
are replaced by their estimates. These can be obtained by replacingµ, σ2 by their sample estimates
using data from the training sets.
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Now assume that the loss function used is square error. In this case,L′(µ,xi) = 2(µ− xi) and
L′′(µ,xi) = 2. The formulas then for the variance of ˆµj and the covariance between different ˆµjs
simplify as follows:

Var(µ̂j) =
k
n
{Var[(Xi −µ)2]+

4σ4

n
(

k
k−1

)}, (3.11)

Cov(µ̂j , µ̂j ′) = −σ4

n2 (
k

k−1
)2, j 6= j ′. (3.12)

ThenVar(n2
n1

µ̂J) can be estimated by using formula (3.1) and replacingσ2 andVar[(Xi −µ)2] by the
sample variance and an appropriate sample estimate forVar[(Xi −µ)2]. The final approximation of
the variance ofn2

n1
µ̂J is then

Var(n2
n1

µ̂J) =
1
n
{Var[(Xi −µ)2]}+

3kσ4

(k−1)n2 =
1
n

E[(Xi −µ)4]− σ4

n
+

3kσ4

(k−1)n2 .

A simple estimator ofE[(Xi −µ)4] can be computed from the training sample by taking the sample
version of the above expectation,1

n1
∑i∈Sj

(Xi − X̄Sj )
4. To illustrate, if we further assume a normal

population thenVar[(Xi −µ)2] = 2σ4 and the variance estimator ofn2
n1

µ̂J is given as

σ̂4

n
(2+

3k
n(k−1)

),

whereσ̂ is the sample standard deviation.

3.2 The Regression Case

The regression case is another case of fitting means. We consider here the problem of estimat-
ing the variance of the cross validation estimator of the generalization errorn2

n1
µ̂J in the case of

regression. Therefore the data are realizations of random variables(Yi ,Xi), i = 1,2, · · · ,n such that
E(Yi |Xi) = xT

i β. Notice that the explanatory variables here are treated as fixed; this formulation is
known as the fixed design case. The vector of unknown parametersβ is usually estimated by least
squares; denote bŷβ the least square estimator ofβ. Then for a new observation(yi ,xi) ∈ Sc

j denote

by ŷi,Sj = xT
i β̂Sj , whereβ̂Sj indicates the estimator ofβ computed by using the data in the training

setSj . The loss functionL is then dependent on ˆyi,Sj andyi , that isL(ŷi,Sj ,yi).

To derive the estimator ofVar(n2
n1

µ̂J) we need to use the moment approximation method to ob-
tain approximations for the moments of the statisticn2

n1
µ̂J. The idea is the same as in the case of

simple mean estimation. That is, the loss function is expanded with respect to its first argument
and evaluated at the pointE(Yi |Xi) = xT

i β0, whereβ0 is the true parameter value. In other words, as
before, the expansion is evaluated at the true mean.

We list now the assumptions under which our theory holds.

Assumption 1. If Sj is a training set withn1 number of elements

lim
n1→∞

1
n1

(XT
Sj

XSj )
−1 = V
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whereV is finite and positive definite.
Assumption 2. Let xn1k denote thekth row of the design matrixXSj . Then, for eachj =

1,2, · · · ,J,
max

1≤k≤n1

xn1k(XT
Sj

XSj )
−1xn1k → 0

asn1 → ∞.
Notice that this condition is known as the generalized Noether condition.
Under the above conditions

√
n1(β̂Sj −β) converges in distribution to aN(0,σ2V) random vari-

able.

The following proposition establishes an approximation to the expectation of theloss functionL.

Proposition 3.4: Suppose that assumptions 1 and 2 hold. Then

E[L(ŷi,Sj ,yi)] = E[L(xT
i β0,yi)]+

σ2

2
E[L′′(xT

i β0,yi)]tr[(xix
T
i )(XT

Sj
XSj )

−1]+Rn,

where the remainder term is of orderO( 1
n2

1
), and the prime indicates derivative with respect to the

first argument of the loss function.

Proof: First expandL(ŷi,Sj ,yi) with respect to the first argument to obtain:

L(ŷi,Sj ,yi) = L(xT
i β0,yi)+L′(xT

i β0,yi)x
T
i (β̂Sj −β0)

+
1
2

L′′(xT
i β0,yi)(β̂Sj −β0)

Txix
T
i (β̂Sj −β0)+Rn, (3.13)

whereRn indicates the remainder term.
Now

E{L(ŷi,Sj ,yi)} = ESj ,i{EZn
1
[L(ŷi,Sj ,yi)|Sj , i]}

= ESj ,i{EZn
1
[L(xT

i β0,yi)|Sj , i]}+ESj ,i{EZn
1
[L′(xT

i β0,yi)x
T
i |Sj , i]EZn

1
[(β̂Sj −β0)|Sj , i]}

+
1
2

ESj ,i{EZn
1
[L′′(xT

i β0,yi)|Sj , i]EZn
1
[(β̂Sj −β0)

Txix
T
i (β̂Sj −β0)|Sj , i]}

But the expectationEZn
1
[(β̂Sj −β0)|Sj , i] = 0 becauseEZn

1
(β̂Sj |Sj , i) = EZn

1
(β̂Sj ) = β0. Also since the

distribution ofβ̂Sj is asymptoticallyN(β0,σ2(XT
Sj

XSj )
−1), under assumptions 1 and 2 we obtain:

ESj ,i{EZn
1
[(β̂Sj −β0)

Txix
T
i (β̂Sj −β0)|Sj , i]} = EZn

1
[(β̂Sj −β0)

Txix
T
i (β̂Sj −β0)]

= σ2tr[(xix
T
i )(XT

Sj
XSj )

−1],

whereσ2 = VarZn
1
(Xi), the variance of the sample, and tr(A) stands for the trace of the matrix A.

Therefore

E[L(ŷi,Sj ,yi)] = E[L(xT
i β0,yi)]+

σ2

2
E[L′′(xT

i β0,yi)]tr[(xix
T
i )(XT

Sj
XSj )

−1]+Rn,
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where the expectations are taken with respect to the distribution of the data. Moreover,Rn is of
order 1

n2
1
.

Proposition 3.5 establishes the approximation for the variance ofL(ŷi,Sj ,yi).

Proposition 3.5 Suppose that assumptions 1 and 2 hold. ThenVar(L(ŷi,Sj ,yi)) can be approxi-
mated as follows:

Var{L(ŷi,Sj ,yi)} = Var[L(xT
i β0,yi)]}+σ2tr[(xix

T
i )(XT

Sj
XSj )

−1{Cov(L(xT
i β0,yi),

L′′(xT
i β0,yi))+E[L′(xT

i β0,yi)]
2}+Rn,

whereσ2 = VarZn
1
(Yi |Xi) andRn is the remaining term of order1

n2
1
.

Proof: The proof is similar with that of proposition 3.2, in that we apply proposition 3.4 to
L2(ŷi,Sj ,yi) and we use the fact that

[L2(ŷi,Sj ,yi)]
′′ = 2L(ŷi,Sj ,yi)L

′′(ŷi,Sj ,yi)+2[L′(ŷi,Sj ,yi)]
2,

where prime indicates derivative with respect to the first argument of the loss function.

Example. To verify the above approximations we useL(ŷi,Sj ,yi) = (ŷi,Sj −yi)
2, the square error

loss and the case of simple regression, that is

yi = a+bzi + εi = xT
i β+ εi ,

wherexT
i = (1,zi), βT = (a,b) and(yi ,xi) ∈ Sc

j . The notation ˆyi,Sj stands forxT
i β̂Sj .

The exact expectation ofL(ŷi,Sj ,yi) = (xT
i β̂Sj −yi)

2 is given as:

E[L(ŷi,Sj ,yi)] = σ2 +σ2xT
i (XT

Sj
XSj )

−1xi .

The approximate expectation is

E[L(ŷi,Sj ,yi)] = σ2 +σ2tr(xixT
i (XT

Sj
XSj )

−1),

Becausetr(xixT
i (XT

Sj
XSj )

−1) = xT
i (XT

Sj
XSj )

−1xi , the approximation to the expectation agrees with
the exact computation. Similarly we can verify that the approximation of the variance produces the
same result as the exact computation. To illustrate further the formulas assumethatyi ∼ N(xT

i β,σ2),
then the exact calculation gives the variance ofL(ŷi,Sj ,yi),

Var(L(ŷi,Sj ,yi)) = 2σ4 +4σ4xT
i (XT

Sj
XSj )

−1xi +2σ4(xi(XT
Sj

XSj )
−1xi)

2.

