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Todays lecture will cover
» Computational problems with kriging.
» Gaussian Markov random fields.
» Pattern recognition ( LDA, QDA).

> Image moments.
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» Read LN Section 15.1, 'Some matrix algebra’.
Note the concepts inverse and determinant of a square matrix
and the concept of positive definite matrix that is A is positive
definite if
xTAx >0

for every non-zero column vector x.

» Read LN Section 15.5 , 'Multivariate probability distributions’.
Note the d-dimensional normal distribution N(p,%) with density
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So far we looked at statistical models
)/,': B(S;)ﬂ—FZ(S;)—FG,', i= 1,...,N

where ¢; ~ N(0,02) and Z(s) is a zero mean Gaussian random field.
> Data Y= (Yi,..., Yn) ~ N(BB,X), with & = Ex + o2/

» Kriging: If
X1 MTARE Yxx Xxvy
Y ty |7 Xyx Xy

X| Y~ N(ux + ZxyZpul Y — 11y), Zxx — ZxyZ v Zyx)

then

X is a random field at unobserved locations and Y are the observations.
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1. Memory to store ¥ scales as O(N?).
2. The computation time for the kriging predictor scales as O(N?).

Example: For an image x of size N=nXxn

Time (s) Memory (MB)

n =50 1.1 47.7
n = 100 23.4 762.9
n = 150 272.5 3862.4

For an image of size 2500 x 2500 we need 20 years and 20GB!
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Definition: A Matrix @ is sparse if most of its elements are zero
> Efficient algorithms exist to deal with sparse matrices.
1. Memory scales as O(N)
2. Computations scales as O(N%)

Possible solutions:
» Force ¥ to be sparse. This forces independence between variables.

» Force the precision matrix @ = X! to be sparse. What does this
correspond to?
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Definition: A and B are conditionally independent given C and we write
A UL B| C, iff conditioned on C, A and B are independent, that is

(A, B| C) =x(A| On(B| C)

Conditional independence is represented with an undirected graph
G = (V,E), where V= {1,...,n} is the set of vertices/nodes and
E={{i,j} : i,j € V} is the set of edges in the graph.

The neighbours of a node i are all nodes in G having an edge to i.
ie Ni={je V:(ij) € E}
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Definition: A random vector x is called a Gaussian Markov random field
(GMRF) with respect to the undirected graph G = (V, E) with mean
and precision matrix Q iff its density has the form
) 1 1 T
7() = ) ¢ QY ew (50— m)TQx—p))  and
Qij#0 < {ijt€E forall i#j

Example: The simplest example of a GMRF is the AR(1) process

1
xo ~ N(O, m)a a€(-1,1)

Xj = aXxj—1 + €}, i= 1,...,[7 €j ~ N(O,l)

1 2 3 4 5

Here Q is a tridiagonal matrix.
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How can we simulate a zero mean GMRF with precision matrix Q7
1. Compute the Cholesky factorization Q = LL".
2. Solve LTx = z, where z~ N(0,7)

Then x is a zero mean GMRF with precision matrix @

Proof:

Ex)=E(L Tz)=0
Cov(x) = Col(L™T2) = L TCov(2) L = L TZL 7 = (LLT) 1 = Q7!
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Definition: Let A C V, the subgraph G* is the graph restricted to A.
» Remove all nodes not belonging to A and
» Remove all edges where at least on node is not A.
Theorem: Let V= AU B where AN B= 1), and let x be a GMRF wrt G

with 0 0
Xa KA aa Qas
|:XB:| s |:,UB:| Q |:QBA QBB]
then X, | Xg is a GMRF wrt to the subgraph G* with a5 and Qa > 0
where

fiag = tia — @uaQas(Xe — pg) and  Qas = Qaa
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> Qag = Qaa is known
> If Qaa is sparse then pi4 g is the solution of a sparse linear system.
Theorem: If x ~ N(u, @1), then for i # j

xidl xj| x_j <<= Q;=0
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» Image reconstruction using GMRF is more efficient than working
with X.

