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Abstract

This paper brings together methods from two different giogs: statistics and machine learn-
ing. We address the problem of estimating the variance dfsevalidation (CV) estimators of
the generalization error. In particular, we approach tlublem of variance estimation of the CV
estimators of generalization error as a problem in apprating the moments of a statistic. The
approximation illustrates the role of training and testsetthe performance of the algorithm. It
provides a unifying approach to evaluation of various meshased in obtaining training and test
sets and it takes into account the variability due to difféteaining and test sets. For the simple
problem of predicting the sample mean and in the case of $moss functions, we show that the
variance of the CV estimator of the generalization errorfisnation of the moments of the random
variablesY = Card(S§jNSy) andY* = Card Scﬂ ), whereS;, S are two training sets, arﬁf

SC are the corresponding test sets. We prove that the digtibof Y and Y* is hypergeometric
and we compare our estimator with the one proposed by NadehBengio (2003). We extend
these results in the regression case and the case of abswhrtedss, and indicate how the methods
can be extended to the classification case. We illustrateethéts through simulation.

Keywords: cross-validation, generalization error, moment appratiom, prediction, variance
estimation

1. Introduction

Progress in digital data acquisition and storage technology has resultedgrothth of very large
databases. At the same time, interest has grown in the possibility of tappiregdatsand of
extracting information from the data that might be of value to the owner of ttabdae. A variety
of algorithms have been developed to mine through these databases withgbsepof uncovering
interesting characteristics of the data and generalizing the findings to attzeseats.
One important aspect of algorithmic performance is the generalization dnfmrmally, the

generalization error is the error an algorithm makes on cases that hexrsseew before. Thus, the
generalization performance of a learning method relates to its predictiohikgpan the indepen-
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dent test data. The assessment of the performance of learning algastertsemely important in
practice because it guides the choice of learning methods.

The generalization error of a learning method can be easily estimated viacdhstvalidation
or bootstrap. However, providing a variance estimate of the estimator oféhierglization error
is a more difficult problem. This is because the generalization error depenthe loss function
involved, and the mathematics needed to analyze the variance of the estineatamaplicated.
An estimator of variance of the cross-validation estimator of the generalization is proposed
by Nadeau and Bengio (2003). In a later section of this paper we will sksthis estimator and
compare it with the newly proposed estimator.

In this paper we address estimation of the variance of the cross validatiora&s of the
generalization error, using the method of moment approximation. The idea itesiffipe cross
validation estimator of the generalization error is viewed as a statistic. Asistels,a distribution.
We then approximate the needed moments of this distribution in order to obtairtiuatesof
the variance. We present a framework that allows computation of the variestimator of the
generalization error for k fold cross validation, as well as the usualamnset selection in cross
validation. We address the problem of loss function selection and we slabotha general class
of loss functions, the class of differentiable loss functions with certain &ibbior, and for the
simple problem of prediction of the sample mean, the variance of the crosati@idgstimator
of the generalization error depends on the expectation of the randdableasly = Card(S;NS;)
andY* = Card(S‘J?ﬂS‘J?,). HereS;, S; are two different training sets drawn randomly from the data
universe anch’, SJ?, are their corresponding test sets taken to be the complem&niaoid Sy with
respect to the data universe. We then obtain variance estimators of #mlgaation error for the
k-fold cross validation estimator, and extend the results to the regressienWa also indicate how
the results can be extended to the classification case.

The paper is organized as follows. Section 2 introduces the framewdrkisousses existing
literature on the problem of variance estimation of the cross validation estinodtiies generaliza-
tion error. Section 3 presents the moment approximation method for develbgimgw estimator.
Section 4 presents computer experiments and compares our estimator wittintteécggproposed
by Nadeau and Bengio (2003). Section 5 presents discussion arldsions.

2. Framework and Related Work

In what follows we describe the framework within which we will work.

2.1 The Framework and the Cross Validation Estimator of the Generaliation Error

Let dataXy, X, - -+, Xy be collected such that the data univerg= {X1,X,---,Xn}, is a set of
independent, identically distributed observations which follow an unknowabgbility distribution,
denoted byF. Let Srepresent a subset of siag n; < n, taken fromZ;. This subset of observations
is called a training set; on the basis of a training set a rule is constructededtheet contains all
data that do not belong 1§ that is the test set is the s&t= Z]'\ S, the complement ddwith respect
to the data universg;. Denote byn, the number of elements in a test set=n—ng, n; < n.

LetL:RP xR — R be a function, and assume thats a target variable anfi(x) is a decision
rule. The functiorL(Y, f(X)) that measures the error between the target variable and the prediction
rule is called a loss function.
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As an example, consider the estimation of the sample mean. In this problem thiadezgo-
rithm usesf (x) = n—ll 21X = X, as a decision rule ard Xs;, Xi) = (Xs; — %)%, X € S, the square
error loss, as a loss function. Other typical choices of the loss functadnde the absolute error
loss,|Xs, — Xi| and the 0- 1 loss function mainly used in classification.

Our results take into account the variability in both training and test sets. drf@ee estimate
of the cross validation estimator of the generalization error can be compntied the following
cross validation schemes. The first is what we terrncamplete random selectiolVhen this form
of cross validation is used to compute the estimate of the generalization eartearhing method,
the training sets, and hence the test sets, are randomly selected froraithblaxdata universe. In
the nonoverlapping test set selectioase, the data universe is divided into k nonoverlapping data
subsets. Each data subset is then used as a test set, with the remainirugicigtasaa training set.
This is the case of k-fold cross validation.

We now describe in detail the cross validation estimator of the generalizatmmwdrose vari-
ance we will study. This estimator is constructed under the complete randiectiae case.

Let A; be a random set afi; distinct integers from{1,2,---.,n}, ng <n. Letm=n—n
be the size of the corresponding complement set. Note herethiata fixed number and that
Card(Aj) = ny is fixed. LetAq,A,---,A; be random index sets sampled independently of each
other and denote b)9(‘j3, the complement ofj, j = 1,2,---,J. Denote also bys; = {X : | € A},
j=1,2,---,J. This is the training set obtained by subsampltjgaccording to the random index
setA;. Then the corresponding test se§fs= {X : | € Af}. Now defineL(j,i) = L(Sj, %), where
L is a loss function. Notice thatis defined by its dependence on the trainingSetnd the test set
SJ?. This dependence on the training and test sets is through the statisticseticatgruted using
the elements of these sets. The usual average test set error is then

b= S LG, 2.1)

J
=33 Ry, (2.2)

This version of the cross validation estimator of the generalization errendispon the value
of J, the size of the training and test sets and the size of the data universesfithator has been
studied by Nadeau and Bengio (2003). These authors provided two &s8no& the variance of
nfu. In the next section we review briefly the estimators presented by Nadddieagio (2003) as
well as other work on this subject. In a later section we will see that, Wl&nohosen appropriately,
then the Nadeau and Bengio (2003) estimator is close to and performs simiitrlihe moment
approximation estimator in some of the cases we study.

2.2 Related Work

Related literature for the problem of estimating the variance of the generalizatior includes
work by McLachlan (1972, 1973, 1974, 1976) and work by NadewlLBengio (2003) and Bengio
and Grandvalet (2004). Here, we briefly review this work.

Let Sﬁj = 331 ¥ ]_1(1j — 72fu)? be the sample variance pf,"j = 1,2,---,J. Then Nadeau and
Bengio (2003) show that
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Var(p2y
E(S,) = Var(fu) (2.3)
( + 1_p)
wherep is the correlation betwegn andyij. Therefore, ifp is known,
1,
(3+ ﬁ)%p (2.4)

is an unbiased estimator of thar(i2(;). Nadeau and Bengio (2003) observe that this estimator
depends on the correlatignbetween the differerm,‘s which is difficult to estimate. Thus, they
propose an approximation to the correlatiprs %2, wheren; is the cardinality of the test set. The
final estimator of the variance §ffy is given as

1 m
(3+n—1)$j. (2.5)

Nadeau and Bengio (2003) note that the above suggested estimator is simnjilenby have a
positive or negative bias with respect to the acued(?fly). That is, it will tend to overestimate or
underestimat®ar(;?fly) according to whethgb = 2 > por p < p. Therefore, this estimator is not
exactly unbiased.

Nadeau and Bengio (2003) also suggested another estimator of theceafdine cross-validation
estimator of the generalization error. This estimator is unbiased but overestithevVar(i2{ly). It
is computed as follows. Letbe the size of the data universe and assume, without loss of general-
ity, thatn is even. Randomly split the data set into two, equal size, data subsetscdineute the
cross-validation estimator of the generalization error on these two datatsul®tice that, the size
of the training set is now; = [J] —nz < n, smaller than the original size of the training set, but the
test set size remains the same. Denotglhé estimatoﬂim computed on the first data subset and
o the estimatoﬁim computed on the second data subset. To obtain an estimator of the variance of
the cross validation estimator of the generalization error compute the samiplecesofi; and|b.
The splitting process can be repeakddimes and Nadeau and Bengio(2003) recomnidnd 10.
The proposed unbiased estimator is then given as

Zw }E u2m . (Ziﬂ

This is an unbiased estimator of tder ([} pJ)

Bengio and Grandvalet (2004) showed that there does not exist rarigsed and universal
estimator of the variance of k-fold cross-validation that is valid under dltidigions. Here, we
derive estimators of the variance of the k-fold cross validation estimatoeajeheralization error
that are almost unbiased. However, we also notice that our estimatorpeidien the distribution
of the errors and on the knowledge of the learning algorithm.

In a series of impressive papers McLachlan addressed the problestirogtion of the variance
of the errors of misclassification of the linear discriminant function by deietpa technique for
deriving asymptotic expansions of the variances of the errors of mifadatien of Anderson’s
classification statistic. McLachlan also established an asymptotic expansi@exipectation of the
estimated error rate in discriminant analysis and obtained the distributions cdrld&ional error
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rate and risk associated with Anderson’s classification statistic in the caritéhe two-population
discrimination problem. These derivations were carried out under thiengsi®n of normality for
the population distribution.

Our work has similarities with the work by McLachlan in the sense that we elefproxima-
tions to the moments of the distribution of the cross validation estimator of the djeagoa error
and use these to obtain a variance estimator. However, we do not assumaitycof the underly-
ing mechanism that generated the data.

In what follows, we first present the method of moment approximation ftaiging an estima-
tor of Var(i?{ly). We then study the performance of this estimator and compare it with the Nadeau
and Bengio (2003) estimator.

3. Moment Approximation Estimator for Var(f2fy)

Recall that?fy = 3 57_1 0 = 331 (s: Sies L(j,i)). Thereforezl is a statistic. An estimator
of Var(i2[y) can thus be obtained by approximating the moments of the stgfifsic A simple
calculation shows that

N AR | o
Var(iio) = 1z 3 Var(ly) + 55 3 ; Com({, fyr)- (3.1)
=1 i#

From the formula we see that if we can approximate the two tern{8.2f then we can obtain
an estimator for the variance ;. To achieve this goal, we need to estimBtg; ), E(ﬂjz) and
E(ffy). In the following sections we will develop the theory that allows us to obtain ¢eeled
moment approximations. To illustrate the methodology clearly we treat sepataasse of simple
mean estimation and the regression case. We further treat separatelygenese the loss function
is differentiable from the case of non-differentiable loss functions.