The approximation is given by

Var(L(ŷi,Sj ,yi)) = 2σ4 +4σ4xT
i (XT

Sj
XSj )

−1xi +O(
1

n2
1

),

that is they agree up to first order terms.
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To complete the variance approximation of the estimatorn2
n1

µ̂J we need an approximation of the
covariance betweenL(ŷi,Sj ,yi) andL(ŷi′,Sj′ ,yi′). The following proposition expresses the approxi-
mation ofCov(L(ŷi,Sj ,yi),L(ŷi,Sj′ ,yi′)).

Proposition 3.5. Suppose that assumptions 1 and 2 hold. Then forj 6= j ′, j, j ′ ∈ {1,2, · · · ,J}
wheni 6= i′

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj′ ,yi′)) = σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj′
XSj′ )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1xi′

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr((xix

T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )

(XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1).

Wheni = i′,

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj′ ,yi′)) = Var(L(xT
i β0,yi))+

σ2

2
Cov(L(xT

i β0,yi),L
′′(xT

i β0,yi))

(xT
i (XT

Sj′
XSj′ )

−1xi +xT
i (XT

Sj
XSj )

−1xi)

+ σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj′
XSj′ )

−1(XT
1 X1)(XT

Sj
XSj )

−1xi

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr((xix

T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xix
T
i )

(XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1)

+
σ4

4
Var(L′′(xT

i β0,yi))x
T
i (XT

Sj
XSj )

−1xix
T
i (XT

Sj′
XSj′ )

−1xi .

Proposition 3.6. Let Sj be a training set,j = 1,2, · · · ,J. Then fori 6= i′

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj ,yi′)) = σ2(E[L′(xT
i β0,yi)])

2tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1].

The proofs of Proposition 3.5 and Proposition 3.6 can be found in Appendix C.

Remark: If the loss is square error,

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj ,yi′)) = 2σ4tr[(xix
T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1]. (3.14)

To estimate relationship (3.14) we only need to estimateσ. We estimateσ by the residual mean
square error.

Under square error loss, we have

Var(µ̂j) =
1

n2
2

n2

∑
i=1

{2σ4 +4σ4xT
i (XT

Sj
XSj )

−1xi}+
1

n2
2
∑ ∑

i6=i′
2σ4(xT

i (XT
Sj

XSj )
−1xi′)

2, (3.15)
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and

Cov(µ̂j , µ̂j ′) =
1

n2
2

∑i∈Sc
j
∑i′∈Sc

j′

i 6= i′
{2σ4tr{(xix

T
i )(XT

Sj
XSj )

−1

(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )(X

T
Sj′

XSj′ )
−1(XT

1 X1)(XT
Sj

XSj )
−1}}

1

n2
2

∑i∈Sc
j
∑i′∈Sc

j′

i = i′
{2σ4 +4σ4xT

i (XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1)xi

+2σ4tr{(xix
T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xix
T
i )

(XT
Sj′

XSj′ )
−1(XT

1 X1)(XT
Sj

XSj )
−1}} (3.16)

The final estimate is obtained from relation (3.1) whereVar(µ̂j) is estimated by using relation
(3.15),Cov(µ̂j , µ̂j ′) is estimated by using relation (3.16) and replacingσ2 by an estimator of it. To
obtain an estimator ofσ2, we fit the regression model and obtain ˆyi . Thenσ̂2 is the sample variance
of the errorŝεi = yi − ŷi , that is the residual mean square.

Remark: Note that to derive the results above, we used as the distribution of the datathe
conditional distribution ofY given X, in effect treatingX as fixed. Now, assume that instead of
using the conditional distribution as the data distribution, we treatX as random and use the joint
distribution of(X,Y). In this case, the data distribution is

f (x,y) = g(y−xTβ|x)k(x)

whereg(·) is the distribution of the errors andk(·) is the distribution of thexs. We can then derive the
formulas expressing the expectation, variance and covariance terms thatare needed using the joint
distribution of(X,Y). For example,E(β̂) = E(X,Y)[(X

TX)−1XTY] = EX{EY|X[(XTX)−1XTY|X]} =

β0, is still unbiased, andVar(β̂) = EX{VarY(β̂|X)}+VarX{EY(β̂|X)} = σ2EX[(XTX)−1]. Other
adjustments that take into account the distribution ofX are needed. These mainly concentrate on
taking expectations, overX, of terms that are functions of theXs, and can be easily computed from
the data by using bootstrap. As an illustration, under square error loss, the formula in proposition
3.4 becomesE[L(ŷi,Sj ,yi)] = σ2+σ2EX[tr[(xixT

i )(XT
Sj

XSj )
−1]], whereσ2 is the variance of the error

distribution.

4. Simulation Experiments.

We present here simulation experiments that illustrate the performance of the proposed estimators;
moreover, we compare these estimators with the estimator proposed by Nadeauand Bengio (2003).
The simulation experiments compare the proposed estimators with the Nadeau and Bengio estimator
under two different error losses, the square error and the absolute error loss.

4.1 Square Error Loss

We will first describe the experimental setup for the simple mean case.
We generated data sets of sizen = 100 from aN(0,1) distribution in S-plus. For each different

sizen1 of the training setSj we randomly selectn1 data points from the availablen and useSc
j , the

complement ofSj with respect to the generated data universe that contains 100 data points,as a test
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set. We takeJ to be 15 (as recommended by Nadeau and Bengio, 2003), and 50. We thencomputed
S2

µ̂j
= 1

J−1 ∑J
j=1(µ̂j − n2

n1
µ̂J)

2 and the estimator of the variance of the generalization error, given as

(1
J + n2

n1
)S2

µ̂j
.

We also computed the moment approximation estimator given by expressions (3.9) and (3.10).
Notice that we estimateσ2 by using the sample variance, that is,σ̂2 = 1

n−1 ∑n
i=1(Xi − X̄)2. We also

computed the variance estimator ofn2
n1

µ̂J using expression,

1
J

1
n2

Var(X2
i )+

1
J

4σ4

n1n2
+

J−1
J

{1
n
(
4σ4

n
− σ4

n2
1

+Var(X2
i )− (1− 1

n
)
σ4

n2
1

}.

The population varianceσ2 is estimated by using the sample variance averaged over 100 differ-
ent data sets. The termVar(X2

i ) is estimated as follows. LetZi = X2
i , i = 1,2, · · · ,n. We created

a new data universe usingZi and estimatêVar(Zi) = 1
n−1 ∑n

i=1(Zi − Z̄)2, whereZ̄ = 1
n ∑n

i=1Zi , over
100 different data sets.

Table 1 presents the results of the simulation. The first column of the table shows the size of
the test set. The second column reports the value of the Nadeau and Bengioestimator, while the
third column reports its variance. The variance is computed by simply taking the sample variance
of the estimator that was computed over the 100 independent data sets. The fourth column of
the table reports the value of the moment approximation estimator of the variance of the cross
validation estimator of the generalization error, while the fifth column reports thesample variance
of the moment approximation estimator.

n2 NB var(NB) MA var(MA)
10 0.0316 0.000310 0.0328 7.75e-06
15 0.0265 0.000241 0.0282 5.34e-05
20 0.0250 0.000179 0.0259 4.50e-05
25 0.0235 0.000213 0.0245 4.03e-05
30 0.0238 0.000145 0.0236 3.73e-05
35 0.0227 0.000175 0.0229 3.52e-05
40 0.0235 0.000188 0.0224 3.36e-05
45 0.0227 0.000122 0.0219 3.23e-05
50 0.0246 0.000236 0.0216 3.13e-05

Table 1: Simple mean case n=100, J=15. Nadeau-Bengio (NB) and moment approximation (MA)
estimators of the variance of the cross validation estimator of the generalizationerror, and
their sample variances.J = 15, and the results are averages over 100 independent data
sets. The size of the data universe is 100.

We notice that the variance of the moment approximation estimator is at least one order of mag-
nitude smaller than the variance of the Nadeau- Bengio estimator, thereby increasing the accuracy
of the moment estimator.

Figure 1 plots the values of the Nadeau-Bengio and moment approximation estimate of the
variance versus the sample size of the test set. Notice that the curve corresponding to the moment
approximation is smooth. This is in contrast to the behavior of the Nadeau-Bengio estimator, which
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Figure 1: Simple mean case n=100, J=15

seems to fluctuate (this also is indicated by the value of the sample variance associated with the
estimator and reported in table 1.)

n2 NB var(NB) MA var(MA)
10 0.0235 1.24e-04 0.0241 7.75e-06
15 0.0212 8.77e-05 0.0227 3.47e-05
20 0.0211 6.27e-05 0.0220 3.26e-05
25 0.0204 7.50e-05 0.0216 3.13e-05
30 0.0206 7.28e-05 0.0213 3.05e-05
35 0.0203 6.79e-05 0.0211 2.98e-05
40 0.0204 7.94e-05 0.0209 2.93e-05
45 0.0213 8.08e-05 0.0207 2.88e-05
50 0.0206 6.43e-05 0.0206 2.84e-05

Table 2: Simple mean case n=100, J=50. Moment approximation (MA) and Nadeau-Bengio (NB)
estimators of the variance the cross validation estimator of the generalization error and
their sample variances.J = 50, and the results are averages over 100 independent data
sets. The size of the data universe is 100.
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Table 2 presents the variance estimates of the CV estimators of the generalization error when
J = 50. In this case we notice that the variance of the moment approximation estimatoris about half
of the variance of the Nadeau-Bengio estimator.

size of the test set
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Figure 2: Simple mean case n=100, J=50

Figure 2 shows a plot of Nadeau-Bengio and moment approximation estimate ofthe variance as
a function of the size of the test set. The larger variance of the Nadeau-Bengio estimator that was
reported in table 2 can also be seen again in Figure 2.

