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Student representatives
» Muhammad Abdullah (MPDSC)
» Axel Andersson (MPENM)
» Anastasios Tzinieris (MPDSC)
» Bharath Venkatesh Poojary (MPDSC)

Project groups
» Could those who are alone in a group think of working with
somebody else?

Aila Sarkka



We have measurements y;, /i = 1,...n at spatial locations sy, ..., s,
and we assume that

K
Yi =Y Bi(si)Bk + X(si) + i,
k=1

where
» By, ..., By are exploratory variables and 1, ..., 8k unknown
parameters (mean)
» X = (X(si),s € S) is a zero mean Gaussian random field
P> ¢1,...,€, are mutually independent zero mean normal random
variables with variance o and independent of X
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For column vectors X; and X5 with a joint Gaussian distribution,
(%)~ )- (%))
X2 p2 )\ Xo1 X

If X5 represents a random field at some unobserved locations and
X1 represent the observations, the conditional mean

E[Xo|X1] = pi2 + o1 X7 (Xa — p1)-

is called the kriging predictor at the unobserved locations.
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Different types of kriging
» Simple kriging: u(s) = B(s)S is known
» Ordinary kriging: p(s) = § is unknown but constant (no
covariates)
» Universal kriging: u(s) = B(s)8 is unknown
We have to estimate the mean parameters 3 and the covariance

parameters © before we can compute any predictions. Therefore,
we

> estimate the model parameters 3, © and o2,

P given the parameter estimates, compute the kriging prediction.
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» Mean summer
(June-August) temperatures
in the continental US in
1997 recorded at 250 (n)
weather stations

Mean summer temperatures for 1997

» We would like to estimate
temperatures in the whole
country during this time
based on the data.
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We have five covariates: longitude, latitude, altitude, east coast,
and west coast.

Longitude Latitude Altitude

East coast West coast

W W
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First, we use linear regression and interpolate the data using only
some covariates, i.e.

5

Y(s) = Bi(s)Bk + €s,

k=0

where ¢ are iid N(0,02) and S is the intercept for which we set
Bo(S) =1.

The model can also be written in a matrix form as
Y = Bf +e¢,

where ¢ ~ N(0,021) and I is the identity matrix.
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To estimate the parameters in 3, we minimize the sum of squared
residuals
(Y = BB) (Y - Bf)

with respect to 3. This gives us the estimates
B=(B"B)Y'BTY.

A prediction of the mean temperature at location s is then

or (for the set of locations)
Yois = Bfots,

where SoLs is estimated parameter vector.
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A

Covariate (3 (OLS)

Intercept 21.63* saresysn senas

Longitude —1.29* N
Latitude —2.70* 3
Altitude —2.67* i
East coast —0.10 .

West coast —1.31%
The parameter estimates that are

significantly different from zero are
indicated by .
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To check the goodness-of-fit of the model, we can look at the
residuals

Y(s) = Y(s)

at the measured locations. These should be independent and
identically distributed.

Residuals at locations close together seem to be highly correlated.
— Model could be improved.
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To improve the model, we can add dependent errors, i.e.
Y = BfS + ¢,

where € ~ N(0,X), where ¥ is a (positive definite) covariance
matrix.

The resulting generalized least squares estimates are given by
Bos = (BTx1B) 1B sy
and the estimates at the unknown locations by

Yos = BBats.
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We can start by looking at the OLS residuals
K

&=yi— > Bulsi)Bx
k=1

that can be computed at every measured location s;, i =1,....n.
The half squared residual differences
_ NPy
vij = 0.5(¢; — &)

show how the error residuals vary with the distance r; = |s; — 5]
between the locations s; and s;. .
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The half squared residual differences v;; = 0.5(¢; — ¢;)° plotted
against the distances rjj. (Only 1% of the 250 x 249/2 = 31125
values are plotted and values with vj; larger than 10 are omitted.)
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vjj tends to increase with increasing r;;.
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The increasing trend can be better seen if we bin the values: The
distance values are divided into subintervals /;, / =1, ..., L of equal
length.

Let H; denote the set of distance pairs rjj in the interval /; and |H|
the number of vj;'s in the /th bin H,. Then, we plot the averages
of the half squared distances in the subintervals

v = \H| Z Vijs =1,..,L

I‘UEH/

against the midpoints of the bins.
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The Matérn semivariogram is fitted to the binned residuals.

The final kriging estimates are

K
E[Y(s)|Y] = Bi(s)Bk + C(X + o2I) (Y — BB),
k=0

where C is a vector of values C(s,s;), s=1,...,n
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Covariate /3 (OLS) f (GLS)
Intercept 20.63* 20.47*

Longitude —1.29* —1.00
Latitude —2.70* —2.68*
Altitude —2.67* —4.22*
East coast —0.10 —0.01

West coast —1.31* —-1.01*

The parameter estimates that are significantly different from zero are
indicated by x.
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OLS estimates and residuals GLS estimates and residuals

Regression estimate GLS estimate
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If Y is a Gaussian field, e.g. with Matérn covariance function, then
Y ~ N(BB,%(0"),

where ©' = (02,v,0,03,02) and o3 is the nugget effect
corresponding to the covariance function.

Therefore, we can write down the log-likelihood

I(Y:5,0)) = ~Slog(am) - 3log(IZ(@")
—%(Y —-BB)TZ(9) MY - BB)

and maximize it with respect to the parameters.
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To make the computations easier, one can use profile likelihood:
» First, maximize the log-likelihood function with respect to
for given ©'.
> Then, maximize the log-likelihood /(Y; 3(©’),©’) with
respect to ©’.
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N

Covariate 3 (OLS) J(GLS) ML
Intercept 20.63*  20.47*  19.80"

Longitude —1.29* —1.00 -0.53

Latitude —2.70* —2.68* —2.64*

Altitude —2.67* —4.22%  —4.35*

East coast —0.10 —0.01 0.02

West coast —1.31* —-1.01* —0.93*

o 1.84 3.05

1% 1.00 1.19

0 938 1020 .-

60 1.09 0.81 e
6 1.81 1.10 0.85

a

v and 6, and o are the parameters of the Matérn covariance
function, o the nugget effect, and o the residual standard
deviation.

Aila Sarkka



» ML estimators (ﬂA, (:)/) may be biased, especially if the number
of covariates, i.e. the number of parameters in 3, is large.

» For example, the maximum likelihood estimate of the error

variance is %E e? but the corresponding unbiased estimate is

—nip >~ e?, where p is the number of parameters in 3.

— restricted maximum likelihood (REML) (estimates the
parameters by using n — p linearly independent contrasts)

Aila Sarkka