3.1 The Sample Mean Case

We start by analyzing the case of the sample mean. Here, the loss functgpends ors; through
the statisticsXs;, the sample mean computed using the elementS;,ond onS‘J? by elements
X € Sf One of the reasons for presenting the sample mean case separatebuisebiedlustrates
clearly the contribution towards the estimatoiver(2fly) that is due to the variability among the
different training and test sets. A second reason in favor of this cdm#@ise, under square error
loss, we obtain a “ golden standard” against which we can compare thempisically computed
variance estimator and the Nadeau and Bengio (2003) estimator. Thistigtédelard” is the exact
theoretical value of th¥ar(f?{y). The obtained results show that the estimator of the variance of
the cross validation estimator of the generalization error of the algorithms skadifierentiable
functions of the mean as loss functions, depends on the expectation ainth@m variable¥ =
Card(SjNSy) andY* = Card(SN'S;).

Let the loss functionL(j,i) = L(isj;m be differentiable. Below we list the conditions under
which our theory holds.

Assumption 1 The distribution oL()?Sj,Xi) does not depend on the particular realizatio;of
andi.
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Assumption 2 The loss functiorl. as a function ob?sj is such that its first four derivatives
with respect to the first argument exist for all values of the variable thlaniys inl, wherel is an
interval such thaP(v € I) = 1, andv indicates the first argument of the loss function.

Assumption 3 The fourth derivative of is such thatL™)(Xs ;%) < M(X;), EM(X)] < c.

Assumption 1 is also used by Nadeau and Bengio (2003, p. 244). Assms@tiand 3 are
standard in the literature where approximations to the moments of a continaalfsinction of the
mean are discussed. See, for example Cramer (1946), Lehmman (t@PR)ckel and Doksum
(2001). The boundedness of the fourth or some higher derivativecisssary for proposition 3.1 to
hold.

Alternative conditions where stronger assumptions on the distributions déathx; and weaker
conditions on the functioh are imposed exist in the literature (Khan (2004)). Herg a loss func-
tion and it seems reasonable to assume boundedness on some of its hiya&ves

Proposition 3.1 offers an approximation of the expectatioh(&fsj,xi).

Proposition 3.1Let X1, Xo, - - - , X, be independent, identically distributed random variables such
that E(X;) = y, Var(X;) = o and finite fourth moment. Suppose thasatisfies assumptions 1, 2
and 3. Then

E[(L" (W X))] +O( ),

EIL(Xe:%)] = EIL(X)] + =

2

2m

where the remaindeR, is such thaE(R,) is O(n—lz), that is, there existag and A < o such that
1

E(Ry) < n—AZ ,Vn > ng and allp. The prime indicates derivative with respect to the first argument of
1
L.

Proof: We will use a conditional expectation argument. Write
E[L(Xs;:%)] = Es i{Ez[L(Xs:X)IS1,]}, 3.2)
j=1,2,---,J andi indicatesX; and is such thate .
Now expand.(Xs;; X) with respect toXs, around the meap to obtain:
L(Xs:%) = LX) +L'(1X)(Xs — W)+ %L”(M)O?s,- —w?
+ %L”’(u,m)(isj — w3+ 2—14L“V)(u*,>ﬁ)(>?s,- —w* (3.3)

Denote by ‘ 3
Ry = LM (W', %) (Xs, — W)*
and _ 3
Ez{Rn[S;.i} = Ex{L™ (W, X) (X, — W4S;,i}, (3.4)

and since by assumption 1 the distributior.6Y) (u*,xi)(fsj —W)* does not depend on the particular
realization ofS; andi, we obtain

Es,i{Ez[L™ (1, X) (X, — WS} = ELL™ (', X)JE(Xs, — 1)* < M- E(Xs — W)*.
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This is because by assumption 3 we h&je™) (i, X)) < E[M(X)] < . Now Lemma A.5 of the
appendix guarantees thatXs, — W* is of order Jlnf Thus, taking expectations in (3.3) and using
(3.4) we obtain:

E[L(Xs:X)] = Esi{Ez[L(LX)[S;,i]} +Esi{Ez[L (%) (Xs — WIS}, i]}

1 — .
+ Esa{Ezl5L (%) (X —07IS;.il}
1 — . 1
+ Esi{Ezlgl” (W X)(Xs — W3S;,il} +0(5)-
1
By assumption 1 the distribution &f i, X;) does not depend on the particular realizatiosoand
Xi. Thus
Es;i{Ezp[L(KX)[S;, 1]} = Ezg[L(W X))
Similar to the above arguments produce the approximation to the first momentgiven

2

EILOG )] = EILGL X))+ 5 EI(L (40)]+ Ol ).

Remark 1: Note that we do not impose distributional assumptions on the data. The odit co
tion imposed is that samples come from distributions for which the fourth momentites fMany
of the standard families of distributions satisfy this condition.

Remark 2: The requirement of the finiteness of the fourth moment for proposition Gibltb
implies limitations on the data sets on which this estimator can be computed. For examyalg, it
be inappropriate to apply these methods to data sets which involve large vegjaiach as those
from insurance and finance. On the other hand, the results apply to sakeathdistributions,
such as the-distribution with 5 or more degrees of freedom. Thalistribution, for example, is a
thick tail distribution, for which the fourth moment exists.

The following proposition approximates the variance of the lqszsgj %)

Proposition 3.2Let assumptions 1, 2 and 3 hold. If in addition the fourth derivati\iez()fsj , %)
is bounded, then

_ 2
VarlL(Xs )] = VarlL(w.X)] + {E[L (1 ))? + CoYL(1X).L" (1 X))} + O(L/rf).
where the remainder term@(n—li).

Proof: To obtain an expansion of the variancel_(ﬁfzsj;xi) apply proposition 1 to the function
L?(Xs ; X;) using the fact that

LX) = 35[L2(1X)]
= 2(L'(1 %)% + 2L (1, X)L (1, ). (3.5)
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Then substituting the expansion lo(r)?sj , %) and using formula (3.5), proposition 1 and the formula
of conditional variance we obtain:

— 2
Var[L(Xs;; )] = Var[L (W X)] + %{E[(L’(M, Xi))?] +CouL (K, X), L" (X))} +O(1/nf).

To prove the above two propositions we use a series of lemmas that geatiamteate of the
remainder term. These lemmas are presented in the appendix.

We now present a theoretical example that verifies the approximatiorenpedsn propositions
land 2. B B

Example. Assume that (Xs,X) = (Xs; — X)?, the square error loss that is widely used. An
exact calculation of the expectation @fs, — X;)? produces

E{L(Xs.%)} =Var(Xs) +Var(X) = o+ 0—2.

N1
On the other hand, if proposition 3.1 is used, we obtain:
— 0?2 02
E[L(X§ X)) = EO§ —W?+ — = 0%+ —,
ny ny

and the two formulas coincide. Notice that in the case of square errothessecond derivative of
the loss, with respect {g is bounded. The terms of ordefr£ do not enter the formula as all higher
order than two derivatives of the quadratic loss are 0. Thus, the dppation formula agrees with
the exact computation.

We next turn to the variance formula. The exact computation is based oorthelé

VarlL(Xs;, )] = Es i{Varz[(Xs — %)?(S;,i]} +Vars i{Ez[(Xs —%)%S;,i]}. (3:6)
Using this formula we obtain the exact variance as
— 4g*  20*
VarlL(Xs, %) = 20* + — + —-. (3.7)
ni nl
Using the formula given in proposition 3.2 we obtain that the approximate \&rian
o 4g* 1
VarlL(j,i)] = 20*+ — + O(5). (3.8)
Ny nl
Comparing these two formulas we see that the variance approximation forneulfies all first
order terms.

The following proposition establishes the approximation formula for the @vee terms that
enter the computation of the variance of the cross validation estimators ofrtbeatjeation error.

Proposition 3.3 Let S, Sy be two training sets drawn independently and at random from the
data universeZy, and§;, 5)9 the corresponding test sets. Léte §,Xv € §j, D = §NS; and
Y =Card(D). Then, ifi #1i

va vl 02 ! 2 04 " 2 1
CovL(Xs;, Xi),L(Xs,, X)] = ?E(Y)(E[L (L, X%)]) —W(E[L (L, X)]) +O(?)-
1 1 7
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Ifi=V,
— _ 2
CoML(X6, X),L 0K, X0 = Var(L (X)) + - (ELI X)L (&)

2
- E[L(u,m]E[L"m,mm%E(Y)E[L’(M)}Z

ot 1
- 4—n%{EU- (M7><|)]}2+0(n—§)7

whereE(Y) is the expectation of the random variaWevith respect to its distribution.

This proposition indicates that the variability due to random sampling of the teps@tsS; is
quantified by the expectation of the random variable Card(S;NSy), j # J', J,J' € 1,2,---,J.
SinceS;, Sy are random sets o elementsy is such thamax0,2n; —n) <Y < ny.

An additional random variable that enters the variance estimator of the eatidation esti-
mator of the generalization error¥s' = Card(SfﬂSf,), the cardinality of the intersection of two
different test sets. The following two lemmas derive the distribution of thesgandom variables.

Lemma 3.1LetSj andSy be random sets of; distinct elements frord}' and lety = Card(S;NS)),
max0,2n; —n) <Y < n;. Then, the distribution of is
n\ /n—nNg
oty y - IG5
(nl)
a hypergeometric distribution.

Proof. We model the problem as the following<h table.

k11 2 3 n | Total
Sj 0 1 1 0 ny
Sj/ 1 0 1 0 nq
a a a -+ ap| 2m

In the table we indicate whether thih component o} is sampled into the training s& or Sy
by 1, otherwise we indicate it by 0. Denote &ythe sum of the indicators for tHeh component in
the populatiorzZ] overS; andS;.. Then

a1 +a+---+an=2m
0§a|§2 7i:l7"'an'

Now, P(Y =) is equivalent tdP(#{a; = 2}), i = 1,--- ,n. GivenY =Yy, the number of g = 1}

is 2n; — 2y and the number ofa = 0} is n—2n; +y. Since none of these three numbers could
be negative, we obtain the domain of Y msix0,2n; —n) <Y < n;. Recall also tha§;, S are
sampled independently and each containslements. GivelY =y, the distribution of the column
totals is fixed; that iy can only take the values 0,1 or 2. The number of different tables with the

same column totals is theff)) (,, ) (7, ")) and hence

oy - DEDED _BEY

(m) () (m)
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the hypergeometric distribution.

Lemma 3.2Let S; andS; be two training sets anﬁf ande/ are their corresponding test sets.
LetY* = Card(SfﬂSJ%), 0<Y*<n-—n;. Then

P(Y* _ Y) _ (y—nT—an) (nE;Piy) _ (nzniy) (nfn;:(nrfzfy)) '

(m) (n )

Proof. From the proof of lemma 3.P(Y* =y) = P(#{a = 0}), {i = 1,---,n}. Moreover,
Y* =n-2n;+Y. Then, the result follows.

Theorem 3.1 provides the estimator of the varianciaf. We first state the theorem.

Theorem 3.1.The variance of the estimator of the generalization €pjay is given as

" 1 . J-1 "
Var(2fy) = jVar(uj) + TCov(uj ),

where
2
Var(py) = VL)) + {EIL (1) + CoUL X)L (X))}
P10 ) o),
2 1
* 2 4
Coufy) = (1= ) [SEMEL X))~ o EL X020 )
* 2
+ —E(an )‘ Var(L (X)) + B XL (1) - ELX)ELL" (X))
2 , 4 " 1
+ EMEL X = Zo (EIL WX +0(5)].

wherep = EznX;, 02 = Varz (X).