Table 3 presents the values of the two variance estimators as well as their variance when the data
universe has sizen= 1000, for the caseJ = 15 andJ = 50. We notice that the performance, in terms
of variance, of the moment approximation estimator is, in both cases, superiorto the performance
of the Nadeau-Bengio estimator, always having variance that is smaller thanthe NB variance by one
order of magnitude.

To address the problem of bias we computed the exact (and theoretical) value of the variance
estimator ofn2

n1
µ̂J. Therefore, we computed, using formula (3.1),Var(n2

n1
µ̂J) under square error loss

and under the assumption of aN(0,1) distribution. The distributional assumption is used to obtain
the theoretical value. This is done only for the purpose of comparison and inorder to allow a bias
computation to be carried out without having to estimate higher order moments. Inpractice, the
distribution of the population from which the data arise is not known, and higher order moments
need to be estimated from the data.

The exact theoretical value ofVar(µ̂j) is

Var(µ̂j) =
2
n2

{1+
2
n1

+
n2

n2
1

}.
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n2 NB var(NB) MA var(MA)
J=15
100 0.00319 1.61e-06 0.00319 7.75e-06
150 0.00291 1.22e-06 0.00275 5.42e-08
200 0.00252 9.62e-07 0.00253 4.58e-08
250 0.00244 8.21e-07 0.00239 4.11e-08
300 0.00240 9.02e-07 0.00230 3.81e-08
350 0.00214 9.27e-07 0.00224 3.60e-08
400 0.00232 7.21e-07 0.00219 3.45e-08
450 0.00217 5.70e-07 0.00216 3.33e-08
500 0.00206 8.24e-07 0.00213 3.24e-08

J=50
100 0.00241 3.20e-07 0.00235 5.90e-08
150 0.00225 2.82e-07 0.00222 3.54e-08
200 0.00225 3.68e-07 0.00215 3.33e-08
250 0.00216 2.43e-07 0.00211 3.21e-08
300 0.00213 1.96e-07 0.00209 3.12e-08
350 0.00216 2.83e-07 0.00207 3.07e-08
400 0.00211 2.70e-07 0.00205 3.02e-08
450 0.00218 2.36e-07 0.00204 2.99e-08
500 0.00206 2.18e-07 0.00203 2.96e-08

Table 3: Simple mean case n=1000, J=15 and J=50. Moment approximation (MA) and Nadeau-
Bengio (NB) estimators of the variance of the cross validation estimator of the generaliza-
tion error under random selection, and their sample variances. The size of the data universe
is n = 1000 andJ = 15 and 50.

Using theorem 3.1 the approximation to the value ofVar(µ̂j) is

Var(µ̂j) =
2
n2

{1+
2
n1

+O(
1

n2
1

)}.

The same theorem provides the approximation toCov(µ̂j , µ̂j ′) as follows:

Cov(µ̂j , µ̂j ′) =
2
n
(1+

2
n
)+O(

1

n2
1

).

The exact theoretical computation of the covariance provides us with the formula

Cov(µ̂j , µ̂j ′) =
2
n
(1+

2
n
)+

2
n1

(
1
n1

− 1
n
).

Using these expressions we computed the exact value of the variance ofn2
n1

µ̂J for the square error
loss. This computation allows us to get a sense of the bias of the moment approximation and
Nadeau-Bengio estimators. Table 4 presents the results for the case where the data universe is 100
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n2 Exact Variance Bias of MA estimator Bias of NB estimator
10 0.0327 0.0001 -0.0011
15 0.0282 0 -0.0017
20 0.0259 0 -0.0009
25 0.0246 -0.0001 -0.0011
30 0.0237 -0.0001 0.0001
35 0.0232 -0.0003 -0.0005
40 0.0227 -0.0003 0.0008
45 0.0223 -0.0004 0.0004
50 0.0222 -0.0006 0.0024

Table 4: Bias of MA and NB estimators. Bias of MA of NB estimators for the caseof the simple
mean. The data universe has size 100, J=15. The bias is calculated as theexpectation of
the estimator minus the exact value.

andJ = 15. We observe that the moment approximation estimator has a very small bias, consistently
smaller than the bias of the Nadeau-Bengio estimator. Notice that when the sizesof the training and
test sets are equal (n1 = n2 = 50) the bias of the Nadeau-Bengio estimator is four times higher, in
absolute value, than that of the moment approximation estimator.

At this point, we remind the reader that the Nadeau-Bengio estimator given in (2.5) is generally
applicable. The proposed estimators take advantage of information about the data and the learning
algorithm. Hence, it is not completely surprising that they perform better thanthe Nadeau Bengio
estimator in terms of variance and bias.

For comparison reasons, after a referee’s suggestion, we computed the second estimator pro-
posed by Nadeau and Bengio(2003) and given by (2.6). Table 5 presents the values of the estima-
tors of the variance given by (2.5) and (2.6) and the moment approximation estimator. Expressions
(3.9) and (3.10) were used to obtain the needed variance and covariance terms. The size of the data
universe is 50, 100, 500 and 1000, the size of the test set is taken to be 10, 20, 100 and 200 and J
is either 15 or 50. ¿From table 5 we see that the estimator given by (2.6) is indeed conservative; its
value is almost twice as big as the value of either the cheap to compute Nadeau and Bengio esti-
mator given by (2.5) and the moment approximation estimator. It is interesting to notice that, when
the training set size is the same with the training set size used to compute (2.5) andthe moment
approximation estimator, the value of (2.6) is comparable to the value of the othertwo estimators.
This observation indicates the importance of the size of the training set in the computation of the
variance of the cross-validation estimators of the generalization error.

To exemplify the fact that the framework we propose allows one to compute thevariance estima-
tor of the k-fold cross validation estimator of the generalization error we computed the variance of
leave-one-out cross validation (LOOCV) estimator of the generalization error, the 4-fold, the 5-fold
and the 10-fold in the case of square error loss and when the data universe consisted of 100 data
points generated from a N(0,1) distribution. The case was prediction of simple mean. We did the
same when the data universe consisted of 1000 normal data points. Table 6presents the moment ap-
proximation variance estimators together with their variance and the corresponding NB estimators.
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Sample Size Training Set Size J NB MA NB(Conserv.)
50 10 15 0.0539 0.0537 0.0988
100 10 15 0.0314 0.0328 0.0542
50 20 15 0.0458 0.0462 0.1213
100 20 15 0.0257 0.0259 0.0456
50 10 50 0.0443 0.0456 0.0836
100 10 50 0.0236 0.0241 0.0420
50 20 50 0.0421 0.0430 0.1131
100 20 50 0.0218 0.0220 0.0467
500 100 15 0.0052 0.0051 0.0081
1000 100 15 0.0032 0.0032 0.0050
500 200 15 0.0044 0.0044 0.0082
1000 200 15 0.0025 0.0025 0.0041
500 100 50 0.0044 0.0043 0.0078
1000 100 50 0.0023 0.0023 0.0040
500 200 50 0.0042 0.0041 0.0081
1000 200 50 0.0022 0.0022 0.0040

Table 5: Comparison among three estimators. Values of NB, MA and the conservative NB estimates
for the case of the simple mean. The universe sample size is 50, 100, 500 and 1000.

k-fold MA Variance NB Variance
4-fold 0.02096 0.00003302 0.0417 0.001262

n=100 5-fold 0.02093 0.00003293 0.04516 0.0009909
10-fold 0.02089 0.0000328 0.04426 0.0005567
LOOCV 0.02086 0.0000327 0.04141 0.0002177
4-fold 0.002 3.02E-08 0.00423 1.308E-05

n=1000 5-fold 0.002 3.02E-08 0.00412 8.60E-06
10-fold 0.002 3.02E-08 0.00405 3.74E-06
LOOCV 0.002 3.02E-08 0.00398 2.00E-07

Table 6: Variance estimators for k-fold CV. Moment approximation and Nadeau-Bengio variance
estimators for k-fold cross-validation estimators of the generalization errorand their vari-
ances.

