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Lecture’s content

Todays lecture will cover

I K-fold cross validation

I Supervised methods for image classification

1. M-nearest neighbors
2. Support vector machines
3. Neural networks
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Resubstitution error-rate estimate

How to estimate the error rate of missclasification?

I Resubstitution error-rate estimate (error of the training set)

1. Too optimistic as the data used to estimate the parameters are used
to evaluate the error rates.

2. Overfitting when number of parameters is large.

Solution: Divide data into train and test set.
Problem: Might be wasteful if data are scarce.
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Cross-validation

I Use re-sampling methods (k- fold cross validation)

1. Randomly divide the data into k approximate equal groups.
2. Use all the data except those in group j to estimate the parameters.
3. Use data in group j to evaluate the error rates.
4. Repeat for all k groups and average the error rates.

How to choose k?
Currently k=5 or k = 10 is often recommended.
Special case when k = n, called leave-one-out cross-validation.
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Example: Handwritten digits 1,...,9

MNIST database: Images of handwritten digits 1,...,9
Aim: Classify the digits with using all the central moment features µpq,
with p + q ≤ M

Re-substitution and 10-fold CV error estimates for all M ≤ 13.
Re-substitution error is lower than the CV error for both LDA and QDA.
For LDA minimum CV error is 12.3% for M = 12.
For QDA minimum CV error is 9.6% for M = 7.
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Confusion matrix

A convenient way to illustrate the results of a discrimination analysis is
the confusion matrix.
An example: MNIST data base, image moments.

In MATLAB: plotconfusion(targets,outputs)
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M-nearest neighbor classifier

Suppose we have a train set (xi , yi ) where yi denote the K classes
ω1, ..., ωK . For a new observation x , the neighborhood of x , Nx is defined
as the M points in the train set that are closest to x .
The probability that x is from class ωm is given by

P(y = ωm | X = x) =
1

M

∑
i∈Nx

I(yi = ωm)

Thus the rule is very simple:

1. Look at your M nearest neighbors

2. The class with the largest number of neighbors wins!
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Example M=15

Example of the boundary created by a 15-Nearest neighbor classifier.
A new observation x in the blue area will be classified as the ”blue” class
and in the orange area as the ”orange” class.
Changing the number of neighbors will change the decision boundary.
How to choose M? Use cross validation
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Support vector machines

Support vector machines(SVM) can be though as generalisations of linear
discrimination.
Suppose we have two classes ω1 and ω2 and a feature vector x .
Recall in LDA we choose ω1 over ω2 when f (x) > 0 where

f (x) = (µ1 − µ2)TC−1(x − 1

2
(µ1 + µ2))− ln

π2
π1

More generally we choose ω1 when f (x) > 0 with

f (x) = β0 + xTβ
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SVM(cont.)

How to choose β0 and β?
All three lines separate the data perfectly.
Basic idea of SVM: Find the optimal hyperplane that maximizes the
distance from the nearest data points on each side.
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SVM(cont.)

I Case 1: The problem is separable i.e there exist a hyperplane that
can separate the data into different classes.

I We have pairs of inputs and labels (xi , yi ), i = 1, ...,N, where yi are
labeled either 1 or -1 for the classes ω1 and ω2 respectively. Then
the SVM algorithm is equivalent to solving the optimization problem

min
β,β0

|| β ||

Subject to yi (x
T
i β + β0) ≥ 1, i = 1, ...,N
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SVM

Recall that the shortest distance from a point x0 to a hyperplane

xTβ + β0 = 0 is given by
|xT

0 β+β0|
||β|| . This is equal to 1

||β|| in our case.
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SVM with soft margin

I Case 2: There exist no hyperplane that can separate the data.

I Idea: allow misclassifications but add a loss term.

To define the hyperplane we solve

min
β,β0

|| β ||2 +C
N∑
i=i

max{0, 1− yi (β0 + xTi β)}

where C is a regularization parameter that controls the trade-off between
maximizing the margin and minimizing the errors.

The term max{0, 1− yi (β0 + xTi β)} is the Hinge loss function.

The loss function penalizes points within the margin or pointS in the
wrong side of the boundary
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SVM with Kernel functions.

For a new vector x to be classified one can write the classifier in the form

f (x) = β0 + xTβ = β0 +
N∑
i=1

aix
T xTi

where xi are observations in the train set and ai ∈ R.
Idea: It is easier to separate the data when you map them in a higher
dimensional space.
However it can be hard and impractical to define such mappings and
computationally expensive to implement.
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Kernels

It turns out we don’t need to transform the data but only compute the
inner products in the transformed space with a Kernel function.
Examples of Kernel functions:

Kernel Function

Linear Kernel K(xi , xj) = xi · xj

Radial Basis Function Kernel K(xi , xj) = e−γ||xi−xj ||
2

γ > 0

Polynomial Kernel K(xi , xj) = (xi · xj + 1)d d∈ N

Table: Popular Kernel Functions
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Neural networks for image classification

I Assume we have an image x with pixels x1, ..., xN , which can belong
into two classes.