The above formulas indicate clearly the dependencéan{i?{iy) on the first moment of the
random variable¥, Y*. Since the distribution of andY* is known, we can substitute(Y), E(Y*)
by their corresponding values and simplify the above expressionsuBedae distribution of, Y*

2 2
is hypergeometri€(Y) = = andE(Y*) = 2. Then
1. ro? a* 1
0 )

Cov(iy,fy) = (1-7) n(E[L'(H,Xi)])zf4—n%(E[|—”(u,Xa)])2+0(n—§

1 o? 7
+ - [Var(L(w X)) + T {COUL (X)L (X))

2
. %E[L’(u,xi)]z—%(E[L"(H%)])ZJFO(%)]-
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The final estimator of the variance f; is a plug-in estimator and it can be computed using
theorem (3.1). We need to replace the unknown population meard population variance?

by their estimators, the sample mean and sample variance respectively. Ibttagenvenient to
compute the sample variance and mean based on the data universe we mayec&mnand, if
there are many different training sets, take as an estimator of the sample)«nea}1zlexsj.
Moreover,6% = T{l 3%, (X — X )2, thus the variance estimate of the population variance will be
52 1<) A2

0°=337-107

Example. In the case of square error loss the approximations to the varianggasfd”the
Cov([yj, i) are given as:

. 1 40* 1 ot  40*
Var(fy) = n—ZVar[(Xi — W2+ P n—ZE[(Xi -4 - PR (3.9)
oo 1. 0% 140* of 2
Cov(f, fy) = (1- ﬁ)(_n_%) + H(T e +Var[(X — W) (3.10)

If the data are from &l(0,¢?) then the moment approximation estimator of the variangg{of

is given by
~4.2m+2)1  J—-1 2(n+2) 1
4 —_— — —

whered is the sample standard deviation. Thus the estimator of the varjgicis a multiple
of the sample variance and the multiplication factor indicates the dependettoe eftimator on
ni, np andn.

Variance estimator of the k-fold CV estimator of the generalizationerror.

Here we present a variance estimator of the k-fold cross validation estiwfatioe general-
ization error of a learning algorithm. Notice that this is a special case oféhe@rl. Ink-fold
cross validation the data universe is divided iktifferent non-overlapping test sets, each of which

containsy elements. The number of elemenis in any given training set, is them— § = (k_kl)”.
ThereforeY = Card(§NS;) = (kf)”. Theorem 3.1 gives the approximations:

0 k 0? k / 2 "

var(fy) = - Var(L(i X)) + - () EIL (1.X))%) +Cov(L (1. ), L" (1)) }]
n—ko? k , ) 2
+ o EL (X)) + 00/ ny),
and
TP _ 0'2k(k—2) / N\ 2 04 K 2 " N\ 2 1
COV(UJ’UJ’) - n (k—l)z(E[L (|J,X|)]) 4n2<k_1) (E[L (%Xi)]) +O<n%>

Therefore, the variance estimate can be computed using relation (3.1g\Weng;) andCou([y;, i)
are replaced by their estimates. These can be obtained by replacfdy their sample estimates
using data from the training sets.
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Now assume that the loss function used is square error. In thisIlcgges) = 2(u—X) and
L”(kx) = 2. The formulas then for the variance jof &nd the covariance between differgns
simplify as follows:

Var(@y) = Kvariq -7+ 200Ky, @.11)
4
Couy by) =~ T (2o i (3.12)

ThenVar(?fy) can be estimated by using formula (3.1) and replacihgndVar[(X — w)?] by the
sample variance and an appropriate sample estimatéafofX; — p)?). The final approximation of
the variance of?[l is then

1 3ko* 1 o* 3ko*
Ny =& 2 _ = T v
Var(nllJ'J) - n{Var[(X, U) ]}+ (k_l)nz nEle u) ] n + (k_l)nz
A simple estimator oE[(X; — p)4] can be computed from the training sample by taking the sample
version of the above expectatioiﬂ'{,ziesj (X — ij)"'. To illustrate, if we further assume a normal

population thewar[(X; — u)?] = 20* and the variance estimator $fy is given as

g4 3k
raar
whered is the sample standard deviation.

3.2 The Regression Case

The regression case is another case of fitting means. We consider égreolilem of estimat-
ing the variance of the cross validation estimator of the generalization Eftpin the case of
regression. Therefore the data are realizations of random varighl¥s, i = 1,2, --- ,n such that
E(Y;|X) = xT B. Notice that the explanatory variables here are treated as fixed; thislégionuis
known as the fixed design case. The vector of unknown paranfetenssually estimated by least
squares; denote [fythe least square estimatorf@fThen for a new observatidyi,x;) € S; denote
by Vis = X ng, wherefig,j indicates the estimator @ computed by using the data in the training
setS;. The loss functiort. is then dependent ons; andy;, that isL(Yi s;,Vi)-

To derive the estimator dfar(f?{ly) we need to use the moment approximation method to ob-
tain approximations for the moments of the stati§}ity. The idea is the same as in the case of
simple mean estimation. That is, the loss function is expanded with respect tatitarfjument
and evaluated at the poiB{(Y;|X;) = x| Bo, wherefy is the true parameter value. In other words, as
before, the expansion is evaluated at the true mean.

We list now the assumptions under which our theory holds.
Assumption 1.1f §j is a training set wittn; number of elements

.1
lim —(X§Xs) t=V

np—o0 nl
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whereV is finite and positive definite.
Assumption 2. Let x,x denote thekth row of the design matriXs. Then, for eachj =
17 27 e 7J7

T -1
max Xn,k(XeXs ) Xynk — O
1<ken; nlk( SI SJ ) nik

asng — oo,
Notice that this condition is known as the generalized Noether condition.
Under the above conditiongn; (Bs; — ) converges in distribution to(0, ¢°V) random vari-
able.

The following proposition establishes an approximation to the expectation loighé&inctiorL.

Proposition 3.4 Suppose that assumptions 1 and 2 hold. Then

2
E[L (515 ¥1)] = EILOG Bo. )] + SELL" (4 Bo,y)tr[(xix! ) (XE Xs) 72+ R,

where the remainder term is of orc@(n—lz), and the prime indicates derivative with respect to the
1
first argument of the loss function.

Proof: First expand.(Yi s;,Yi) with respect to the first argument to obtain:

L(is.yi) = LOBo.yi) + L' (' Bo,yi)X (Bs — Bo)
£ S0 Bo,)(Bs, —Bo) % (B —Bo) + R (3.13)

whereR, indicates the remainder term.
Now

E{L(Yis.¥i)} = Es.i{Ex[L(Vis,¥)IS;,i]}
= Es.i{Ez[L(4 Bo.Yi)IS;,i]} +Es i {Ezr[L' (X Bo,i)X' |Sj,i]Ez[(Bs, — Bo)[Sj. i]}

b SEs {EIL (4 Bo.y)IS; (7 [(Bs — Bo) xo{ (Bs, — Bo)lS. i}

But the expectatioEzQ[(fBSj —Bo)|S;,i] =0 becaus«EZ?([ASSj 1Sj,i) = Ezg(ﬁsj) = Bo. Also since the
distribution offs; is asymptoticaII)N(Bo,GZ(X;XSJ.)‘1), under assumptions 1 and 2 we obtain:

s, i{Ez7[(Bs —Bo) ' (Bs —Bo)IS;.il} = Ezl(Bs —Bo) %' (Bs —Bo)]
= cztr[(xm-T)(ngXs,-)_l]v

whereg? = Varz (%), the variance of the sample, an@Ay stands for the trace of the matrix A.
Therefore

2
E[L(515:91)) = EILOJ Bo.yi)] + S EIL" (4 Bo ) tr [0 (XE Xs) 4]+ R,
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where the expectations are taken with respect to the distribution of the dateeoktr,R, is of
order.
1

Proposition 3.5 establishes the approximation for the variantepg;, vi).

Proposition 3.5 Suppose that assumptions 1 and 2 hold. TWeriL (Y s;,yi)) can be approxi-
mated as follows:

Var{L(Yis.yi)} = VarlL(x Bo,yi)]} +0’tr[(xx")(X§ Xs )~ H{CoUL(X Bo, i),
L" (%' Bo.¥i)) + E[L' (X Bo,¥i)]*} + R,

whereg? = Varz(Yi[X) andR, is the remaining term of orden%.
1

Proof: The proof is similar with that of proposition 3.2, in that we apply proposition 3.4 to
L2(Yi.s.¥i) and we use the fact that

L2(9is.0)]" = 2L(is YL (Gis W) + 2L (is . vi)]%,
where prime indicates derivative with respect to the first argument of sseflmction.

Example. To verify the above approximations we Us@i s, Vi) = (Vi s; —yi)?, the square error
loss and the case of simple regression, that is

yi=a+bz+g=xB+s,

wherex! = (1,z), BT = (a,b) and(yi,x) € S. The notatiory/’s stands fox] Ps;.
The exact expectation &f(yi s, yi) = (X ﬁsj —vyi)?is given as:

EL(is.yi)] =0%+0° (XE Xs) .
The approximate expectation is
EL(is¥)] = 0% +0%r(xx (X§ Xs) ™),
Becausar (X (X§Xs) ™) = X (X§Xs) "X, the approximation to the expectation agrees with
the exact computation. Similarly we can verify that the approximation of thenagiproduces the
same result as the exact computation. To illustrate further the formulas assatye- N(x'B,02),
then the exact calculation gives the variancda(ﬁsj JYi)s
Var(L(¥is,¥i) = 20* + 40 (X§ Xs) % +20% (6 (X§ X)) %)
The approximation is given by
. _ 1
Var(L(Yis.y1) = 20% + 40! (X§Xs) 1% +O(n—§),

that is they agree up to first order terms.
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To complete the variance approximation of the estimgfiay we need an approximation of the
covariance betweeh(y; s;,yi) and L(yi,,sj,,yi,). The following proposition expresses the approxi-

mation ofCov(L (Vi 5;,¥), L(Yis,»¥ir))-

Proposition 3.5 Suppose that assumptions 1 and 2 hold. Therj térj’, j,j’ € {1,2,---,3}
wheni #£ i

COUL (S Y0, L s, W) = O2(EIL (] Bo.yi) )2 (XT X, ) (XTX0) (XT X, )0

T L O Byl (e JOXE X)X Xa) (KT X))

(X§Xs) H(XIX1)(XE,Xs,) 7).
Wheni =i’,
~ ~ 02 n
CoML(Yis, ), L(Firs, - ¥ir)) = Var(L(4 Bo,¥)) + > CovL( Bo,¥i),L" (% Bo,¥i))

(' (X§,Xs,) 7% X (X§ X))
+ OP(E[L'(% Bo, YDA (X, Xs, ) H(XIX1)(X§ Xs ) ™%

+ %4(E[L"(XiTBmYi)])ztr((ﬁxr)(xéjxsj)_1(XIX1)(X§1/XSV)_l(XiXiT)
(XE-XS; ) HXIX1)(XE,Xs,) )

+ _Var(L”(XI Bo,yi))X (X§Xs)™ 1XiX.-T(XEj,ij,)’lxi.
Proposition 3.6 LetS; be a training setj = 1,2,---,J. Then fori # i’
COML(Si.5.31), L(5i5,.yi1)) = OZ(EIL (x] Bo. )] 2tr [(xx) ) (XE Xs) Y]
+ 24( E[L" (% Bo, 1)) Ar [(67 ) (X§ X)) ™06 ) (X§ X)) Y.
The proofs of Proposition 3.5 and Proposition 3.6 can be found in App&hd
Remark: If the loss is square error,
CoML (Y15, %), L(Jr s 1)) = 20°tr [(x ) (XE Xs,) () ) (XE Xs,) - (3.14)
To estimate relationship (3.14) we only need to estintatéVe estimates by the residual mean

square error.
Under square error loss, we have

Var(fy) = 21{204+404x, (X$Xs) %} + = Z ;20 X (X§Xs) )%, (3.15)
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and

. 1Jies dies
Cou.y) = 'ei;éi',e'

(XIX1)(X§,Xs, )"0 ) (XS, Xs,) " H(XIX2) (X§ Xs) "M}

jEEﬁeﬁZVe
R =i
+20%r{ (xix' ) (X§Xs) H(XIX1)(X§, Xs, ) (xix)

(X, Xs,) HXIX1)(X§Xs) T} (3.16)

{20t {(xix ) (X5 Xs)

" (20* + a0 (XL Xs) LX) (X, Xs, ) H)x

The final estimate is obtained from relation (3.1) wheee({};) is estimated by using relation
(3.15),Cov(fyj, [1j) is estimated by using relation (3.16) and replaairidoy an estimator of it. To
obtain an estimator as?, we fit the regression model and obtgjn Thend? is the sample variance
of the errorsg; = y; — ¥, that is the residual mean square.