When the data universe is 100 the 4-fold cross validation divides it into 4 non-overlapping test
sets each containing 25 data points. Similarly, we define 5-fold and 10-fold cases. We notice that
the variance estimation of LOOCV is not appreciably better than that of the other cross validation
estimators. In fact, the slight advantage of the LOOCV diminishes when the datauniverse is large
and the size of the test set becomes large. For illustration purposes we present the NB estimator
and its variance. The value of the NB estimator is twice as large as the value of the moment
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approximation estimator. However, note that Nadeau and Bengio (2003) donot discuss the case
of k-fold cross validation.

K MSE Var Bias
4 0.02123 0.02098 0.002283
10 0.02099 0.02091 0.002224

Table 7: Comparison between 10-fold and 4-fold Cross Validation Under Simple Mean Case. MA
estimator is used to estimate the variance of the cross -validation estimator of the general-
ization error. The results reported in the table are averages over 100 different data sets.

To understand the effect of the loss function in the performance of the methods we used the
mean squared error (MSE) to compare the estimators as well as their variance. Table 7 presents
the values of the MSE and the variance, as well as the bias for the 4-fold and 10-fold estimators of
variance for the simple mean case. We see that the reduction in variance between the 4-fold and 10-
fold CV variance estimator is not appreciably different. This difference ismore pronounced when
the corresponding MSE are compared. Overall it appears that the 10-fold cross validation differs
from the 4-fold cross validation an order of magnitude less when the comparison between the two
is made on the basis of variance than when the comparison is made on the basis of MSE.

4.2 Absolute Error Loss

The previous theory was developed for loss functions that are differentiable. One loss that is not
differentiable at the mean is the absolute error loss. However, we are ableto apply the above theory
in the case of the absolute error loss because we can replace|X̄Sj −Xi | by the equivalent function
√

(X̄Sj −Xi)2 +d, whered is a small positive number. The function[(X̄Sj −Xi)
2 + d]1/2 replaces

the absolute error loss and is differentiable everywhere. We used = 1
n and 1

n2
and computed the

Nadeau-Bengio estimate and the moment approximation estimate for the sizes of thedata universe
of 100 and 500. Notice that the Nadeau-Bengio estimate was computed usingL(X̄Sj ,Xi) = |Xi −X̄Sj |,
while the moment approximation estimator uses the loss functionL(X̄Sj ,Xi) = [(Xi − X̄Sj )

2 +d]1/2,
which is almost the same with the absolute error loss. We generate data from aN(0,5) distribution
in S-plus and usedJ = 15.

Table 8 shows the values of the Nadeau-Bengio and moment approximation estimators together
with their sample variances. Notice thatd = 1

n was used in the first computation of the moment
approximation estimator, wheren is the size of the data universe, andd = 1

n2
, wheren2 is the size

of the test set was used in the second computation. The table reports resultsthat are averaged over
100 different data sets.

The first observation we make is that the effect ofd on the moment approximation estimator and
its sample variance is almost undetectable, as the values of the estimator and its sample variance
(averaged over 100 different data sets) do not change with d being1

n or 1
n2

. Secondly, we see that the
variance of the Nadeau-Bengio estimator is larger than the variance of the moment approximation
estimator by one order of magnitude.
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n2 NB estimator var(NB) MA estimator var(MA)
d = 1

n
10 0.0287 1.16e-04 0.0293 1.43e-05
15 0.0271 1.25e-04 0.0252 1.06e-05
20 0.0256 7.93e-05 0.0231 8.93e-06
25 0.0224 7.72e-05 0.0219 7.98e-06
30 0.0218 8.77e-05 0.0210 7.36e-06
35 0.0207 7.53e-05 0.0204 6.92e-06
40 0.0208 6.52e-05 0.0199 6.58e-06
45 0.0191 6.14e-05 0.0194 6.30e-06
50 0.0205 7.07e-05 0.0191 6.06e-06

d = 1
n2

10 0.0287 1.16e-04 0.0291 1.43e-05
15 0.0271 1.25e-04 0.0251 1.06e-05
20 0.0256 7.93e-05 0.0231 8.92e-06
25 0.0224 7.72e-05 0.0218 7.97e-06
30 0.0218 8.77e-05 0.0210 7.36e-06
35 0.0207 7.53e-05 0.0204 6.91e-06
40 0.0208 6.52e-05 0.0199 6.58e-06
45 0.0191 6.14e-05 0.0194 6.30e-06
50 0.0205 7.07e-05 0.0191 6.06e-06

Table 8: Absolute Error Loss Case n=100, J=15. Nadeau-Bengio (NB) and moment approximation
(MA) estimators and their corresponding variance estimates. Data are N(0,5) and J=15.
The loss function is absolute error.

Table 9 presents the Nadeau-Bengio and moment approximation estimators butnow the value of
J = 50. Notice that, in contrast with the square error loss case, the Nadeau-Bengio estimator has a
higher variance than the moment approximation estimator. Its variance is still an order of magnitude
higher than the variance of the moment approximation estimator.

Table 10 presents the two estimators and their corresponding sample variances when the size of
the data universe is 500. The population is still N(0,5) andd = 1/n. Notice that forJ = 15 the NB
estimate has larger, by two orders of magnitude, variance than the moment approximation estimator,
while J = 50 it still maintains a larger than the moment approximation estimator variance, only this
time by one order of magnitude.

4.3 Regression

In the regression case the data generation was done as follows. The model adopted was simple
regression, that isyi = α+βxi +εi , i = 1,2, · · · ,n, whereεi are independent, mean 0 and variance 1,
normal random variables. The parametersα, β were set to equal 2 and 3 respectively. The explana-
tory variable was generated from a uniform distribution with range [0,10].Finally, we generated the
errors from a N(0,1) distribution andyi = 2+3xi + εi , i = 1,2, · · · ,100. We generated 100 different
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n2 NB var(NB) MA var(MA)
d = 1

n
10 0.0208 3.18e-05 0.0216 7.77e-06
15 0.0209 2.48e-05 0.0203 6.89e-06
20 0.0206 2.92e-05 0.0197 6.46e-06
25 0.0189 2.30e-05 0.0193 6.19e-06
30 0.0199 2.41e-05 0.0190 6.00e-06
35 0.0191 2.45e-05 0.0187 5.86e-06
40 0.0192 2.49e-05 0.0185 5.73e-06
45 0.0188 3.16e-05 0.0184 5.61e-06
50 0.0195 2.56e-05 0.0182 5.50e-06

d = 1
n2

10 0.0208 3.18e-05 0.0214 7.75e-06
15 0.0209 2.48e-05 0.0202 6.88e-06
20 0.0206 2.92e-05 0.0196 6.45e-06
25 0.0189 2.30e-05 0.0192 6.19e-06
30 0.0199 2.41e-05 0.0190 6.00e-06
35 0.0191 2.45e-05 0.0187 5.86e-06
40 0.0192 2.49e-05 0.0185 5.73e-06
45 0.0188 3.16e-05 0.0183 5.61e-06
50 0.0195 2.56e-05 0.0182 5.50e-06

Table 9: Absolute Error Loss Case n=100, J=50. Nadeau-Bengio (NB) and moment approximation
(MA) estimators and their sample variance. Data areN(0,5) and J=50. The loss function
is absolute error.

data sets; for each data set, and for each value ofn2, n1 we computed the Nadeau-Bengio and the
moment approximation estimator and then average those over the 100 different data sets.

Tables 11 and 12 present the two estimators together with their corresponding sample variances
and for values of J equal to 15 and 50. Notice that the moment approximation estimator has variance
that is at least one order of magnitude smaller than the variance of Nadeau-Bengio estimator.

Table 13 computes the NB and moment approximation variance estimators of the generalization
error when the size of the data universe is 500. We see that the moment approximation estimator
still maintains a variance of an order of magnitude lower than the NB estimator.

We also computed the variance estimators for k-fold cross validation estimatorsof the gener-
alization error in the regression case. Table 14 shows the value of the momentapproximation and
Nadeau-Bengio estimator and their sample variances computed over 100 different data sets of size
100.

