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Kriging: estimation

We have measurements yi , i = 1, ...n at spatial locations s1, ..., sn
and we assume that

Yi =
K∑

k=1

Bk(si )βk + X (si ) + εi ,

where

I B1, ...,Bk are exploratory variables and β1, ..., βK unknown
parameters (mean)

I X = (X (si ), s ∈ S) is a zero mean Gaussian random field

I ε1, ..., εn are mutually independent zero mean normal random
variables with variance σ2

ε and independent of X
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Kriging prediction

For column vectors X1 and X2 with a joint Gaussian distribution,(
X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

If X2 represents a random field at some unobserved locations and
X1 represent the observations, the conditional mean

E[X2|X1] = µ2 + Σ21Σ−1
11 (X1 − µ1).

is called the kriging predictor at the unobserved locations.
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Kriging

Different types of kriging

I Simple kriging: µ(s) = B(s)β is known

I Ordinary kriging: µ(s) = β is unknown but constant (no
covariates)

I Universal kriging: µ(s) = B(s)β is unknown

We have to estimate the mean parameters β and the covariance
parameters Θ before we can compute any predictions. Therefore,
we

I estimate the model parameters β, Θ and σ2
ε .

I given the parameter estimates, compute the kriging prediction.
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Example: US temperatures

I Mean summer
(June-August) temperatures
in the continental US in
1997 recorded at 250 (n)
weather stations

I We would like to estimate
temperatures in the whole
country during this time
based on the data.
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Example: covariates

We have five covariates: longitude, latitude, altitude, east coast,
and west coast.
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Example: linear regression

First, we use linear regression and interpolate the data using only
some covariates, i.e.

Y (s) =
5∑

k=0

Bk(s)βk + εs ,

where εs are iid N(0, σ2
ε ) and β0 is the intercept for which we set

B0(s) = 1.

The model can also be written in a matrix form as

Y = Bβ + ε,

where ε ∼ N(0, σ2
ε I) and I is the identity matrix.
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Estimation: Ordinary least square (OLS) estimates

To estimate the parameters in β, we minimize the sum of squared
residuals

(Y − Bβ)T (Y − Bβ)

with respect to β. This gives us the estimates

β̂ = (BTB)−1BTY .

A prediction of the mean temperature at location s is then

Ŷ (s) =
K∑

k=0

Bk(s)β̂k

or (for the set of locations)

ŶOLS = Bβ̂OLS,

where β̂OLS is estimated parameter vector.
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Example: OLS estimates

Covariate β̂ (OLS)

Intercept 21.63∗

Longitude −1.29∗

Latitude −2.70∗

Altitude −2.67∗

East coast −0.10
West coast −1.31∗

The parameter estimates that are
significantly different from zero are
indicated by ∗.
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Residuals

To check the goodness-of-fit of the model, we can look at the
residuals

Y (s)− Ŷ (s)

at the measured locations. These should be independent and
identically distributed.

Residuals at locations close together seem to be highly correlated.
→ Model could be improved.
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Estimation: Generalized least square (GLS) estimates

To improve the model, we can add dependent errors, i.e.

Y = Bβ + ε,

where ε ∼ N(0,Σ), where Σ is a (positive definite) covariance
matrix.

The resulting generalized least squares estimates are given by

β̂GLS = (BTΣ−1B)−1BTΣ−1Y

and the estimates at the unknown locations by

ŶGLS = Bβ̂GLS.
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How to estimate the covariance function?

We can start by looking at the OLS residuals

ε̂i = yi −
K∑

k=1

Bk(si )β̂k

that can be computed at every measured location si , i = 1, ..., n.

The half squared residual differences

vij = 0.5(ε̂i − ε̂j)2

show how the error residuals vary with the distance rij = |si − sj |
between the locations si and sj . .
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Example: Residual plot

The half squared residual differences vij = 0.5(ε̂i − ε̂j)2 plotted
against the distances rij . (Only 1% of the 250× 249/2 = 31125
values are plotted and values with vij larger than 10 are omitted.)

vij tends to increase with increasing rij .
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Example: Binned residuals

The increasing trend can be better seen if we bin the values: The
distance values are divided into subintervals Il , l = 1, ..., L of equal
length.

Let Hl denote the set of distance pairs rij in the interval Il and |Hl |
the number of vij ’s in the lth bin Hl . Then, we plot the averages
of the half squared distances in the subintervals

v̄l =
1

|Hl |
∑
rij∈Hl

vij , l = 1, ..., L,

against the midpoints of the bins.
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Example: Binned residuals with an estimated semivariogam

The Matérn semivariogram is fitted to the binned residuals.

The final kriging estimates are

E[Y (s)|Y ] =
K∑

k=0

Bk(s)β̂k + C (Σ + σ2
e I)−1(Y − Bβ̂),

where C is a vector of values C (s, si ), s = 1, ..., n.

Aila Särkkä Spatial statistics and image analysis (TMS016/MSA301)



Example: GLS estimates

Covariate β̂ (OLS) β̂ (GLS)

Intercept 20.63∗ 20.47∗

Longitude −1.29∗ −1.00
Latitude −2.70∗ −2.68∗

Altitude −2.67∗ −4.22∗

East coast −0.10 −0.01
West coast −1.31∗ −1.01∗

The parameter estimates that are significantly different from zero are
indicated by ∗.
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Example: OLS versus GLS

OLS estimates and residuals GLS estimates and residuals
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Estimation: Maximum likelihood (ML)

If Y is a Gaussian field, e.g. with Matérn covariance function, then

Y ∼ N(Bβ,Σ(Θ′)),

where Θ′ = (σ2, ν, θ, σ2
0, σ

2
ε ) and σ2

0 is the nugget effect
corresponding to the covariance function.

Therefore, we can write down the log-likelihood

l(Y ;β,Θ′) = −n

2
log(2π)− 1

2
log(|Σ(Θ′)|)

−1

2
(Y − Bβ)TΣ(Θ′)−1(Y − Bβ)

and maximize it with respect to the parameters.

Aila Särkkä Spatial statistics and image analysis (TMS016/MSA301)



Profile likelihood

To make the computations easier, one can use profile likelihood:

I First, maximize the log-likelihood function with respect to β
for given Θ′.

I Then, maximize the log-likelihood l(Y ; β̂(Θ′),Θ′) with
respect to Θ′.
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Example: Comparison of all the estimates

Covariate β̂ (OLS) β̂ (GLS) ML
Intercept 20.63∗ 20.47∗ 19.80∗

Longitude −1.29∗ −1.00 -0.53
Latitude −2.70∗ −2.68∗ −2.64∗

Altitude −2.67∗ −4.22∗ −4.35∗

East coast −0.10 −0.01 0.02
West coast −1.31∗ −1.01∗ −0.93∗

σ̂ 1.84 3.05
ν̂ 1.00 1.19

θ̂ 9.38 10.20
σ̂0 1.09 0.81
σ̂ε 1.81 1.10 0.85

ν and θ, and σ are the parameters of the Matérn covariance
function, σ0 the nugget effect, and σε the residual standard
deviation.
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Comment on ML estimation

I ML estimators (β̂, Θ̂′) may be biased, especially if the number
of covariates, i.e. the number of parameters in β, is large.

I For example, the maximum likelihood estimate of the error
variance is 1

n

∑
e2
i but the corresponding unbiased estimate is

1
n−p

∑
e2
i , where p is the number of parameters in β.

→ restricted maximum likelihood (REML) (estimates the
parameters by using n − p linearly independent contrasts)
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