Remark: Note that to derive the results above, we used as the distribution of thehdata
conditional distribution ofY given X, in effect treatingX as fixed. Now, assume that instead of
using the conditional distribution as the data distribution, we teeas random and use the joint
distribution of (X,Y). In this case, the data distribution is

f(x,y) = gy —x"BIx)k(x)

whereg(-) is the distribution of the errors atd-) is the distribution of thes. We can then derive the
formulas expressing the expectation, variance and covariance ternsseheeded using the joint
distribution of(X,Y). For exampleE (B) = Ex v)[(XTX) " 1XTY] = Ex{Eyx [(XTX) 1XTY|X]} =

Bo, is still unbiased, an¥ar(B) = Ex{Var (B|X)} + Varx{Ey(B|X)} = 02Ex[(X"X)"1]. Other
adjustments that take into account the distributiorXadre needed. These mainly concentrate on
taking expectations, ové{, of terms that are functions of thés, and can be easily computed from
the data by using bootstrap. As an illustration, under square error lesgrthula in proposition
3.4 becomeg|[L(Yi s, ¥i)] = 02+ 0?Ex[tr[(xx' ) (X§ Xs) "]], whereo? is the variance of the error
distribution.

4. Simulation Experiments.

We present here simulation experiments that illustrate the performance abti@spd estimators;
moreover, we compare these estimators with the estimator proposed by Nawdieengio (2003).
The simulation experiments compare the proposed estimators with the Nadeaergial &stimator
under two different error losses, the square error and the absolatdass.

4.1 Square Error Loss

We will first describe the experimental setup for the simple mean case.

We generated data sets of size- 100 from aN(0, 1) distribution in S-plus. For each different
sizeny of the training se; we randomly seleat; data points from the availabteand uses?, the
complement of5; with respect to the generated data universe that contains 100 data psiat®st
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set. We taked to be 15 (as recommended by Nadeau and Bengio, 2003), and 50. Wthpaoted
Srzl e 121 (B — p,]) and the estimator of the variance of the generalization error, given as
G+,
We also computed the moment approximation estimator given by expressionar(@.&.10).
Notice that we estimate? by using the sample variance, thatd,= -1 s, (X — X)2. We also
computed the variance estimatorgfiy using expression,

11 140* J-11 40* o* 1. 04

jn—zvar(xiz)JrjﬁJrT =(— — 5 +Var(X?) — (1—ﬁ)ﬁ}

The population variance? is estimated by using the sample variance averaged over 100 differ-
ent data sets. The terwar(X?) is estimated as foIIows Let = )(12 i=12,- n We created
a new data universe usirty and estimat&/ ar(Z;) = = 1 s 1(Z —Z)?, whereZ = = Lsn 7, over
100 different data sets.

Table 1 presents the results of the simulation. The first column of the tablesghevgize of
the test set. The second column reports the value of the Nadeau and Bstigiator, while the
third column reports its variance. The variance is computed by simply takingthpls variance
of the estimator that was computed over the 100 independent data sets.oufttedolumn of
the table reports the value of the moment approximation estimator of the varifitice oross
validation estimator of the generalization error, while the fifth column reportsdhgle variance
of the moment approximation estimator.

n, NB var(NB) MA | var(MA)
10 | 0.0316| 0.000310| 0.0328| 7.75e-06
15| 0.0265| 0.000241| 0.0282| 5.34e-05
20| 0.0250| 0.000179| 0.0259| 4.50e-05
251 0.0235| 0.000213| 0.0245| 4.03e-05
30| 0.0238| 0.000145| 0.0236| 3.73e-05
35| 0.0227| 0.000175| 0.0229| 3.52e-05
40 | 0.0235| 0.000188| 0.0224 | 3.36e-05
45| 0.0227| 0.000122| 0.0219| 3.23e-05
50 | 0.0246| 0.000236| 0.0216| 3.13e-05

Table 1: Simple mean case n=100, J=15. Nadeau-Bengio (NB) and moppgokination (MA)
estimators of the variance of the cross validation estimator of the generalizatiznand
their sample variances] = 15, and the results are averages over 100 independent data
sets. The size of the data universe is 100.

We notice that the variance of the moment approximation estimator is at leastdeme@bmag-
nitude smaller than the variance of the Nadeau- Bengio estimator, therebgsimg the accuracy
of the moment estimator.

Figure 1 plots the values of the Nadeau-Bengio and moment approximation testfmiée
variance versus the sample size of the test set. Notice that the curvepmrdéng to the moment
approximation is smooth. This is in contrast to the behavior of the Nadeagidestimator, which
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Figure 1: Simple mean case n=100, J=15

seems to fluctuate (this also is indicated by the value of the sample varianceats$avith the
estimator and reported in table 1.)

ny NB var(NB) | MA | var(MA)
10 | 0.0235| 1.24e-04| 0.0241| 7.75e-06
15| 0.0212| 8.77e-05| 0.0227| 3.47e-05
20 | 0.0211]| 6.27e-05| 0.0220| 3.26e-05
25| 0.0204| 7.50e-05| 0.0216| 3.13e-05
30 | 0.0206| 7.28e-05| 0.0213| 3.05e-05
35| 0.0203| 6.79e-05| 0.0211| 2.98e-05
40 | 0.0204 | 7.94e-05| 0.0209| 2.93e-05
45| 0.0213| 8.08e-05| 0.0207 | 2.88e-05
50 | 0.0206| 6.43e-05| 0.0206| 2.84e-05

Table 2: Simple mean case n=100, J=50. Moment approximation (MA) andayaBengio (NB)
estimators of the variance the cross validation estimator of the generalizatisraed
their sample variances] = 50, and the results are averages over 100 independent data
sets. The size of the data universe is 100.
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Table 2 presents the variance estimates of the CV estimators of the genenmaleabiowhen
J =50. In this case we notice that the variance of the moment approximation estisabout half
of the variance of the Nadeau-Bengio estimator.

0.024
1

0.023
1

0.022
1

0.021
1

T T T T T
10 20 30 40 50

size of the test set

Figure 2: Simple mean case n=100, J=50

Figure 2 shows a plot of Nadeau-Bengio and moment approximation estimate\afriance as
a function of the size of the test set. The larger variance of the Nadeagi@estimator that was
reported in table 2 can also be seen again in Figure 2.

Table 3 presents the values of the two variance estimators as well as tlegicearvhen the data
universe has size= 1000, for the cas&= 15 andJ = 50. We notice that the performance, in terms
of variance, of the moment approximation estimator is, in both cases, sufgetier performance
of the Nadeau-Bengio estimator, always having variance that is smallethéa&B variance by one
order of magnitude.

To address the problem of bias we computed the exact (and theoretiked)ofehe variance
estimator of?{y. Therefore, we computed, using formula (3Mar(12fy) under square error loss
and under the assumption of\g0, 1) distribution. The distributional assumption is used to obtain
the theoretical value. This is done only for the purpose of comparison amrdém to allow a bias
computation to be carried out without having to estimate higher order momenfgadtice, the
distribution of the population from which the data arise is not known, andehiglder moments
need to be estimated from the data.

The exact theoretical value War({y;) is
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N

NB

var(NB)

MA

var(MA)

J=15

100
150
200
250
300
350
400
450
500

0.00319
0.00291
0.00252
0.00244
0.00240
0.00214
0.00232
0.00217
0.00206

1.61e-06
1.22e-06
9.62e-07
8.21e-07
9.02e-07
9.27e-07
7.21e-07
5.70e-07
8.24e-07

0.00319
0.00275
0.00253
0.00239
0.00230
0.00224
0.00219
0.00216
0.00213

7.75e-06
5.42e-08
4.58e-08
4.11e-08
3.81e-08
3.60e-08
3.45e-08
3.33e-08
3.24e-08

J=50

100
150
200
250
300
350
400
450
500

0.00241
0.00225
0.00225
0.00216
0.00213
0.00216
0.00211
0.00218
0.00206

3.20e-07
2.82e-07
3.68e-07
2.43e-07
1.96e-07
2.83e-07
2.70e-07
2.36e-07
2.18e-07

0.00235
0.00222
0.00215
0.00211
0.00209
0.00207
0.00205
0.00204
0.00203

5.90e-08
3.54e-08
3.33e-08
3.21e-08
3.12e-08
3.07e-08
3.02e-08
2.99e-08
2.96e-08

Table 3: Simple mean case n=1000, J=15 and J=50. Moment approximatinaih Nadeau-
Bengio (NB) estimators of the variance of the cross validation estimator okthergliza-
tion error under random selection, and their sample variances. The fiiwedata universe
isn= 1000 and] = 15 and 50.

Using theorem 3.1 the approximation to the valu¥af(f};) is

2
— 4+ 0O(
Ny

ks

Var({y))
ng

)}

2
—{1
nz{ +
The same theorem provides the approximatioB@a®({y;, i) as follows:

1

2 2
Cov({j,fy) = =(1+ =) +0(=)-
1H n n ng

The exact theoretical computation of the covariance provides us with timeifa

A 2 2
Cov(i, fiy) = ﬁ(l‘f‘ ﬁ)*‘

2.1 1
()

1 N n
Using these expressions we computed the exact value of the variaffife ér the square error
loss. This computation allows us to get a sense of the bias of the moment iapgtion and
Nadeau-Bengio estimators. Table 4 presents the results for the casetiviaeiata universe is 100
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n, | Exact Variance| Bias of MA estimator| Bias of NB estimator
10 0.0327 0.0001 -0.0011
15 0.0282 0 -0.0017
20 0.0259 0 -0.0009
25 0.0246 -0.0001 -0.0011
30 0.0237 -0.0001 0.0001
35 0.0232 -0.0003 -0.0005
40 0.0227 -0.0003 0.0008
45 0.0223 -0.0004 0.0004
50 0.0222 -0.0006 0.0024

Table 4: Bias of MA and NB estimators. Bias of MA of NB estimators for the addbe simple
mean. The data universe has size 100, J=15. The bias is calculatedeapeistation of
the estimator minus the exact value.

andJ = 15. We observe that the moment approximation estimator has a very smalldnisistently
smaller than the bias of the Nadeau-Bengio estimator. Notice that when thefsilzedraining and
test sets are equaty(= n, = 50) the bias of the Nadeau-Bengio estimator is four times higher, in
absolute value, than that of the moment approximation estimator.

