Spatial statistics and image analysis (TMS016/MSA301)

Kriging: estimation

2021-04-12

Aila Särkkä Spatial statistics and image analysis (TMS016/MSA301

・ 回 ト ・ ヨ ト ・ ヨ ト

크

Student representatives

- Muhammad Abdullah (MPDSC)
- Axel Andersson (MPENM)
- Anastasios Tzinieris (MPDSC)
- Bharath Venkatesh Poojary (MPDSC)

Project groups

Could those who are alone in a group think of working with somebody else? We have measurements y_i , i = 1, ..., n at spatial locations $s_1, ..., s_n$ and we assume that

$$Y_i = \sum_{k=1}^{K} B_k(s_i)\beta_k + X(s_i) + \epsilon_i,$$

where

- B₁,..., B_k are exploratory variables and β₁,..., β_K unknown parameters (mean)
- ▶ $X = (X(s_i), s \in S)$ is a zero mean Gaussian random field
- $\epsilon_1, ..., \epsilon_n$ are mutually independent zero mean normal random variables with variance σ_{ϵ}^2 and independent of X

・ 同 ト ・ ヨ ト ・ ヨ ト …

For column vectors X_1 and X_2 with a joint Gaussian distribution,

$$\left(\begin{array}{c}X_1\\X_2\end{array}\right) \sim N\left(\left(\begin{array}{c}\mu_1\\\mu_2\end{array}\right), \left(\begin{array}{c}\Sigma_{11}\ \Sigma_{12}\\\Sigma_{21}\ \Sigma_{22}\end{array}\right)\right)$$

If X_2 represents a random field at some unobserved locations and X_1 represent the observations, the conditional mean

$$\mathbb{E}[X_2|X_1] = \mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(X_1 - \mu_1).$$

is called the kriging predictor at the unobserved locations.

Different types of kriging

- Simple kriging: $\mu(s) = B(s)\beta$ is known
- Ordinary kriging: μ(s) = β is unknown but constant (no covariates)
- Universal kriging: $\mu(s) = B(s)\beta$ is unknown

We have to estimate the mean parameters β and the covariance parameters Θ before we can compute any predictions. Therefore, we

- estimate the model parameters β , Θ and σ_{ϵ}^2 .
- given the parameter estimates, compute the kriging prediction.

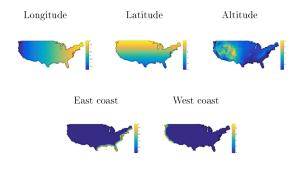
・ 同 ト ・ ヨ ト ・ ヨ ト

Mean summer (June-August) temperatures

in the continental US in 1997 recorded at 250 (n) weather stations

We would like to estimate temperatures in the whole country during this time based on the data.

We have five covariates: longitude, latitude, altitude, east coast, and west coast.



∃ ► < ∃ ►</p>

First, we use linear regression and interpolate the data using only some covariates, i.e.

$$Y(s) = \sum_{k=0}^{5} B_k(s)\beta_k + \epsilon_s,$$

where ϵ_s are iid $N(0, \sigma_{\epsilon}^2)$ and β_0 is the intercept for which we set $B_0(s) = 1$.

The model can also be written in a matrix form as

 $Y = B\beta + \epsilon,$

where $\epsilon \sim N(0, \sigma_{\epsilon}^2 \mathbb{I})$ and \mathbb{I} is the identity matrix.

Estimation: Ordinary least square (OLS) estimates

To estimate the parameters in β , we minimize the sum of squared residuals

 $(Y - B\beta)^T (Y - B\beta)$

with respect to β . This gives us the estimates

 $\hat{\beta} = (B^T B)^{-1} B^T Y.$

A prediction of the mean temperature at location s is then

$$\hat{Y}(s) = \sum_{k=0}^{K} B_k(s) \hat{\beta}_k$$

or (for the set of locations)

$$\hat{Y}_{OLS} = B\hat{\beta}_{OLS},$$

where $\hat{\beta}_{OLS}$ is estimated parameter vector.

Covariate	\hat{eta} (OLS)
Intercept	21.63*
Longitude	-1.29*
Latitude	-2.70*
Altitude	-2.67*
East coast	-0.10
West coast	-1.31^{*}

The parameter estimates that are significantly different from zero are indicated by *.

・ 同 ト ・ ヨ ト ・ ヨ ト

To check the goodness-of-fit of the model, we can look at the residuals

 $Y(s) - \hat{Y}(s)$

at the measured locations. These should be independent and identically distributed.

Residuals at locations close together seem to be highly correlated. \rightarrow Model could be improved.

Estimation: Generalized least square (GLS) estimates

To improve the model, we can add dependent errors, i.e.

 $Y = B\beta + \epsilon,$

where $\epsilon \sim N(0, \Sigma)$, where Σ is a (positive definite) covariance matrix.

The resulting generalized least squares estimates are given by

 $\hat{\beta}_{\mathsf{GLS}} = (B^T \Sigma^{-1} B)^{-1} B^T \Sigma^{-1} Y$

and the estimates at the unknown locations by

 $\hat{Y}_{\text{GLS}} = B\hat{\beta}_{\text{GLS}}.$

We can start by looking at the OLS residuals

$$\hat{\epsilon}_i = y_i - \sum_{k=1}^{K} B_k(s_i) \hat{\beta}_k$$

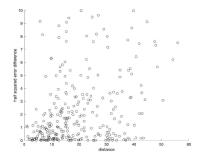
that can be computed at every measured location s_i , i = 1, ..., n. The half squared residual differences

$$v_{ij} = 0.5(\hat{\epsilon}_i - \hat{\epsilon}_j)^2$$

show how the error residuals vary with the distance $r_{ij} = |s_i - s_j|$ between the locations s_i and s_j .