Again, the advantage of LOOCV in this case is questionable. Moreover, given the fact that 4-
fold cross validation saves a lot of computing time it seems to be preferable to use (recall that 4-fold
CV assigns 25% of the data points in the test set).
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n2 NB var(NB) MA var(MA)
J = 15

50 0.00651 8.31e-06 0.00588 1.09e-07
75 0.00527 3.19e-06 0.00506 8.04e-08
100 0.00455 3.23e-06 0.00465 6.79e-08
125 0.00459 2.62e-06 0.00440 6.09e-08
150 0.00428 3.10e-06 0.00424 5.64e-08
175 0.00420 2.55e-06 0.00412 5.33e-08
200 0.003971 2.41e-06 0.00403 5.10e-08
225 0.00390 1.83e-06 0.00396 4.92e-08
250 0.00361 2.03e-06 0.00390 4.78e-08

J = 50
50 0.00456 1.05e-06 0.00433 5.90e-08
75 0.00402 6.61e-07 0.00409 5.25e-08
100 0.00406 9.03e-07 0.00396 4.93e-08
125 0.00404 7.45e-07 0.00389 4.75e-08
150 0.00396 7.16e-07 0.00384 4.62e-08
175 0.00388 8.07e-07 0.00380 4.54e-08
200 0.00377 5.23e-07 0.00377 4.47e-08
225 0.00377 5.67e-07 0.00375 4.41e-08
250 0.00365 6.26e-07 0.00373 4.36e-08

Table 10: Absolute Error Loss Case n=500,d = 1
n. Nadeau-Bengio (NB) and moment approxima-

tion (MA) estimators and their sample variance. The size of the data universeis 500.

4.4 Classification

In this section we briefly indicate how these results can possibly be extendedto the classification
case. We present some ideas that appear promising in treating this case anda very limited simulation
experiment in the simplest case, where the prediction rule is based on the meanof the training set.
The results presented here are promising; however, we would like to stress that a more detailed
study than the one presented here, is required to understand the performance of these methods in
classification.

Recall that a central requirement on the loss function is to be differentiable. In the classification
case the loss function is an indicator function and hence it is discontinuous at one point. The idea
is to replace the discontinuous function by a continuous, differentiable function that is close to the
original loss function. We approximate therefore the indicator function by apolynomial of order
3. Let the data be(xi ,gi), i = 1, · · · ,n, wherexi indicates the data value, andgi indicates the group
membership. Assume that there are only two groups in the population; thengi = 1 if xi belongs in
group 1 andgi = 2 if xi belongs in group 2. Moreover, assume that group 1 has smaller mean than
group 2. The prediction rule we use states that ifX̄Sj −Xk > 0 thenXk belongs in group 1, otherwise
it belongs in group 2. Therefore, ˆgk is either 1 or 2 depending on whetherX̄Sj −Xk is greater than 0
or less than or equal to 0. The loss function is thenI(gk 6= ĝk).
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n2 NB var(NB) MA var(MA)
10 0.0327 0.000493 0.0326 1.14e-04
15 0.0293 0.000366 0.0284 8.44e-05
20 0.0259 0.000184 0.0260 7.21e-05
25 0.0242 0.000199 0.0247 6.29e-05
30 0.0235 0.000168 0.0238 5.74e-05
35 0.0226 0.000176 0.0232 5.66e-05
40 0.0235 0.000144 0.0227 5.35e-05
45 0.0249 0.000255 0.0223 5.16e-05
50 0.0233 0.000142 0.0221 5.06e-05

Table 11: Regression case n=100, J=15. Moment approximation (MA) and Nadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generalizationerror and
their sample variances in the regression case. The value ofJ is 15, and the results are
averages over 100 independent data sets. The size of the data universe is 100.
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Figure 3: Regression case n=100, J=15

We can write this loss function as a function ofzk = x̄Sj −xk, δk = I(gk = 1) and two continuous
differentiable functionsLk1 andLk2. Thus

I(gk 6= ĝk) = δkLk1 +(1−δk)Lk2,
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n2 NB var(NB) MA var(MA)
10 0.0253 1.84e-04 0.0242 6.00e-05
15 0.0233 1.29e-04 0.0229 5.41e-05
20 0.0228 1.24e-04 0.0222 5.06e-05
25 0.0223 1.15e-04 0.0218 4.92e-05
30 0.0219 1.07e-04 0.0215 4.79e-05
35 0.0222 1.10e-04 0.0213 4.70e-05
40 0.0215 1.00e-04 0.0212 4.63e-05
45 0.0231 1.31e-04 0.0211 4.60e-05
50 0.0231 9.56e-05 0.0210 4.54e-05

Table 12: Regression case n=100, J=50. Moment approximation (MA) and Nadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generalizationerror and
their sample variances in the regression case. The value ofJ is 50, and the results are
averages over 100 independent data sets. The size of the data universe is 100.

n2 NB var(NB) MA var(MA)
50 0.00653 7.64e-06 0.00643 8.94e-07
75 0.00563 4.80e-06 0.00555 6.71e-07
100 0.00498 4.10e-06 0.00511 5.92e-07
125 0.00470 3.86e-06 0.00483 5.02e-07
150 0.00495 4.35e-06 0.00464 4.54e-07
175 0.00469 3.57e-06 0.00452 4.32e-07
200 0.00450 2.42e-06 0.00443 4.16e-07

Table 13: Regression case n=500, J=15. Moment approximation (MA) and Nadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generalizationerror and
their sample variances in the regression case. The value ofJ is 15, and the results are
averages over 100 independent data sets. The size of the data universe is 500.

where

Łk1 =







1 ,zk < −h
2
h3 z3

k + 3
h2 z2

k ,−h≤ zk < 0
0 ,zk ≥ 0

Łk2 =







0 ,zk < 0
− 2

h3 z3
k + 3

h2 z2
k ,0≤ zk < h.

1 ,zk ≥ h

The needed terms then can be easily computed. For example, we can compute expectation of
the above loss function as

E{E(δkLk1 +(1−δk)Lk2|δk)} = P(δk = 1)E(Lk1|δk = 1)+P(δk = 0)E(Lk2|δk = 0)
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Figure 4: Regression case n=100, J=50

k-fold MA Variance NB Variance
4-fold 0.02132 0.0000357 0.04854 0.00227
5-fold 0.02135 0.0000358 0.04634 0.00121
10-fold 0.02138 0.0000359 0.04493 0.00062
LOOCV 0.02139 0.0000359 0.04323 0.00023

Table 14: Variance estimators in regression. Variance estimators of k-foldcross-validation estima-
tor of the generalization error and their sample variances, in regression.

and the termsP(δk = 1), P(δk = 0) are computed from the data. Similarly, we can compute from
the data all terms that involve variance and covariance terms.

Table 15 presents the results obtained from a small scale simulation. Data were generated in
Splusfrom two groups of normal distributions; these wereN(3,1) andN(1,1). Group membership
is assigned by generating a Bernoulli(0.6) random variable. If the value of 1 is obtained then the data
point is generated from aN(1,1) distribution, otherwise it is generated from aN(3,1). The training
set used 80% of the available data points. For example, whenn = 200 the training set contains 160
elements and thusn2 = 40. The value ofh in constructing theLk1, Lk2 functions was taken to be 0.1.

Table 15 shows the moment approximation variance estimator and NB estimator forvarious
values of the data universe. For illustration reasons we present the values of the MA estimator for
both cases when normality is assumed and when is not. We see that the moment approximation
estimator (computed without any distributional assumption) is very competitive.
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Table 15: Simple Classification Example

n MA.Free MA.Normal NB
200 0.0008355 0.0008275 0.0009240
2000 0.00008593 0.00008273 0.00010028
20000 0.000008603 0.000008299 0.000008815

Table 15. Moment approximation (MA) and Nadeau-Bengio (NB) estimators of the variance
of the cross validation estimator of the generalization error and their samplevariances in the
simple classification case. The value ofJ is 15, MA.Free denote the MA estimator without
distribution assumption and MA.Normal denote the MA estimator under normal distribution.
The results are averages over 100 independent data sets. 80 percent of the data are used as
training data; h used here is 0.1

5. Discussion and Conclusion

We presented a method for deriving variance estimators of the cross validation estimator of the
generalization error in the cases of smooth loss functions and the absolute error loss. The approx-
imation we propose illustrates clearly the role of the training and test sets in the estimation of the
variance of the generalization error. We also provide a unifying framework, under which we can
obtain variance estimators of the estimators of the generalization error for both, complete random
sampling and non-random test set selection.

We compared the moment approximation estimators with an estimator proposed by Nadeau and
Bengio (2003). The results indicate that the moment approximation estimators perform better in
terms of both, variance and bias, than the Nadeau and Bengio (2003) estimator. The new estimators
use additional information from both the data and the learning algorithm. On the other hand, the
Nadeau and Bengio estimator is computationally simpler than the moment approximationestima-
tor for general loss functions, as it does not require the computation of the derivatives of the loss
function. In the case of non-random test set selection, the Nadeau-Bengio estimator is not appro-
priate to use. The moment approximation estimator in this case is a reasonable estimator and can
be computed. It is interesting to notice that the results indicate against use of the leave-one-out
cross validation (LOOCV). Its slight advantage is terms of variance, overthe other forms of cross-
validation quickly diminishes as the size of the universe, and hence the size of the test set of other
cross validation schemes increases. Overall, a test set that use 25% of the available data seems to
be a reasonable compromise in selecting among the various forms of k-fold cross validation.