At this point, we remind the reader that the Nadeau-Bengio estimator giverbing generally
applicable. The proposed estimators take advantage of information abaldtdnand the learning
algorithm. Hence, it is not completely surprising that they perform betterttimhadeau Bengio
estimator in terms of variance and bias.

For comparison reasons, after a referee’s suggestion, we competsddbnd estimator pro-
posed by Nadeau and Bengio(2003) and given by (2.6). Table Brgsethe values of the estima-
tors of the variance given by (2.5) and (2.6) and the moment approximagiimnator. Expressions
(3.9) and (3.10) were used to obtain the needed variance and coestgants. The size of the data
universe is 50, 100, 500 and 1000, the size of the test set is taken @ 86,1100 and 200 and J
is either 15 or 50. ¢ From table 5 we see that the estimator given by (2.6) &licdaservative; its
value is almost twice as big as the value of either the cheap to compute NadkBeragio esti-
mator given by (2.5) and the moment approximation estimator. It is interestindite rioat, when
the training set size is the same with the training set size used to compute (2 Heamdment
approximation estimator, the value of (2.6) is comparable to the value of thetath@stimators.
This observation indicates the importance of the size of the training set in theutation of the
variance of the cross-validation estimators of the generalization error.

To exemplify the fact that the framework we propose allows one to computatlace estima-
tor of the k-fold cross validation estimator of the generalization error we atedpthe variance of
leave-one-out cross validation (LOOCYV) estimator of the generalization, éne 4-fold, the 5-fold
and the 10-fold in the case of square error loss and when the datassna@nsisted of 100 data
points generated from a N(0,1) distribution. The case was prediction ofesimgian. We did the
same when the data universe consisted of 1000 normal data points. Tabke6ts the moment ap-
proximation variance estimators together with their variance and the condisgd\B estimators.
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Sample Size Training Set Siz¢ J NB MA | NB(Conserv.)
50 10 15| 0.0539| 0.0537 0.0988
100 10 15| 0.0314| 0.0328 0.0542
50 20 15| 0.0458| 0.0462 0.1213
100 20 15| 0.0257| 0.0259 0.0456
50 10 50 | 0.0443| 0.0456 0.0836
100 10 50 | 0.0236| 0.0241 0.0420
50 20 50 | 0.0421| 0.0430 0.1131
100 20 50 | 0.0218| 0.0220 0.0467
500 100 15| 0.0052| 0.0051 0.0081
1000 100 15| 0.0032| 0.0032 0.0050
500 200 15 | 0.0044| 0.0044 0.0082
1000 200 15| 0.0025| 0.0025 0.0041
500 100 50 | 0.0044| 0.0043 0.0078
1000 100 50 | 0.0023| 0.0023 0.0040
500 200 50 | 0.0042| 0.0041 0.0081
1000 200 50 | 0.0022| 0.0022 0.0040

Table 5: Comparison among three estimators. Values of NB, MA and thergatise NB estimates
for the case of the simple mean. The universe sample size is 50, 100,Q0GMH

k-fold MA Variance NB Variance
4-fold | 0.02096| 0.00003302 0.0417 | 0.001262
n=100 | 5-fold | 0.02093| 0.00003293 0.04516| 0.0009909
10-fold | 0.02089| 0.0000328 | 0.04426| 0.0005567
LOOCV | 0.02086| 0.0000327| 0.04141| 0.0002177
4-fold 0.002 3.02E-08 | 0.00423| 1.308E-05
n=1000| 5-fold 0.002 3.02E-08 | 0.00412| 8.60E-06
10-fold | 0.002 3.02E-08 | 0.00405| 3.74E-06
LOOCV | 0.002 3.02E-08 | 0.00398| 2.00E-07

Table 6: Variance estimators for k-fold CV. Moment approximation and BHad&gengio variance
estimators for k-fold cross-validation estimators of the generalization anatheir vari-
ances.

When the data universe is 100 the 4-fold cross validation divides it intandomerlapping test
sets each containing 25 data points. Similarly, we define 5-fold and 10-dskeksc We notice that
the variance estimation of LOOCYV is not appreciably better than that of the othes validation
estimators. In fact, the slight advantage of the LOOCV diminishes when theidiaterse is large
and the size of the test set becomes large. For illustration purposes senjptiee NB estimator
and its variance. The value of the NB estimator is twice as large as the value afidment

1148



VARIANCE OF CROSSVALIDATION ESTIMATORS OF THEGENERALIZATION ERROR

approximation estimator. However, note that Nadeau and Bengio (2003)tddiscuss the case
of k-fold cross validation.

K MSE Var Bias
4 | 0.02123| 0.02098| 0.002283
10 | 0.02099| 0.02091| 0.002224

Table 7: Comparison between 10-fold and 4-fold Cross Validation Unitiepl& Mean Case. MA
estimator is used to estimate the variance of the cross -validation estimator ohtralge
ization error. The results reported in the table are averages over I&@dtfdata sets.

To understand the effect of the loss function in the performance of theodgethe used the
mean squared error (MSE) to compare the estimators as well as their earifalole 7 presents
the values of the MSE and the variance, as well as the bias for the 4-folticafold estimators of
variance for the simple mean case. We see that the reduction in varianeehehe 4-fold and 10-
fold CV variance estimator is not appreciably different. This differencaase pronounced when
the corresponding MSE are compared. Overall it appears that theld @rbss validation differs
from the 4-fold cross validation an order of magnitude less when the cisopdretween the two
is made on the basis of variance than when the comparison is made on the MSE.o

4.2 Absolute Error Loss

The previous theory was developed for loss functions that are diffatde. One loss that is not
differentiable at the mean is the absolute error loss. However, we artoapely the above theory
in the case of the absolute error loss because we can replgceX;| by the equivalent function

()?gj —X)2+d, whered is a small positive number. The functi({)(‘b?sj — X;)?+d]¥/? replaces

the absolute error loss and is differentiable everywhere. Wedus«% and n—12 and computed the
Nadeau-Bengio estimate and the moment approximation estimate for the sizeslafathmiverse
of 100 and 500. Notice that the Nadeau-Bengio estimate was computed (s#gdx ) = [X — Xs |,
while the moment approximation estimator uses the loss funtiig, %) = [(X — Xs )2+ d]*/2,
which is almost the same with the absolute error loss. We generate data Ko distribution

in S-plus and used = 15.

Table 8 shows the values of the Nadeau-Bengio and moment approximdtinatess together
with their sample variances. Notice that= % was used in the first computation of the moment
approximation estimator, whereis the size of the data universe, athe- n—lz wheren; is the size
of the test set was used in the second computation. The table reports ttesidtee averaged over
100 different data sets.

The first observation we make is that the effeall @in the moment approximation estimator and
its sample variance is almost undetectable, as the values of the estimator amadpits wariance
(averaged over 100 different data sets) do not change with d ﬁeingg. Secondly, we see that the
variance of the Nadeau-Bengio estimator is larger than the variance of themhapproximation
estimator by one order of magnitude.
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ny NB estimator| var(NB) | MA estimator | var(MA)
d=1
100 | 00287 |1.16e-04] 00293 | 1.43e-05
15 0.0271 1.25e-04 0.0252 1.06e-05
20 0.0256 7.93e-05 0.0231 8.93e-06
25 0.0224 7.72e-05 0.0219 7.98e-06
30 0.0218 8.77e-05 0.0210 7.36e-06
35 0.0207 7.53e-05 0.0204 6.92e-06
40 0.0208 6.52e-05 0.0199 6.58e-06
45 0.0191 6.14e-05 0.0194 6.30e-06
50 0.0205 | 7.07e-05| 0.0191 | 6.06e-06
1
n
10 | 00287 |1.16e-04] 00291 | 1.43e-05
15 0.0271 1.25e-04 0.0251 1.06e-05
20 0.0256 7.93e-05 0.0231 8.92e-06
25 0.0224 7.72e-05 0.0218 7.97e-06
30 0.0218 8.77e-05 0.0210 7.36e-06
35 0.0207 7.53e-05 0.0204 6.91e-06
40 0.0208 6.52e-05 0.0199 6.58e-06
45 0.0191 6.14e-05 0.0194 6.30e-06
50 0.0205 7.07e-05 0.0191 6.06e-06

Table 8: Absolute Error Loss Case n=100, J=15. Nadeau-BengipghdBmoment approximation
(MA) estimators and their corresponding variance estimates. Data are) M(@3=15.
The loss function is absolute error.

Table 9 presents the Nadeau-Bengio and moment approximation estimatoosiibie value of
J = 50. Notice that, in contrast with the square error loss case, the NadsagieBestimator has a
higher variance than the moment approximation estimator. Its variance is stitl@nad magnitude
higher than the variance of the moment approximation estimator.

Table 10 presents the two estimators and their corresponding sample ganigimen the size of
the data universe is 500. The population is still N(0,5) drd 1/n. Notice that forJ = 15 the NB
estimate has larger, by two orders of magnitude, variance than the momemtiagation estimator,
while J = 50 it still maintains a larger than the moment approximation estimator variance, @ly th
time by one order of magnitude.

4.3 Regression

In the regression case the data generation was done as follows. Théadogeed was simple
regression, that ig = o +Bx; + ¢, 1 =1,2,--- ,n, whereg; are independent, mean 0 and variance 1,
normal random variables. The parameierf were set to equal 2 and 3 respectively. The explana-
tory variable was generated from a uniform distribution with range [0 Ridjlly, we generated the
errors from a N(0,1) distribution angl=2+3x + ¢, i =1,2,--- ,100. We generated 100 different
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ny NB var(NB) | MA | var(MA)

Sk

10 | 0.0208| 3.18e-05| 0.0216| 7.77e-06
15 | 0.0209| 2.48e-05| 0.0203| 6.89e-06
20 | 0.0206| 2.92e-05| 0.0197| 6.46e-06
25 | 0.0189]| 2.30e-05| 0.0193| 6.19e-06
30 | 0.0199| 2.41e-05| 0.0190| 6.00e-06
35 | 0.0191| 2.45e-05| 0.0187| 5.86e-06
40 | 0.0192| 2.49e-05| 0.0185| 5.73e-06
45 | 0.0188| 3.16e-05| 0.0184| 5.61e-06
50 | 0.0195| 2.56e-05| 0.0182| 5.50e-06

10 | 0.0208| 3.18e-05| 0.0214| 7.75e-06
15 | 0.0209| 2.48e-05| 0.0202| 6.88e-06
20 | 0.0206| 2.92e-05| 0.0196| 6.45e-06
25 | 0.0189| 2.30e-05| 0.0192| 6.19e-06
30 | 0.0199| 2.41e-05| 0.0190| 6.00e-06
35 | 0.0191| 2.45e-05| 0.0187| 5.86e-06
40 | 0.0192| 2.49e-05| 0.0185| 5.73e-06
45 | 0.0188| 3.16e-05| 0.0183| 5.61e-06
50 | 0.0195| 2.56e-05| 0.0182| 5.50e-06

Table 9: Absolute Error Loss Case n=100, J=50. Nadeau-BengipgdNBmoment approximation
(MA) estimators and their sample variance. DataM{®,5) and J=50. The loss function
is absolute error.

data sets; for each data set, and for each value,ai; we computed the Nadeau-Bengio and the
moment approximation estimator and then average those over the 100 diffateisets.