Example: Residual plot

The half squared residual differences $v_{ij} = 0.5(\hat{\epsilon}_i - \hat{\epsilon}_j)^2$ plotted against the distances r_{ij} . (Only 1% of the $250 \times 249/2 = 31125$ values are plotted and values with v_{ij} larger than 10 are omitted.)



 v_{ij} tends to increase with increasing r_{ij} .

The increasing trend can be better seen if we bin the values: The distance values are divided into subintervals I_l , l = 1, ..., L of equal length.

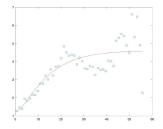
Let H_l denote the set of distance pairs r_{ij} in the interval I_l and $|H_l|$ the number of v_{ij} 's in the *l*th bin H_l . Then, we plot the averages of the half squared distances in the subintervals

$$ar{m{v}}_l = rac{1}{|m{H}_l|} \sum_{r_{ij} \in m{H}_l} m{v}_{ij}, \quad l = 1, ..., L,$$

against the midpoints of the bins.

Example: Binned residuals with an estimated semivariogam

The Matérn semivariogram is fitted to the binned residuals.



The final kriging estimates are

$$\mathbb{E}[Y(s)|Y] = \sum_{k=0}^{K} B_k(s)\hat{\beta}_k + C(\Sigma + \sigma_e^2 \mathbb{I})^{-1}(Y - B\hat{\beta}),$$

where C is a vector of values $C(s, s_i)$, s = 1, ..., n.

Covariate	\hat{eta} (OLS)	\hat{eta} (GLS)
Intercept	20.63*	20.47*
Longitude	-1.29^{*}	-1.00
Latitude	-2.70*	-2.68*
Altitude	-2.67*	-4.22*
East coast	-0.10	-0.01
West coast	-1.31^{*}	-1.01^{*}

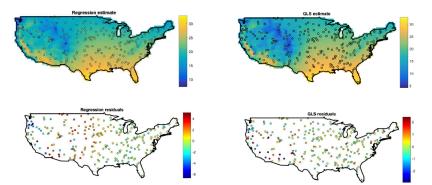
The parameter estimates that are significantly different from zero are indicated by *.

・ 回 ト ・ ヨ ト ・ ヨ ト

Example: OLS versus GLS

OLS estimates and residuals

GLS estimates and residuals



イロト イヨト イヨト イヨト

If Y is a Gaussian field, e.g. with Matérn covariance function, then $Y \sim N(B\beta, \Sigma(\Theta')),$

 $\Gamma \sim \mathcal{N}(D\beta, \mathcal{L}(O)),$

where $\Theta' = (\sigma^2, \nu, \theta, \sigma_0^2, \sigma_\epsilon^2)$ and σ_0^2 is the nugget effect corresponding to the covariance function.

Therefore, we can write down the log-likelihood

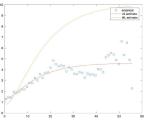
$$I(Y;\beta,\Theta') = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log(|\Sigma(\Theta')|) -\frac{1}{2}(Y - B\beta)^{T}\Sigma(\Theta')^{-1}(Y - B\beta)$$

and maximize it with respect to the parameters.

To make the computations easier, one can use profile likelihood:

- First, maximize the log-likelihood function with respect to β for given Θ'.
- ► Then, maximize the log-likelihood $I(Y; \hat{\beta}(\Theta'), \Theta')$ with respect to Θ' .

Covariate	\hat{eta} (OLS)	\hat{eta} (GLS)	ML	
Intercept	20.63*	20.47*	19.80*	
Longitude	-1.29*	-1.00	-0.53	
Latitude	-2.70*	-2.68*	-2.64*	10
Altitude	-2.67*	-4.22^{*}	-4.35*	9
East coast	-0.10	-0.01	0.02	8 -
West coast	-1.31^{*}	-1.01^{*}	-0.93*	6
$\hat{\sigma}$		1.84	3.05	5-
$\hat{ u}$		1.00	1.19	3-
$\widehat{ heta}$		9.38	10.20	2- 0,0000
$\hat{\sigma}_{0}$		1.09	0.81	0 10
$\hat{\sigma}_{\epsilon}$	1.81	1.10	0.85	



イロト イヨト イヨト イヨト

臣

 ν and $\theta,$ and σ are the parameters of the Matérn covariance function, σ_0 the nugget effect, and σ_ϵ the residual standard deviation.

- ML estimators (β̂, Θ̂') may be biased, especially if the number of covariates, i.e. the number of parameters in β, is large.
- For example, the maximum likelihood estimate of the error variance is $\frac{1}{n} \sum e_i^2$ but the corresponding unbiased estimate is $\frac{1}{n-p} \sum e_i^2$, where p is the number of parameters in β .

 \rightarrow restricted maximum likelihood (REML) (estimates the parameters by using n - p linearly independent contrasts)