We presented results for general differential loss functions and for absolute error loss. We also
indicated possible extensions of this methodology to the classification problem and discussed briefly
a very simple version of the classification problem. An extensive study of thisproblem will be the
subject of a different paper. Finally, we would like to indicate here that themethods presented here
can similarly apply to SVM loss function as well as the kernel regression.
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Appendix A.

Here we present a series of lemmas that guarantee that the remainder term inthe approximations
for the case of sample mean.

Before we state these we need the following definitions.
Definition 1. Let (Ω,F ,P ) be a probability space. We say that a random variableX belongs in

theLp space ifE|X|p < ∞, p > 0.
Definition 2. A sequence of random numbersRn is said to beO(1/kn) if ∃ M andn0 such that

|knRn| < M, ∀n > n0, or, equivalently,knRn is bounded.
Lemma A.1 Let X, Y be independent random variables andX +Y ∈ Lr for somer ∈ (0,∞).

ThenX ∈ Lr andY ∈ Lr .
Proof. For a largeλ0 > 0,∀λ > λ0

P(|X| > λ) ≤ 2P(|X| > λ, |Y| < λ
2
)

≤ 2P(|X +Y| > λ
2
),

If E|X|r < +∞, thenE|X|r =
Z ∞

0
P[|X|r > λ]dλ. Hence, ifX +Y ∈ Lr ,

Z

λ≥λ0

P(|X|r > λ) =
Z

λ≥λ0

P(|X| > λ
1
r )dλ

≤ 2
Z

λ≥λ0

P(|X +Y| > λ 1
r

2
)dλ

= 2
Z

λ≥λ0

P(|X +Y|r >
λ
2r )dλ < ∞.

Thus,E|X|r < ∞. The proof forE|Y|r < ∞ is similar.
Lemma A.2 If 0 < r ′ < r andE|X|r < ∞, thenE|X|r ′ < ∞.

Proof. Write
(E|X|r ′)r/r ′ ≤ E(|X|r ′)r/r ′ = E|X|r < ∞,

and the proof is obtained by Jensen’s inequality.

Lemma A.3 If E|X̄n|p < ∞, thenE|X1|p < +∞, wherep∈ Z+, andX̄n =
1
n

n

∑
i=1

Xi is the sample

mean.
Proof. We will use transfinite induction. Forn = 1 andn = 2, it is trivial sinceX̄n = X1. For

n = 2, X̄2 = 1
2(X1 + X2) and use lemma 1 to obtain the result, relying on the fact thatX1, X2 are

identically distributed. Suppose now that forn ≤ k−1 the result holds. We will prove it true for
n = k. Write

E(|X̄k|p) = E(|1
k

k

∑
i=1

Xi |p) = E(|1
k
(
k−1

∑
i=1

Xi +Xk)|p).
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Thus

E|X̄k|p = E|1
k

Xk +
k−1

k
X̄k−1|p,

and using lemma 1, we obtainE(|Xk|) < ∞.
Lemma A.4 Let n > 2k anda1,a2, · · · ,an be such that

a1 +a2 + · · ·+an = 2k
ai ∈ Z,ai ≥ 0,ai 6= 1

}

(1)

a1 +a2 + · · ·+an = 2k−1
ai ∈ Z,ai ≥ 0,ai 6= 1

}

(2)

Then the number of solutions for (1) and (2), denoted byAn(2k) andAn(2k−1) respectively,
satisfyAn(2k) = O(nk), andAn(2k−1) = O(nk−1) .
Proof. The maximal order of theAn(2k) comes from the{(2, · · · ,2),(0, · · · ,0)}, where(2, · · · ,2)

is a k-tuple. There are

(

n
k

)

solutions for (1) of this form. The order isO(nk), because

(

n
k

)

=
n(n−1) · · ·(n−k+1)

k!
= O(nk).

The maximal order of theAn(2k− 1) comes from the{(2, · · · ,2,3),(0, · · · ,0)}, where the k-

tuple(2,2, · · · ,2,3) hask−1 elements equal to 2. There are

(

n
k−1

)

solutions of (2) of this form.

The order isO(nk−1) because

(

n
k−1

)

=
n(n−1) · · ·(n−k+2)

(k−1)!
= O(nk−1).

Lemma A.5 Let X1,X2, · · · ,Xn be independent identically distributed random variables with
E(Xi) = µ, andk is a positive integer. ThenE(X̄ −µ)2k−1 andE(X̄ −µ)2k, if they exist, are both
O(1/nk).
Proof. Without loss of generality, we supposeE(X) = µ= 0, then

E(X̄2k
n ) =

1
n2k E(

n

∑
i=1

Xi)
2k =

O(nk)

n2k = O(n−k),

E(X̄n)
2k−1 =

1
n2k−1E(

n

∑
i=1

Xi)
2k−1 =

O(nk−1)

n2k−1 = O(n−k).

Appendix B.

Here we present the set up we use for the linear regression case and lemmas that guarantee the
validity of the obtained results.

The Gauss-Markov set up for a linear model definesyi = xT
i β + εi , wherey1,y2, · · · ,yn are

observable response variables andX = (xi j ) is an n1 × p matrix of known constants. Moreover
ε1,ε2, · · · ,εn are unobservable random variables that follow a probability distributionF , and are
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such thatE(εi) = 0 andVar(εi) = σ2, ε1,ε2, · · · ,εn are independent. The least square solution is
β̂ = (XTX)−1XTY, whereY is ann1×1 vector, so thatEβ̂ = β andVar(β̂) = σ2(XTX)−1.

Consider an arbitrary linear combinationUn = λT(β̂−β), λ ∈ R
P. ThenU = λT(XTX)−1XTεi

with c = λT(XTX)−1XT . To obtain the asymptotic distribution ofU all is needed is to verify thatc
satisfies the regularity condition of Hajek-Sidak central limit theorem.

We need first the following definition.
Definition(Convergence in distribution). A sequence{Tn} of random variables with distributions
{Fn} is said to converge in distribution (or in law) to a (possible degenerate) random variableT with
a distribution functionF , if for everyε > 0, there existsn0 = n0(ε), n0 ∈ Z+ such that at every point
of continuityx of F

|Fn(x)−F(x)| < ε,

for all n≥ n0.

Hajek-Sidak Central Limit Theorm (Sen and Singer, 1993). Let{Yn} be a sequence of inde-
pendent, identically distributed random variables with meanµ and varianceσ2 finite; let {Cn} be a
sequence of real vectors. Then ifCn = (cn1,cn2, · · · ,cnn)

T and

max1≤i≤nc2
ni

∑n
i=1c2

ni

→ 0, as n→ +∞

it follows that

Zn =
∑n

i=1cni(Yi −µ)
√

σ2 ∑n
i=1c2

ni

D→ Z

where Z is aN(0,1) random variable.

The following theorem completes the proof of the asymptotic distribution of the least squares
estimator.

Cramer-Wold Theorem (Sen and Singer, 1993). LetX1,X2, · · · be random vectors inRp; then

Xn
D→ X if and only if, for every fixedλ ∈ Rp we haveλTXn

D→ λTX.

Remark: We note here that the generalized Noether condition (assumption 2) can bemodified to
extend the asymptotic normality result to the heteroscedastic model, that is, the model whereE(ε) =
σ2

i , i = 1,2, · · · ,n1. Also notice that the normality of the least squares estimators is not obtained
under normality of the errors. Assumptions 1 and 2 of section 3.2 together withthe finiteness of the
second moment of the, otherwise unknown, error distribution suffices for these results to hold.

The following lemmas that are listed without proof are used to arrive at the given form of the
covariance terms.

Lemma B.1Let U be distributed as aN(0,V) random variable. Then

Var(UTAU) = 2tr(AV)2

whereA is a known matrix.
Lemma B.2Let U be distributed as aN(µ,V) random variable. Then
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(i) E(UTAU) = tr(AV)+µTAµ,

(ii) Cov(U,UTAU) = 2VAµ,

(iii) Cov(UTPU,UTQU) = 2tr[PVQV]+4µTPVQµ.

The following lemmas are used in establishing the equivalence of the different cases in the
computation of the covariance terms. The first lemma, the well-know Holder’s inequality, is stated
without proof.

Lemma B.3 Denote by||X||p = E1/p(|X|p), p > 0, whereX is a random variable, thep-norm
of X. Then, ifX, Y are measurable functions on a probability space forp > 1, p′ > 1 , 1

p + 1
p′ = 1

E|XY| ≤ ||X||p · ||Y||p′ .

The special case wherep = p′ = 2 is known as Schwarz’s inequality.