Tables 11 and 12 present the two estimators together with their corresp@aaiiple variances
and for values of J equal to 15 and 50. Notice that the moment approximatioraéor has variance
that is at least one order of magnitude smaller than the variance of N&d#sayie estimator.

Table 13 computes the NB and moment approximation variance estimators oh#éralgeation
error when the size of the data universe is 500. We see that the momeaoxiapgtion estimator
still maintains a variance of an order of magnitude lower than the NB estimator.

We also computed the variance estimators for k-fold cross validation estinwdittivs gener-
alization error in the regression case. Table 14 shows the value of the mapprokimation and
Nadeau-Bengio estimator and their sample variances computed over ¥i@rifflata sets of size
100.

Again, the advantage of LOOCYV in this case is questionable. Moreowem ghe fact that 4-
fold cross validation saves a lot of computing time it seems to be preferable foegsll that 4-fold
CV assigns 25% of the data points in the test set).
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n, NB var(NB) MA var(MA)
J=15

50 0.00651 | 8.31e-06| 0.00588| 1.09e-07
75 0.00527 | 3.19e-06| 0.00506| 8.04e-08
100 | 0.00455 | 3.23e-06| 0.00465| 6.79e-08
125 | 0.00459 | 2.62e-06| 0.00440| 6.09e-08
150 | 0.00428 | 3.10e-06| 0.00424| 5.64e-08
175 | 0.00420 | 2.55e-06| 0.00412| 5.33e-08
200 | 0.003971| 2.41e-06| 0.00403| 5.10e-08
225 | 0.00390 | 1.83e-06| 0.00396| 4.92e-08
250 | 0.00361 | 2.03e-06| 0.00390| 4.78e-08
J=50

50 0.00456 | 1.05e-06| 0.00433| 5.90e-08
75 0.00402 | 6.61e-07| 0.00409| 5.25e-08
100 | 0.00406 | 9.03e-07| 0.00396| 4.93e-08
125 | 0.00404 | 7.45e-07| 0.00389| 4.75e-08
150 | 0.00396 | 7.16e-07| 0.00384| 4.62e-08
175 | 0.00388 | 8.07e-07| 0.00380| 4.54e-08
200 | 0.00377 | 5.23e-07| 0.00377| 4.47e-08
225 | 0.00377 | 5.67e-07| 0.00375| 4.41e-08
250 | 0.00365 | 6.26e-07| 0.00373| 4.36e-08

Table 10: Absolute Error Loss Case n=50G: % Nadeau-Bengio (NB) and moment approxima-
tion (MA) estimators and their sample variance. The size of the data uniges86.

4.4 Classification

In this section we briefly indicate how these results can possibly be extéaded classification
case. We present some ideas that appear promising in treating this casesaptimited simulation
experiment in the simplest case, where the prediction rule is based on theofribariraining set.
The results presented here are promising; however, we would like t@ shraisa more detailed
study than the one presented here, is required to understand thevgeréer of these methods in
classification.

Recall that a central requirement on the loss function is to be differentikllee classification
case the loss function is an indicator function and hence it is discontint@une goint. The idea
is to replace the discontinuous function by a continuous, differentiabti@umthat is close to the
original loss function. We approximate therefore the indicator function pglgnomial of order
3. Let the data béx;,g), i = 1,---,n, wherex; indicates the data value, agdindicates the group
membership. Assume that there are only two groups in the populationgthet if x; belongs in
group 1 andy = 2 if x; belongs in group 2. Moreover, assume that group 1 has smaller mean than
group 2. The prediction rule we use states thgjf— X, > 0 thenX, belongs in group 1, otherwise
it belongs in group 2. Thereforgy IS either 1 or 2 depending on wheth&g — X is greater than O
or less than or equal to 0. The loss function is th@p # 0).

1152



VARIANCE OF CROSSVALIDATION ESTIMATORS OF THEGENERALIZATION ERROR

n, NB var(NB) MA | var(MA)
10 | 0.0327| 0.000493| 0.0326| 1.14e-04
15| 0.0293| 0.000366| 0.0284| 8.44e-05
20 | 0.0259| 0.000184| 0.0260| 7.21e-05
25| 0.0242| 0.000199| 0.0247| 6.29e-05
30| 0.0235| 0.000168| 0.0238| 5.74e-05
35| 0.0226| 0.000176| 0.0232| 5.66e-05
40 | 0.0235| 0.000144| 0.0227| 5.35e-05
45| 0.0249| 0.000255| 0.0223| 5.16e-05
50 | 0.0233| 0.000142| 0.0221| 5.06e-05

Table 11: Regression case n=100, J=15. Moment approximation (VlANadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generaligatiwrand
their sample variances in the regression case. The valdesoi5, and the results are
averages over 100 independent data sets. The size of the dataseans/&00.

0.030 0.032
1

0.028
1

0.026
1

0.024
1

0.022
1

T T T T T
10 20 30 40 50

size of the test set

Figure 3: Regression case n=100, J=15

We can write this loss function as a functionzf= xs, — Xk, & = I (gk = 1) and two continuous
differentiable functions.,; andLy,. Thus

I (9 # Gk) = Oklke + (1—&)Lk2,
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17

NB

var(NB)

MA

var(MA)

10
15
20
25
30
35
40
45
50

0.0253
0.0233
0.0228
0.0223
0.0219
0.0222
0.0215
0.0231
0.0231

1.84e-04
1.29e-04
1.24e-04
1.15e-04
1.07e-04
1.10e-04
1.00e-04
1.31e-04
9.56e-05

0.0242
0.0229
0.0222
0.0218
0.0215
0.0213
0.0212
0.0211
0.0210

6.00e-05
5.41e-05
5.06e-05
4.92e-05
4.79e-05
4.70e-05
4.63e-05
4.60e-05
4.54e-05

Table 12: Regression case n=100, J=50. Moment approximation (VlANadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generaligatiwrand
their sample variances in the regression case. The valdes050, and the results are
averages over 100 independent data sets. The size of the dataseans/&00.

n2

NB

var(NB)

MA

var(MA)

50
75
100
125
150
175
200

0.00653
0.00563
0.00498
0.00470
0.00495
0.00469
0.00450

7.64e-06
4.80e-06
4.10e-06
3.86e-06
4.35e-06
3.57e-06
2.42e-06

0.00643
0.00555
0.00511
0.00483
0.00464
0.00452
0.00443

8.94e-07
6.71e-07
5.92e-07
5.02e-07
4.54e-07
4.32e-07
4.16e-07

Table 13: Regression case n=500, J=15. Moment approximation (MiANadeau-Bengio (NB)
estimators of the variance of the cross validation estimator of the generalizatiorand
their sample variances in the regression case. The valddsol5, and the results are
averages over 100 independent data sets. The size of the dataseans/s00.

where
1 ,Z < —h
tu=1{ BF&+p& ,~h<z<0
0 % >0
0 ,Zk <0
te={ —3Z+p% ,0<z<h
1 ,Z > h

The needed terms then can be easily computed. For example, we can corpastaton of
the above loss function as

E{E(dLk1+ (1—&)Lk2|0k)} = P(&k = 1)E(Lk1|dk = 1) + P(& = 0)E(Lk2|0k = O)
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Figure 4: Regression case n=100, J=50

k-fold MA Variance NB Variance
4-fold | 0.02132| 0.0000357| 0.04854| 0.00227
5-fold | 0.02135| 0.0000358| 0.04634| 0.00121
10-fold | 0.02138| 0.0000359| 0.04493| 0.00062
LOOCYV | 0.02139| 0.0000359| 0.04323| 0.00023

Table 14: Variance estimators in regression. Variance estimators of k+fudd-validation estima-
tor of the generalization error and their sample variances, in regression.

and the term®(8« = 1), P(d = 0) are computed from the data. Similarly, we can compute from
the data all terms that involve variance and covariance terms.

Table 15 presents the results obtained from a small scale simulation. Dataemeratgd in
Splusfrom two groups of normal distributions; these wé&t€3, 1) andN(1,1). Group membership
is assigned by generating a Bernoulli(0.6) random variable. If the vatles@btained then the data
point is generated fromId(1, 1) distribution, otherwise it is generated fronN&3, 1). The training
set used 80% of the available data points. For example, wheR00 the training set contains 160
elements and thus = 40. The value ohin constructing thé1, Ly, functions was taken to be 0.1.

Table 15 shows the moment approximation variance estimator and NB estimata@rifaus
values of the data universe. For illustration reasons we present tresvafithe MA estimator for
both cases when normality is assumed and when is not. We see that the moprerinagtion
estimator (computed without any distributional assumption) is very competitive.
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Table 15: Simple Classification Example
n MA.Free MA.Normal NB
200 0.0008355 | 0.0008275 | 0.0009240
2000 | 0.00008593| 0.00008273| 0.00010028
20000 | 0.000008603 0.000008299 0.000008815

Table 15. Moment approximation (MA) and Nadeau-Bengio (NB) estirsatbthe variance
of the cross validation estimator of the generalization error and their sarapénces in the
simple classification case. The valuebfs 15, MA.Free denote the MA estimator without
distribution assumption and MA.Normal denote the MA estimator under alodistribution.
The results are averages over 100 independent data sets. 80tpdrties data are used as
training data; h used here is 0.1

5. Discussion and Conclusion

We presented a method for deriving variance estimators of the crosstialidstimator of the
generalization error in the cases of smooth loss functions and the absoart®ss. The approx-
imation we propose illustrates clearly the role of the training and test sets intthatasn of the

variance of the generalization error. We also provide a unifying framewmder which we can
obtain variance estimators of the estimators of the generalization errortfgrdmmplete random
sampling and non-random test set selection.

We compared the moment approximation estimators with an estimator proposeddsuNand
Bengio (2003). The results indicate that the moment approximation estimatféosnpéetter in
terms of both, variance and bias, than the Nadeau and Bengio (2003)testilttee new estimators
use additional information from both the data and the learning algorithm. Ortllee loand, the
Nadeau and Bengio estimator is computationally simpler than the moment approxiestioa-
tor for general loss functions, as it does not require the computatioreafdtivatives of the loss
function. In the case of non-random test set selection, the NadeaagieBestimator is not appro-
priate to use. The moment approximation estimator in this case is a reasonabldéogstimlacan
be computed. It is interesting to notice that the results indicate against use Iefatre-one-out
cross validation (LOOCYV). Its slight advantage is terms of variance, theeother forms of cross-
validation quickly diminishes as the size of the universe, and hence thefdlze test set of other
cross validation schemes increases. Overall, a test set that use 258mohttable data seems to
be a reasonable compromise in selecting among the various forms of k-dskelalidation.

We presented results for general differential loss functions andokwlate error loss. We also
indicated possible extensions of this methodology to the classification probtkdisassed briefly
a very simple version of the classification problem. An extensive study optbldem will be the
subject of a different paper. Finally, we would like to indicate here thatrtbthods presented here
can similarly apply to SVM loss function as well as the kernel regression.
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Appendix A.