Example: For an image x of size N=nXx n

Time (s) Memory (MB)

n =50 0.012 0.21
n = 100 0.054 0.83
n = 150 0.177 1.88
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A common scenario is that we have a hierarchical model

y|X~ N(Ax, Q1)
N(px, Q)

and are interested in sampling

x|y~ N(ux‘y, QX_I;)’ where
fiy = Hx + Q;lATQE(y— Apy) and
Qx|y Qx + A QE

Prove it !l

[ Hint : w(x| y) ox 7w(y | x)7(x) and follow the same steps as in the proof
of the theorem]

Konstantinos Konstantinou



Let Y= X+ ¢, where € ~ N(0,02T), be an image corrupted by noise.
Then

X| Y~ Nux + 02Q7 (Y- ux), @71)
Q=Q+0.%

Image reconstruction

Noise reduction
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» Suppose we have two classes w; and w»
» A real valued feature variable X for each object to be classified.
» Let 7; be the prior probability of class wj;, i=1,2.

» Let f; be the probability density of X for and observation from class
Wij.
Then we should choose class w; over wj if

Tfi() > 7,f(x)
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"Proof”: Choose the threshold t that minimizes the probability of
misclassification

Pr(Misclassification) = my /
Az

A(x)dx+ / H(x)dx

Ay

f’ \"'.__1 fy{x)
/ \ =, T, £, (x)
IIIII." '-,‘. -.,/ \\‘:? 2‘
,'.. /! ‘\
,- / \
Al t A2 x

Pr(misclassification) is given by the coloured area, and is minimized when
t is the point where the curves intersect. Hence we should choose class
wj over wj if

mifi(x) > mifi(x)
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» Suppose we have K classes

» Let X be a d—dimensional feature vector for each object to be
classified and f;(x) the probability density for an observation from
class w.

» Let 7; be the prior probabilities of class w;

Then the posterior class probabilities are given by

m(Class = wm)m(X = x| wm)  Tmfm(X)
S m(Class = wm(X = x| w) 3 wifi(x)

We shall then prefer class w; to class w; when

m(Class = wm | X=x) =

mifi(x) > mjfi(x)
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» Assume X is a d-dimensional feature vector with multivariate normal
distribution N(u;, G;) in class w;, i=1,..., k

» Then we shall prefer class w; to wj if

1 } P D
X (G = Gx+ (0 G = ] G xS (0 Gy = o G i)

! 2
wi | G
>n| L—— [ Gl
i | G
» Since the border between the two regions in d-dimensional space

where we should or should not prefer w; to wj is given by a quadratic
surface we call this case Quadratic discriminant analysis(QDA).
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> If GG=C fori=1,..., k then we shall prefer class w; to wj if
T1 1 7
(i = )" € (x = E(Mi + 1) > /”;

» Proof: Set C; = C; = Cin the expression derived for QDA.

P As the expression above is linear in x this case is called linear
discriminant analysis (LDA).
In MATLAB:
templateDiscriminant(’DiscrimType','Linear’) for LDA and
templateDiscriminant(’DiscrimType’,’Quadratic’) for QDA.
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Suppose that we have a training set with n; objects from class w;.
Let the observation vectors be denoted Xj,,, m=1,....n;,i=1,.... K

Then
> =i k=1.,K
> k= Xim k=1, K

> Co= ot Y (Xim — ) (Xim — )7, k=1,... K
If we assume that the covariance matrices are equal then
> (—_ 1 VK A
¢ Z/il("i—l) Zl:l(n/ l)C’
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Let f= (f;) be a binary/grey level image and A be a subset of pixels.
The moment of order (p, q) in A is defined as

MPQ(A) = Z iquf;ja p,q= 07 1)
(ij)eA

Examples:
» i90: area = number of white pixels in A
» [i01: sum over y

P [i10: sum over x

centroid(A) :(m &> =Xy

1007 oo
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Image moments with respect to the centroid can be defined as

Npq(A) = Z (i—=Xx)P(—y) p+qg>1
(if)eA
Central moments are invariant under translations.

Hu moments are translation, rotation and scale invariant moments.
There are 8 such moments, the first two are

> Lo + 2o

> (p20 — po2)? + 4p11
Invariant moments are useful for image classification.
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Example: Handwritten digits 1 and 2. Moment features.

Aim: Classify the handwritten digits using the image moments u1; and
H20-

Konstantinos Konstantinou Spatial statistics and image analysis
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Figure: Plot of standardized moments p11 versus pgo for handwritten digits 1
and 2 among the first 400 digits in the MNIST data base together with the
class boundaries corresponding to linear and quadratic discrimination.

Konstantinos Konstantinou