Lemma B.4 Let Sj , Sj ′ be training sets andSc
j , Sc

j ′ their corresponding test sets. Assume that

for (yi ,xi) ∈ Sc
j , (yi ,xi) ∈ Sj , for somei ∈ {1,2, · · · ,n2}. Assume thatE([L′(xT

i′ β0,yi′)]
2) < ∞, and

E[L4(xT
i′ β0,yi′)] < ∞,

sup||β̂Sj′ −β0||≤k/
√

n1
|E[L(xiβ0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)]

− E[L(xiβ0,yi)]E[L′(xT
i′ β0,yi′)]E[xT

i′ (β̂Sj′ −β0)]| = o(1)

Proof Write

|E[L(xiβ0,yi)L
′(xT

i′ β0,yi′)x
T
i′ (β̂Sj′ −β0)]−E[L(xiβ0,yi)]E[L′(xT

i′ β0,yi′)]E[xT
i′ (β̂Sj′ −β0)]|

≤ |E[L(xiβ0,yi)L
′(xT

i′ β0,yi′)x
T
i′ (β̂Sj′ −β0)]|+ |E[L(xiβ0,yi)]E[L′(xT

i′ β0,yi′)]E[xT
i′ (β̂Sj′ −β0)]

≤ E{|L(xiβ0,yi)x
T
i′ (β̂Sj′ −β0)||L′(xT

i′ β0,yi′)|}+ |E[L(xiβ0,yi)]||E[L′(xT
i′ β0,yi′)]||E[xT

i′ (β̂Sj′ −β0)]

Using lemma A2.3 and the fact thatE[xT
i′ (β̂Sj′ −β0)] = 0 the above relationship becomes:

|E[L(xiβ0,yi)L
′(xT

i′ β0,yi′)x
T
i′ (β̂Sj′ −β0)]−E[L(xiβ0,yi)]E[L′(xT

i′ β0,yi′)]E[xT
i′ (β̂Sj′ −β0)]|

≤
√

E([L(xT
i′ β0,yi′)]2)

√

E[L2(xT
i β0,yi)(β̂Sj′ −β0)xi′xT

i′ (β̂Sj′ −β0)]

Apply once more Lemma A2.3 on

E[L2(xT
i β0,yi)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)]

≤
√

E[L4(xT
i β0,yi)

√

E[(β̂Sj′ −β0)xi′xT
i′ (β̂Sj′ −β0)]

1160



VARIANCE OF CROSS-VALIDATION ESTIMATORS OF THEGENERALIZATION ERROR

Thus

sup||β̂Sj′ −β0||≤k/
√

n1
|E[L(xiβ0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)]

−E[L(xiβ0,yi)]E[L′(xT
i′ β0,yi′)]E[xT

i′ (β̂Sj′ −β0)]|

≤ sup||β̂Sj′ −β0||≤k/
√

n1
M · 4

√

E[(β̂Sj′ −β0)xi′xT
i′ (β̂Sj′ −β0)]2

≤ M · 4

√

[(
p

∑
l=1

xi′,l )2 k2

p2n1
]2

≤ 1√
n1

[
Mk

p
(

p

∑
l=1

xi′,l )]

≤ c√
n1

wherec = Mk
p (∑p

l=1xi′,l ) < ∞.

Lemma B.5 Let Sj ,Sj ′ be two training sets andSc
j , Sc

j ′ be their corresponding test sets. Under

the assumption thatE[L′′(xT
i β0,yi)] is finite and for some(yi ,xi) ∈ Sc

j , (yi ,xi) ∈ Sj ′ .

sup||β̂Sj′ −β0||≤k/
√

n1
|E[L(xT

i β0,yi)L
′′(xT

i′ β0,yi′)(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]

−E[L(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]| = o(1)

Proof. Write

|E[L(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)]

−E[L(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]|

≤ |E[L(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)]|

+|E[L(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]|

The first term of the above relationship gives:

|E[L(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)]|

≤ E|{L(xT
i β0,yi)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)}L′′(xT

i′ β0,yi′)|

≤
√

E[L′′(xT
i′ β0,yi′)2]

√

E[L2(xT
i β0,yi)((β̂Sj′ −β0)xi′xT

i′ (β̂Sj′ −β0)2)]

≤ c
n1

wherec is a constant. The second term is

|E[L(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)]|

≤ E[|L(xT
i β0,yi)L

′′(xT
i′ β0,yi′)|]E[xT

i′ (β̂Sj′ −β0)]
2

≤ |E[|L(xT
i β0,yi)|]E[|L′′(xT

i′ β0,yi′)|]
c1

n1

≤ c∗

n1
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wherec∗ is a constant. Thus the lemma is proved. Similarly we can prove that the terms, in the
computation of covariance, where(yi ,xi) ∈ Sj ′ and/or(yi′ ,xi′) ∈ Sj can be replaced and treated as
the case where(yi ,xi) /∈ Sj ′ and/or(yi′ ,xi′) /∈ Sj in the neighborhood of the true value ofβ0.

Lemma B.6Suppose

x =

(

u
v

)

∼ MVN

((

0
0

)

,

(

Σ11 Σ12

Σ21 Σ22

))

whereu is q×1 vector,v is (p−q)×1 vector,a is a knownq×1 vector,B is known(p−q)×(p−q)
matrix.
Then

E(aTuvTBv) = 0.

Proof: Using conditional probability argument, we have

E(aTuvTBv) = Eu{Ev|u[a
TuvTBv]}

= Eu{aTuEv|u[v
TBv]}

= Eu{aTu[tr(BΣ22·1)− (Σ21Σ−1
11 u)TB(Σ21Σ−1

11 u)]}
= Eu{aTu(Σ21Σ−1

11 u)TB(Σ21Σ−1
11 u)}

= Eu{aTuuTΣ−1
11 Σ12B(Σ21Σ−1

11 u)}
= Eu{aTuuTCu)}
= aTEu{uuTCu}
= aT{Cov(u,uTCu)+EuE(uTCu)}
= aT2Σ22C ·0+0

= 0

wherec = Σ−1
11 Σ12BΣ21Σ−1

11 . We use the property that ifx is N(µ,V), thencov(x,xTAx) = 2vAµ.
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Appendix C.

Proof of Proposition 3.5: To obtain the approximation given above we need first an approximation
for the productL(ŷi,Sj ,yi)L(ŷi′,Sj′ ,yi′). Using expansion (3.13) we obtain:

L(ŷi,Sj ,yi)L(ŷi′,Sj′ ,yi′) = L(xiβ0,yi)L(xT
i′ β0,yi′)+L(xiβ0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj −β0)

+
1
2

L(xiβ0,yi)L
′′(xT

i′ β0,yi′)x
T
i′ (β̂Sj′ −β0)

Txi′x
T
i′ (β̂Sj′ −β0)

+ L′(xiβ0,yi)x
T
i (β̂Sj −β0)L(xT

i′ β0,yi′)

+ L′(xiβ0,yi)x
T
i (β̂Sj −β0)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)

+
1
2

L(xT
i β0,yi)x

T
i (β̂Sj −β0)L

′(xT
i′ β0,yi′)(β̂Sj′ −β0)xi′x

T
i′ (β̂Sj′ −β0)

+
1
2

L(xT
i′ β0,yi′)L

′′(xT
i β0,yi)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

+
1
2

L′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)L

′′(xT
i β0,yi)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

+
1
4

L′′(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

(β̂Sj′ −β0)
Txi′x

T
i′ (β̂Sj′ −β0)+Rn. (1)

We need the expectation, over everything random, of relationship (1). Assume first thati 6= i′.
Recall that(yi ,xi) ∈ Sc

j and(yi′ ,xi′) ∈ Sc
j ′ and(yi ,xi) is independent of(yi′ ,xi′). Then the first term of

the above expansion is

E[L(xiβ0,yi)]E[L(xT
i′ β0,yi′)] = (E[L(xiβ0,yi)])

2. (2)

(If L(xT
i β,yi) = (xT

i β0−yi)
2 = ε2

i and theE(ε2
i ) = σ2).