Here we present a series of lemmas that guarantee that the remainder teenapproximations
for the case of sample mean.

Before we state these we need the following definitions.

Definition 1. Let (Q, ¥, P) be a probability space. We say that a random varibelongs in
the £, space ifE|X|P < «, p> 0.

Definition 2. A sequence of random numbdRg is said to beD(1/ky) if 3 M andng such that
[knRn| < M, ¥Vn > n, or, equivalentlyksR; is bounded.

Lemma A.1 Let X, Y be independent random variables atd-Y € £, for somer € (0, ).
ThenX € L; andY € ;.
Proof. For a largerg > 0, VA > Ag

A
PIX|>A) < 2P(X| >, I¥]<3)

A
< 2P(IX+Y]| > E)’

If E|X|" < +oo, thenE|X| = / P[X|" > AJdA. Hence, ifX +Y € £; ,
0

/ P(IX[ > ) :/ P(IX| > AT)dA
A>Ao A>Ao

1

AT
< 2/ PIX Y| > 20 )dA
A>Ao 2

A
= 2 P(X+Y| > )d)\<oo.
A>Ao
Thus,E|X|" < . The proof forE|Y|" < « is similar.
Lemma A.21f0 <r’ < randE[X|" < w, thenE|X|" < c.

Proof. Write
(EX|")T <E(IX[")" = EX|" < w,

and the proof is obtained by Jensen’s inequality.

_ - 12

Lemma A.3If E|Xy|P < o, thenE|X;|P < 4+, wherep € Z1, andX, = n ZlXi is the sample
mean. = B

Proof. We will use transfinite induction. Far= 1 andn = 2, it is trivial sinceX, = X;. For
n=2, %X = %(X1+X2) and use lemma 1 to obtain the result, relying on the fact Xha, are

identically distributed. Suppose now that foK k— 1 the result holds. We will prove it true for
n= k. Write

?TIH

E(1XdP) = lelp leﬁ'xk )IP).

1157



MARKATOU, TIAN, BISWAS AND HRIPCSAK

Thus 1 1
ED@“)::E‘E)&%__WZ_)k_ﬂp’
and using lemma 1, we obtalf(|X|) < .
LemmaA.4Letn > 2k anday,ay,- - ,a, be such that

ar+a+--+an =2k (1)
acZa=>0a#1

a1+3-2++an:2k_1 (2)
gecZa>0a+#1

Then the number of solutions for (1) and (2), denoted\p§2k) and A,(2k — 1) respectively,
satisfyAn(2k) = O(nK), andA,(2k — 1) = O(nk~1) .
Proof. The maximal order of thé,(2k) comes from theg/(2,---,2),(0,---,0)}, where(2,---,2)

is a k-tuple. There aréﬂ) solutions for (1) of this form. The order @(n*), because

(n> _ -1kt 5

k ki

The maximal order of thé\,(2k — 1) comes from the((2,---,2,3),(0,---,0)}, where the k-
tuple(2,2,---,2,3) hask— 1 elements equal to 2. There %ﬁi 1
The order iSO(n1) because

n nn—1)---(n—k+2) _
(k_£>: (k—1)! = 0.

) solutions of (2) of this form.

Lemma A.5 Let X;,Xp,---, X, be independent identically distributed random variables with
E(X) =W andk is a positive integer. TheB(X — )& andE(X — W), if they exist, are both
O(1/nk).

Proof. Without loss of generality, we suppoBéX) = u= 0, then

Appendix B.

Here we present the set up we use for the linear regression casenamaddethat guarantee the
validity of the obtained results.

The Gauss-Markov set up for a linear model defigies x' B+ € , whereyy,ys,---,y, are
observable response variables afie= (xj) is anng x p matrix of known constants. Moreover
€1,€2, -+ ,€En are unobservable random variables that follow a probability distribikioand are
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such thatE(gj) = 0 andVar(gj) = 02, €1,€,- - , &y are independent. The least square solution is
B = (XTX)~1XTY, whereY is ann x 1 vector, so thaEp = andVar(B) = 02(XTX)"1

Consider an arbitrary linear combinatitly = AT (3 — B), A € RP. ThenU = AT (XTX)"1XT¢;
with ¢ = AT(XTX)~1XT. To obtain the asymptotic distribution bf all is needed is to verify that
satisfies the regularity condition of Hajek-Sidak central limit theorem.

We need first the following definition.
Definition(Convergence in distribution). A sequenf®,} of random variables with distributions
{Fn} is said to converge in distribution (or in law) to a (possible degeneratepnandriableT with
a distribution functiorf, if for everye > 0, there existsg = ny(€), np € Z* such that at every point
of continuityx of F

[Fa(x) —F(X)| <&,

for all n > ng.

Hajek-Sidak Central Limit Theorm (Sen and Singer, 1993). L¢Y,} be a sequence of inde-
pendent, identically distributed random variables with mgand variance? finite; let {C,} be a
sequence of real vectors. TherCif = (Cn1,Cn2, -+ ,Cnn) " and

maX <i<nCy

n 2
2i=1Chi

—0,as n— 4o

it follows that N
y Yic1Cni(Yi — 1) o

2<h 2
\/ O 2i=a G

where Z is aN(0,1) random variable.

The following theorem completes the proof of the asymptotic distribution of thet sspiares
estimator.
Cramer-Wold Theorem (Sen and Singer, 1993). L&{, X, --- be random vectors iRP; then

Xo 2 X if and only if, for every fixed\ € RP we have\T X, > ATX.

Remark: We note here that the generalized Noether condition (assumption 2) caodiféed to
extend the asymptotic normality result to the heteroscedastic model, that is, tebwhedeE (€) =
0?,i=1,2,---,n. Also notice that the normality of the least squares estimators is not obtained
under normality of the errors. Assumptions 1 and 2 of section 3.2 togethethgifiniteness of the
second moment of the, otherwise unknown, error distribution sufficabdése results to hold.

The following lemmas that are listed without proof are used to arrive at tlendorm of the
covariance terms.

Lemma B.1LetU be distributed as B(0,V) random variable. Then

Var(UTAU) = 2tr (AV)?

whereA is a known matrix.
Lemma B.2LetU be distributed as B(, V) random variable. Then
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(i) E(UTAU) =tr(AV) +uT A,
(i) CoMU,UTAU) = 2VAY
(iii) CoUTPU,UTQU) = 2tr[PVQV] + 4" PV Qu

The following lemmas are used in establishing the equivalence of the diffeases in the
computation of the covariance terms. The first lemma, the well-know Holdexpality, is stated
without proof.

Lemma B.3Denote by||X||, = EYP(]X|P), p > 0, whereX is a random variable, thg-norm
of X. Then, ifX, Y are measurable functions on a probability spacepforl, p’ > 1, r_l)+ % =1

EXY] < [[X][p-[[¥]lp-

The special case whepe= p’ = 2 is known as Schwarz’s inequality.

Lemma B.4Let S, Sy be training sets anSJ?, S‘J’ their corresponding test sets. Assume that
for (yi,x) € S, (yi,x) € S}, for somei € {1,2,---,np}. Assume thak ([L'(x} o, Yir)]?) < e, and
E[L* (X! Bo, Yir)] < oo,

|E[L(xBo, %)L’ (4 Bo.¥i)% (Bs, — Po)]
— E[LCiBo.WIEIL' (4 Bo, i) JED (Bs, —Bo)]| = 0(1)

sup;
R\st/—ﬁol\sk/m

Proof Write

[E[L(xBo, YL () Bo, )X (Bs, — Bo)] — E[L(4Bo, Y1)E[L' (X! Bo,yir) ED (Bs, — Bo)]|
< [E[L(4Bo, YL () Bo,yi)X; (Bs, — Bo)]| + |E[L(Bo, Y)E[L () Bo, Yi)]E[X; (Bs, — Bo)]
< E{|LO4Bo,Y)X (Bs, — Bo)IL'(x) Bo,¥ir) [} + [E[L(xiBo, )] E[L' (X} Bo, yin)] X (Bs, — Bo)]

Using lemma A2.3 and the fact thEtxiT,(fBSj, —Bo)] = 0 the above relationship becomes:

[E[LBo.y0)L' (4 Bo.yi )X (Bs, — Bo)] — E[L(xBo.Y)IEIL' (< Bo. Y |ERKF (Bs, — Bo)]|
< \JE(LOG Bo. )12 /EIL2KT Bo.y) (B, —Bo)xi (Bs, — Bo)]

Apply once more Lemma A2.3 on

E[L2(x' Bo. Y1) (Bs, — Bo)xX! (Bs, — Bo)]
< /EIL4(4 Bo.yi)yEl(Bs, — Bo)x] (s, —Bo)
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Thus
su R\f‘sj/—ﬁougk/\/rJ [L(xBo, i)' (% Bo, ¥ )% (BS/ Bo)]
—E[L(xBo, Y)IE[L' (4 Bo, V) IE[X! (Bs, — Bo)]|
S SURGs, iy (4/5[(&8,-/ — Bo)xix) (Bs, — Bo)?
p K2
<M- (‘/[(Z %)

I=1
'V'_
p

wherec = Me(5F ;% 1) <

Lemma B.5Let §;,S; be two training sets anSjC, Sf, be their corresponding test sets. Under
the assumption thad&|[L” (x" Bo, Vi )] is finite and for soméy;,x;) € S, (i, %) € Sy

SURfBe gy iy [E[L(X Bo, Yi)L” (%) Bo, Yr) (Bs, — Bo)x (B, — Bo)]

—E[L(X Bo.Y)IEIL" (¢ Bo. Y ) E[(Bs, — Bo)xx (Bs, — Bo)]| = 0(1)
Proof. Write
[E[L (X Bo, 1)L () Bo,Yir) (Bs, — Bo)xixi (Bs, — Bo)]
—E[L(X Bo, WIEIL" (X! Bo, Y )E[(Bs, — Bo)xixt (Bs, — Bo)]|
< |E[L(4 Bo, Yi)L" (X Bo, i) (Bs, — Bo)xX; (Bs, — Bo)]|
+|E[L(XiTBO,yi)]E[L”(XIIBO,W)]E[(@S/ Bo)Xir%; (BS/ Bo)l|
The first term of the above relationship gives:
[EILOS Bo,yi)L” (4 Bo,Yir) (Bs, — Bo)xX (Bs, — Bo)l|
< E|{L(X Bo.yi) (Bs, — Bo)xx; (Bs, — Bo) 1" (%) Bo. yi )|
< \/E[L”(XinBo,Yi')z] \/E[LZ(XiTBo,Yi)((BS,-, —Bo)xX] (Bs, —Bo)2)]

c
S_
Ny

wherec is a constant. The second term is
ELL(X Bo, Y1) EIL" (%} Bo. i) E[(Bs, — Bo)xx¥ (Bs, — Bo)]|
sEnL(x-TBo,yoL“(xiTBo,ymHEM@ —Bo)]?
< [E(LOT Bo. I ELIL O Bo.yo)l]

<

3|O
= *
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wherec* is a constant. Thus the lemma is proved. Similarly we can prove that the terms, in the
computation of covariance, whe(g,x;) € Sy and/or(yy,x) € Sj can be replaced and treated as
the case whergy;, x) ¢ Si and/or(yi,x) ¢ Sj in the neighborhood of the true value &f.