I We assume that the probabilities of belonging to the two classes

y1 = P(Class = 1 | x) = f (x ; θ) (1)

y2 = P(Class = 2 | x) = 1− f (x ; θ) (2)

I The idea of neural nets is to approximate f (x) as a sequence of
“simple” non-linear functions.
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Single layer network

I Let’s look at a single-layer model first.

I f(x) is in the form

f (x) = g (2)(W (2)g (1)(W (1)x + b(1)) + b(2))

where W and b are weights and biases parameters that need to be
estimated.

I As y1, y2 are probabilities, we use the softmax function

g
(2)
k (x1, x2) = exk

ex1+ex2 , k=1,2.
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Feed forward network

I This is a feed-forward network since information only flows forward
in the network.

I The nodes in the hidden layer are called neurons.

I Input data: x1, x2, x3,

I Output: probabilities for classes 1 and 2.

I g (1) is an activation function. Common activation functions for the
internal layers are:
I Rectified Linear Unit (RELU): g(x) = max(0, x)
I Sigmoid function: g(x) = 1

1+e−x

I g(x) = tanh(x)
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Backpropagation

The networks needs to be trained i.e find set of parameters θ = (W , b)
that minimize a loss function.
For classification we often use the cross-entropy loss function

L(θ) = −
N∑
i=1

K∑
k=1

yik logfk(xi )

1. Initialize W and b

2. For input x given the parameters W and b calculate f (x)

3. Update the parameters W , b using gradient descent :

w
(l)
ij ← w

(l)
ij − γ

∂L

∂w
(l)
ij

b(l)p ← b(l)p − γ
∂L

∂b
(l)
p

4. Go back to step 2 and repeat until convergence.

The gradient of L can be calculated using the chain rule.
The γ parameter is called the learning rate.
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Regularization

Neural networks in general have too many parameters and will overfit the
data. Some of the solutions are

1. Early stopping: Stop the training when the validation set error start
increasing .

2. Use a regularized loss function

L(θ) = L(θ) + λR(θ)

for instance

R(θ) =

|θ|∑
i=1

θ2i

shrink the parameters towards zero. The parameter λ needs to be
chosen wisely (λ = 0 corresponds to no regularization and large
value for λ might cause underfitting). Usually tuned using cross
validation.
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Convolutional neural networks

Let W and g be matrices. The convolution W ∗ g is defined by

(W ∗ g)ij =
∑
k

∑
l

wklgi−k,j−l

I A fully connected network with an image as input will have too
many parameters as we have a separate weight between each pixel
and each hidden node.

I A Convolutional neural network assumes that the input data has a
lattice structure. They are useful for analysis of images.

I A CNN is a method for image classification using filtered images as
features, but where we do not need to specify features manually.

I A CNN consists of a special type of layers called convolution layers,
which are based on filtering the image with a kernel.
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Convolutional layer

A convolutional layer has three stages:

1. Convolution stage: Convolve each input image with f different linear
filters, with kernels of size q × q, producing f output images.

2. Detector stage: Apply a non-linear function to each image. Typically
the RELU function.

3. Pooling stage: For each image, reduce each non-overlapping block
of r × r pixels to one single value, by for example taking the largest
value in the block.
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Comments

I One could view the convolution stage as a regular layer where most
of the weights are zero: A pixel in the output image only depends on
the q × q nearest pixels in the input image.

I The different nodes share parameters, since we use the same
convolution kernel across the entire image.

I As a result, a convolution layer has fq2 parameters, where q is
typically a small positive number.

I Since pooling reduces the image size, we can in the next stage use
more filters without increasing the total number of nodes.

I Pooling makes the output less sensitive to small translations of the
input.

I Another variant of pooling is to take the max across different
learned features. This can make the output invariant to other
things, such as rotations.
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Example of a CNN

I The first layer has f = 2 filters, the second has f = 4 and the third
f = 4 filters.

I Each pooling stage uses r = 4.

I The final hidden layer is usually a fully connected layer.
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Comments

I Using CNNs for image classification re-popularized neural networks
around 2010, and “Deep learning” was coined as a flashy name for
using “deep” neural networks with more than one hidden layer.

I Transfer learning: Use a popular pre-trained model for a challenging
image classification task as a starting point.

I For further details on neural networks, for example see:

1. Computer age statistical inference by Efron and Hastie.
2. deeplearningbook.org
3. Matlab guides: Create simple deep learning network for classification
4. A Gentle Introduction to Transfer Learning for Deep Learning
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