We need now

E{L(xT
i β0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj′ −β0)} (3)

Notice that all expectations here are conditional onX, that is, we treat the fixed design case.
To evaluate this expectation we need to distinguish between two cases. The first corresponding to
(yi ,xi) /∈ Sj ′ . In this case (3) equals 0. The second corresponds to(yi ,xi) ∈ Sj ′ . Lemma B.4 of the
appendix proves that (3) can be replaced by

E[L(xT
i β0,yi)]E[L′(xT

i′ β0,yi′)]E[xT
i′ (β̂Sj′ −β0)] = 0. (4)

Therefore the second term is 0. Similarly, the expectation of the third term is

σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xi′x

T
i′ )(X

T
Sj′

XSj′ )
−1], (5)

in both cases, when(yi ,xi) /∈ Sj ′ and when(yi ,xi) ∈ Sj ′ .
The expectation of the fourth term of relationship (1) is 0. To evaluate the expectation of the fifth

term we distinguish four cases:(i)(yi ,xi) /∈ Sj ′ and(yi′ ,xi′) /∈ Sj , (ii) (yi ,xi) /∈ Sj ′ and(yi′ ,xi′) ∈ Sj ,
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(iii) (yi ,xi) ∈ Sj ′ and(yi′ ,xi′) /∈ Sj , (iv) (yi ,xi) ∈ Sj ′ but (yi′ ,xi′) ∈ Sj . Lemma B.6 of the appendix
allows in case (ii), (iii) and (iv), the replacement of the correct value of the expectation by the value
obtained from expression (6) given below. Thus, the expectation of thefifth term is:

E[L′(xT
i β0,yi)]E[L′(xT

i′ β0,yi′)]x
T
i Cov(β̂Sj , β̂Sj′ )xi′ . (6)

SinceSj
T

Sj ′ 6= Ø, and assuming theXSj , XSj′ have that upperk× p part common, relationship
(.6) can be written as

σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1xi′ ,

whereX1 is of dimensionk× p, k = Card(Sj
T

Sj ′), andσ2 is the population variance. To compute
the expectation of the sixth term we again distinguish between case (i), (ii), (iii)and (iv) as above.
However, all cases reduce to the case (i). For this expectation we have from lemma B.6,

1
2
(E[L′(xT

i β0,yi)])E[L′′(xT
i′ β0,yi′)]E[xT

i (β̂Sj −β0)(β̂Sj′ −β0)xi′x
T
i′ (β̂Sj′ −β0)] = 0. (7)

For the expectation of the seventh term we distinguish two cases: (i)(yi′ ,xi′) /∈ Sj and (ii)
(yi′ ,xi′) ∈ Sj . Both cases can be treated using the following expression for the expectation of the
seventh term:

σ2

2
E[L(xT

i′ β0,yi′)](E[L′′(xT
i β0,yi)])E[(β̂Sj −β0)xix

T
i (β̂Sj −β0)]

=
σ2

2
E[L(xT

i′ β0,yi′)](E[L′′(xT
i β0,yi)])tr[(xix

T
i )(XT

Sj
XSj )

−1]. (8)

The expectation of the eighth term is treated as the expectation of the sixth term, therefore it is
given by relationship (7). For the expectation of last term we distinguish thefour different cases
that are listed above. In this case again all different cases can be treated as case (i). Therefore the
expectation of the ninth term is

1
4

E[L′′(xT
i β0,yi)]

2E[(β̂Sj −β0)
Txix

T
i (β̂Sj −β0)(β̂Sj′ −β0)

Txi′x
T
i′ (β̂Sj′ −β0)]

(9)

But

E[(β̂Sj −β0)
Txix

T
i (β̂Sj −β0)(β̂Sj′ −β0)

Txi′x
T
i′ (β̂Sj′ −β0)]

= 2tr[(xix
T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1]

+σ4tr[(xix
T
i )(XT

Sj
XSj )

−1] · tr[(xi′x
T
i′ )(X

T
Sj′

XSj′ )
−1]. (10)

Therefore the covariance is given as

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj′ ,yi′)) = σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1xi′

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr((xix

T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )

(XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1).
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Note that, whenL is the square error loss the covariance is given as

2σ4tr{(xix
T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1}.

Wheni = i′, the covariance is given as

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj′ ,yi′)) = Var(L(xT
i β0,yi))+

σ2

2
Cov(L(xT

i β0,yi),L
′′(xT

i β0,yi))

(xT
i (XT

Sj′
XSj′ )

−1xi +xT
i (XT

Sj
XSj )

−1xi)

+ σ2(E[L′(xT
i β0,yi)])

2xT
i (XT

Sj′
XSj′ )

−1(XT
1 X1)(XT

Sj
XSj )

−1)xi

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr((xix

T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xix
T
i )

(XT
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1)

+
σ4

4
Var(L′′(xT

i β0,yi))x
T
i (XT

Sj
XSj )

−1xix
T
i (XT

Sj′
XSj′ )

−1xi .

Note that, whenL is the square error loss the covariance is given as

2σ4 +4σ4xT
i (XT

Sj′
XSj′ )

−1(XT
1 X1)(XT

Sj
XSj )

−1)xi

+2σ4tr{(xix
T
i )(XT

Sj
XSj )

−1(XT
1 X1)(XT

Sj′
XSj′ )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1(XT

1 X1)(XT
Sj′

XSj′ )
−1}

Proof of Proposition 3.6: Write:

L(ŷi,Sj ,yi)L(ŷi′,Sj ,yi′) = L(xiβ0,yi)L(xT
i′ β0,yi′)+L(xiβ0,yi)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj −β0)

+
1
2

L(xiβ0,yi)L
′′(xT

i′ β0,yi′)(β̂Sj −β0)
Txi′x

T
i′ (β̂Sj −β0)

+ L′(xiβ0,yi)L(xT
i′ β0,yi′)x

T
i (β̂Sj −β0)

+ L′(xiβ0,yi)x
T
i (β̂Sj −β0)L

′(xT
i′ β0,yi′)x

T
i′ (β̂Sj −β0)

+
1
2

L′(xT
i β0,yi)L

′′(xT
i′ β0,yi′)x

T
i (β̂Sj −β0)(β̂Sj −β0)xi′x

T
i′ (β̂Sj −β0)

+
1
2

L(xT
i′ β0,yi′)L

′′(xT
i β0,yi)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

+
1
2

L′(xT
i′ β0,yi′)L

′′(xT
i β0,yi)x

T
i′ (β̂Sj −β0)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

+
1
4

L′′(xT
i β0,yi)L

′′(xT
i′ β0,yi′)(β̂Sj −β0)xix

T
i (β̂Sj −β0)

(β̂Sj −β0)
Txi′x

T
i′ (β̂Sj −β0)+Rn. (11)
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We need to evaluate the expectation of relation (11). We have

E{L(ŷi,Sj ,yi)L(ŷi′,Sj ,yi′)}

= (E[L(xT
i β0,yi)])

2 +
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xi′x

T
i′ )(X

T
Sj

XSj )
−1]

+ σ2E[L′(xT
i β0,yi)])

2tr[(xix
T
i )(XT

Sj
XSj )

−1]

+
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xix

T
i )(XT

Sj
XSj )

−1]

+
1
2

E[L′(xT
i β0,yi)]E[L′′(xT

i′ β0,yi′)]E[xT
i (β̂Sj −β0)(β̂Sj −β0)xi′x

T
i′ (β̂Sj −β0)]

+
1
2

E[L′(xT
i′ β0,yi′)]E[L′′(xT

i β0,yi)]E[xT
i′ (β̂Sj −β0)(β̂Sj −β0)xix

T
i (β̂Sj −β0)]

+
1
4
(E[L′′(xT

i β0,yi)])
2E[(β̂Sj −β0)xix

T
i (β̂Sj −β0)(β̂Sj −β0)xi′x

T
i′ (β̂Sj −β0)].

Now,
(

xT
i (β̂Sj −β0)

xT
i′ (β̂Sj −β0)

)

∼ MVN(

(

0
0

)

,Σ) (12)

where

Σ = σ2

(

xT
i (XT

Sj
XSj )

−1xi xT
i (XT

Sj
XSj )

−1xi′

xT
i′ (X

T
Sj

XSj )
−1xi xT

i′ (X
T
Sj

XSj )
−1xi′

)

.

Notice here that we do not assume normality of the errors. The assumption ofnormality for the error
distribution is too restrictive. Instead, assumptions A1 and A2 establish the asymptotic distribution
of the least squares estimators as the size of the training setn1 becomes larger and larger. That
guarantees that (12) holds. Therefore,

E{L(ŷi,Sj ,yi)L(ŷi′,Sj ,yi′)}

= (E[L(xT
i β0,yi)])

2 +
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xi′x

T
i′ )(X

T
Sj

XSj )
−1]

+ σ2E[L′(xT
i β0,yi)])

2tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)]tr[(xix

T
i )(XT

Sj
XSj )

−1]

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

4
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1]tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

= (E[L(xT
i β0,yi)])

2 +
σ2

2
E[L(xT

i β0,yi)]E[L′′(xT
i′ β0,yi′)](tr[(xix

T
i )(XT

Sj
XSj )

−1]

+ tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1])+σ2E[L′(xT

i β0,yi)])
2tr[(xi′x

T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

4
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1]tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1].

1166



VARIANCE OF CROSS-VALIDATION ESTIMATORS OF THEGENERALIZATION ERROR

Therefore,

Cov(L(ŷi,Sj ,yi),L(ŷi′,Sj ,yi′)) = σ2(E[L′(xT
i β0,yi)])

2tr[(xi′x
T
i′ )(X

T
Sj

XSj )
−1]

+
σ4

2
(E[L′′(xT

i β0,yi)])
2tr[(xix

T
i )(XT

Sj
XSj )

−1(xi′x
T
i′ )(X

T
Sj

XSj )
−1].
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