Lemma B.6 Suppose

o (8) = ((0). (2 22)

whereuisqx 1 vectoryvis (p—q) x 1 vectorais a knowng x 1 vector,B is known(p—q) x (p—q)
matrix.
Then

E(a"uv'Bv) = 0.
Proof: Using conditional probability argument, we have

E(a’uv'Bv) = E,{E,y[a’ uv' BV}

— Eu{aTuEV|u[VTB\4}

= Eu{a" ultr(BZ224) — (Z21%;1U) T B(Z21Z;;,'U)]}
= Ey{@"u(Zo1Z ) T B(Z135u)}

= Ey{a’uu’' 2 %1,B(221 27 u)}

= E,{a"uu’"Cu)}

—a' E,{uu’Cu}

= a' {Co\(u,u’Cu) +EUE(u"Cu)}
—=a'25,,C-040

=0

wherec = 31151,B%,13 . We use the property thatxfis N(, V), thencou(x, xT Ax) = 2vAp
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Appendix C.

Proof of Proposition 3.5: To obtain the approximation given above we need first an approximation
for the product (¥i.s;,¥i)L(Yir,s,,Yr)- Using expansion (3.13) we obtain:

L(9i.s.Y)L(rs W) = L(xiBo.Yi)L (X} Bo.Yir) +L(xBo,yi)L' (X} Bo,yir)x! (Bs — Bo)
2 L06Bo.9)L" (4 Bo.0 X (B, — o) ] (B, —Po)
(B0 i)' (Bs, —Bo)L(G Boyr)
L' (xiBo, )X (Bs; — Bo)L' (% Bo, Yir )X (Bs, — Bo)
2L0¢ Bo.yi)K] (Bs, — Bo)L (] Bo.yv) (Bs, — Bo)xl (Bs, — Bo)
%'—(XiT/Bo,yi/)L"(XiT Bo,¥i)(Bs, — Bo)x X' (Bs, — Bo)
+ %'—'(XII Bo, Yir )X (ﬁs,-/ —Bo)L" (X Bo, Y1) (Bs, — Bo)xix' (Bs, — Bo)
LT Bo, YL (X Bo,yv) (Bs, — By (Bs, —Po)

(Bs, —Bo) x4 (Bs, —Bo) + R 1)

We need the expectation, over everything random, of relationship ($ume first that =~ i’
Recall thatyi,x) € S and(yi, ) € S, and(y;, %) is independent ofyir, X/). Then the first term of
the above expansion is

E[L(xBo, Y1)IE[L(X Bo,Yir)] = (E[L(xiBo,yi)])*. )

(If L(x"B,yi) = (X Bo—¥i)? = €7 and theE (&?) = 0?).
We need now

+ o+ + o+

+

E{L(4 Bo.¥i)L' (4 Bo.¥i )% (Bs, — Bo)} (3)

Notice that all expectations here are conditionalXgrthat is, we treat the fixed design case.
To evaluate this expectation we need to distinguish between two cases. sthefiesponding to
(Vi,%) ¢ Sy In this case (3) equals 0. The second correspondg tq) € Sy. Lemma B.4 of the
appendix proves that (3) can be replaced by

E[L(x' Bo.Y0)]EL' (X Bo,Yi)EX (Bs, —Bo)] = 0. (4)
Therefore the second term is 0. Similarly, the expectation of the third term is

2
ELLOF B0 YIEIL" (5 Bo. i e (6] ) 0T, X)) ©)

in both cases, whetyi,x) ¢ Sy and wheny;,x) € Sy
The expectation of the fourth term of relationship (1) is 0. To evaluate ihectation of the fifth
term we distinguish four cases:(¥i,x) ¢ Sy and(yy,x:) € S§j, (i) (yi,%i) ¢ Sy and(yi, X)) € Sj,
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(i) (yi,x) € Sy and(yy,x:) ¢ Sj, (iv) (vi,%) € Sy but (yi,x) € S;. Lemma B.6 of the appendix
allows in case (ii), (iii) and (iv), the replacement of the correct value efekpectation by the value
obtained from expression (6) given below. Thus, the expectation difthéerm is:

E[L' (' Bo. Yi)IE[L' (4 Bo.Yi )X Com(Bs;, Bs, )i 6)

SinceSjN Sy # G, and assuming thxs,, ij, have that uppek x p part common, relationship
(.6) can be written as

OZ(E[L/(XiT BOa Yi )DZXIT (X-Sr] XSj )_1(X-]I_-X1) (ng/xsj/ )_1Xi'>

whereX, is of dimensiork x p, k= Card(§NSy), ando? is the population variance. To compute
the expectation of the sixth term we again distinguish between case (i), (iljprdi)iv) as above.
However, all cases reduce to the case (i). For this expectation we roavdsfimma B.6,

%<E[L’<x?rso,yi>]>E[L”<@so,yv>]E[x?(fssj —Bo)(Bs, — Bo)xX (Bs, —Bo)] = 0. (7)

For the expectation of the seventh term we distinguish two casesyi (') ¢ S; and (ii)
(vir, %) € Sj. Both cases can be treated using the following expression for the etipeatéthe
seventh term:

0? T "o T R TN
— E[LO4 Bo. i) I(E[L" (% Bo.Yi))E[(Bs; —Bo)xX (Bs; — o)

o? _

= S EILOG Bo V)l (BIL" (4 Bo, YN [04x' ) (X5 Xs;) ~1]- (8)

The expectation of the eighth term is treated as the expectation of the sixth tenefotk it is
given by relationship (7). For the expectation of last term we distinguisliotinedifferent cases
that are listed above. In this case again all different cases can baltesatase (i). Therefore the
expectation of the ninth term is

ZELL 0 Bo. ) E[(Bs, — Bo)x (Bs, — Bo) (Bs, — Bo) 47 (Bs, — Bo)]

(9)
But
E[(Bs; — Bo) %X (Bs; — Bo) (Bs, —Bo) X! (Bs, — Bo)]
= 2r [0 ) (XE Xs) HXTXa) (X X)) M0 )(XE X ) HXTXa) (XS X, ) Y]
+otr () (X§ X))~ -tr[(6g) ) (XE, Xs,) 7. (10)

Therefore the covariance is given as

CoML(Ji.s Y0);L(Jrss, . ¥ir)) = G2 (E[L' (' Bo, Yi))>X (X§ X)) H(XIX1)(X§, Xs,)

%4(E[L”(X.-Tﬁo,yi)])ztr((KXiT)(XEszj ) HXIX1)(XE, Xs,) ~H(xrxi)

(X§Xs) H(XIX1)(XE,Xs,) 7).

_|_
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Note that, wherk is the square error loss the covariance is given as

20%r {(xx")(X§ Xs )‘1(XIX1)(Xéj,xsj,)‘1(Xv>qT)(X£,-ij )‘1(XIX1)(X£J.,XSJ,)‘1}-
Wheni =i’, the covariance is given as

2
CoML(Yis, ), L (s, - ir)) = Var(L(4 Bo,¥)) + % CouL (% Bo,¥i),L" (% Bo,¥1))
(4 (XE,Xs,) "%+ (X§ Xs) %)
+ OP(E[L'(X Bo, YDA (X, Xs, ) H(XIX1)(X§ Xs ) )
4
%(E[L”(&'Tﬁmyi)])z”((XiXiT)(ngXS,-)_1(XIX1)(X§,./XS,-/)_l(XiXiT)
(X§Xs) HXIX1)(XE,Xs,) )

4
(0] _ _
+ 7 Var(L” (4 Bo.yi))X (X§Xs) X (X§,Xs,) X

Note that, wherk is the square error loss the covariance is given as

20* + 40X (X§, Xs,) HXIX2)(X§ Xs) )%
+20™tr {(xx7 ) (X§ X)) HXIX1)(XE, Xs,) (3 ) (X§ Xg ) H(XIX1)(X§, Xs,) "1}

Proof of Proposition 3.6: Write:

L(is. YL s Yi) = LOGBo,Yi)L(X Bo,ir) +L(xBo,¥i)L' (X Bo,Yir )X} (Bs, — Bo)
%L()q Bo.Y0)L" (! Bo. ) (Bs, — Bo) %X/ (Bs; — o)

L' (% [307Yi)L(><|I[30,yi')><|'T([A3sj —Bo)

L' (xiBo.¥0)X (Bs, — Bo)L' (X} Bo. )X} (Bs, — Bo)

}L’(XiT Bo, Y1)L" (%! Bo, )X (Bs; — Bo) (Bs, — o)X (Bs; — Bo)
SLOKT Bo.Yir)L” (4T Bo. i) (Bs, — Bo)xix{ (Bs; — Bo)

+ ZL (¢ Bo.Yir)L" (' Bo. )% (Bs, — Bo) (Bs, — Bo)xix (Bs, — Bo)

+ o+ + o+
=N

_l_
EYN)

2
U0 Bo.y)L" 04 Bo. i) (Bs, — Bo)d! (s, — o)
(Bs —Bo) %! (Bs; — Bo) + Rn. (11)
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We need to evaluate the expectation of relation (11). We have
E{L(Yis.Yi)L(Jir.s;,¥ir)}
— (E[LOS Bo.y))) 2+ %2 EILOG Bo.)IELL” (4 Bo i) tr [0 ) (XE X ) ]
+ OPE[L' (4 Bo,Y)D)Ar (06X ) (X5 Xs,) ]

+ %2E[L(yJBo,y»]E[L"mTBo,w)]tr[(xm-T)(xgxsj>11

4 SEIL O B, WIEIL” (¢ Bo, WIED (B, —Bo) (B, — Bo)¥] (s, — o)
4 SEIL O3 Bo ) EIL" (4 Bo.WIED (B, —Bo) (Bs, — Bo)d! (s, — o)
+ S (EIL"04 Bo.y) ’El(Bs, — Bo)xx! (Bs, — Bo)(Bs, — Bo)xx] (Bs, — o)l

X (B —Bo) ) _ 0
(e i) =)o @

o? (ﬁ(xéx@)lm &T<X£jxsl->lxv>

Now,

where

2

X (XE Xs) ™% X (XEXs) ™D

Notice here that we do not assume normality of the errors. The assumptiomodlity for the error
distribution is too restrictive. Instead, assumptions A1 and A2 establish yhep#stic distribution
of the least squares estimators as the size of the training, dstcomes larger and larger. That
guarantees that (12) holds. Therefore,

E{L(yi,sjayi)L()7i',Sj>Yi’)}
2
= (ELLOSBoy))?+ S EILOY Bo, Y ELL (4 Bo,yiJtr[(xe) ) (XE Xs;)
+ O%E[L' (4 Bo.y)])tr (64 ) (X Xs) 7]

2
+ SEILS Bo, Y EIL (4 Bo,yo [0 ) (XE X))

+ T EL O o Ar (6 ) (X Xs) Lo ) (KT X

+ %4<E[L”<xrso,yi>1>2tr[<x. D)X Xs) el (X Xs,) Y

— (ELLOTBoy])?+ S EILOT o JEIL" O Bouyi r ()G X )
= 06X Xs) )+ SEIL (T oyl 6 XE Xs)

7 L6 By 6 (XE X)) (X X))

O 1L 6 Bowy ] 0T (X X, )t (XT ) (XE Xs)
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Therefore,
CoML(Yis,¥i), L(¥rs;,¥ir)) = G (E[L' (X' Bo, yi)])2r [0t ) (X X )~
4
+ SEL O Boy)) A (XE Xs) 200! ) (XE Xs) Y.
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