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Practical information: project part 3

I Deadline for the planning report was on Friday

I Deadline for the preliminary report is May 17

I The projects will be presented on the 17th and 19th of May.

I Each group gives a short presentation (15-20 min) of their
work.

I After the presentations, Konstantinos and Aila will meet with
each group (if needed) and discuss what is needed to finish
the report.
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Simple models with independent pixel values

I Binary image: randomly
assign the value ”black”
with probability p and
”white” with probability
1− p independently for each
pixel (top, p = 0.5)

I Grey level image: randomly
assign a value from N(µ, σ2)
distribution independently
for each pixel (bottom,
N(0.5, 0.22))
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Markov random fields (MRF)

MRFs can be used to model the dependence between the pixel
values. They can be used

I in image restoration

I in classification/segmentation

I in pattern recognition

I as priors for the unobserved image in Bayesian image
reconstruction

I as approximations for Gaussian fields (Gaussian MRF)
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Markov chain (one dimensional)

A random sequence Xt which takes values in a finite or countable
set V is a Markov chain if

P(Xi+1 = x |X0 = x0,X1 = x1, ...,Xi−1 = xi−1,Xi = xi )

= P(Xi+1 = x |Xi = xi ), x ∈ V .

This means that predictions regarding future outcomes can be
made based only on the present state (value) and such predictions
are just as good as the ones that would be made knowing the full
history of the process.

Question: How can this be generalized to two (or higher)
dimensions?
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Markov random field (two dimensional)

We have a random image X = (Xs , s ∈ S), where S is the set of
sites (or pixel locations). For each site s, we define a
neighbourhood Ns ⊂ S such that

I s /∈ Ns , i.e. s is not its own neighbour

I t ∈ Ns if and only if s ∈ Nt (symmetry)

Often, the neighbourhood is defined as the set of the four nearest
or the eight nearest neighbours.
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Markov random field: definition

X = (Xs , s ∈ S) is a set of discrete random variables taking values
in V is a Markov random field with respect to the neighbourhood
(or system of neighbourhoods) (Ns , s ∈ S) if

P(Xs = x |Xt , t 6= s) = P(Xs = x |Xt , t ∈ Ns).

This means that the value of the pixel in s depends only on the
pixel values in the neighbourhood of s.
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Boundary condition

When predicting a value of a pixel on the boundary of the region,
we do not have information on all the neighbouring values.

One possible solution is to use periodic boundaries, i.e. to wrap the
rectangular area onto a torus (doughnut) by identifying the
opposite edges. For example, to predict the value of pixel (i , n)
(2 ≤ i ≤ m − 1) in an m × n image, the four nearest neighbour
neighbourhood of the pixel would be

{(i − 1, n), (i + 1, n), (i , n − 1), (i , 1)}
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Example: Ising model

Ising (1925): A mathematical model of ferromagnetism in
statistical mechanics.

The model consists of a set of spins Xs at locations s ∈ S , where
S is an n ×m lattice with periodic boundary conditions. In physics
applications, the lattice is typically large.

Each spin is pointing either up or down, i.e.

Xs =

{
+1 if spin up
−1 if spin down
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Ising model

The probability distribution of X = (Xs , s ∈ S) can be given by a
Gibbs distribution

P(X = x) =
1

Z
exp(β

∑
s∼t

xsxt),

where

I Z is a normalizing constant (a sum over all possible
configurations of spins up and down),

I β > 0 (interpreted as inverse temperature)

I s ∼ t denotes that s and t are neighbours.

I
∑
s∼t

xsxt is the difference between the number of neighbour

pairs with similar spins and the number or neighbour pairs
with dissimilar spins.
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Ising model

The conditional probability of a spin being up given the spins in its
neighbourhood is

P(Xs = +1|Xt , t ∈ Ns) =
exp(2β(X+

s − X−t ))

1 + exp(2β(X+
s − X−t ))

,

where

I X+
s is the number of neighbours of site s that have positive

spins (value +1)

I X−s is the number of neighbours of site s that have negative
spins (value −1)

If X+
s > X−s , then the probability of having a spin up, i.e.

P(Xs = +1), is greater than 1/2.
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Ising model: phase transition

Ising model has a critical value βc meaning that the behaviour of
the model is different above and below the critical value.

For β > βc (or temperature below the critical temperature)

I long range dependencies

I possible phase transitions: either a clear majority with spin up
(Xs = +1) or a clear majority with spin down (Xs = −1)

For β < βc (or temperature above the critical temperature)

I no phase transitions

I in a large area, the average value of Xs is close to zero (as
many spins up as spins down).

Onsager (1944) showed that βc = 1
2 log(1 +

√
2) = 0.44069.
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Ising model: simulated realizations

Realizations (binary images) of the Ising model with (from left to
right) β = 0.11, 0.22, 0.4407, 0.88 and 1.76.
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Autonormal MRF model

Let us have an MRF model, where Xs , s ∈ S , are continuous
real-valued random variables. The Markov property can now be
written as

P(Xs ∈ A|Xt , t 6= s) = P(Xs ∈ A|Xt , t ∈ Ns), A ⊆ R, s ∈ S

for all considered subsets A of R.

An example of such models is the so-called autonormal model,
where

Xs |Ns ∼ N(E(Xs |Xt , t ∈ Ns), σ2)

and the expectation is a linear combination of the neighbouring
values. For example, if we consider the four nearest neighbours sW
(west), sN (north), sE (east), and sS (south) of s, we can write

E(Xs |Xt , t ∈ Ns) = µ+ βW (XsW − µ) + βN(XsN − µ)

+βE (XsE − µ) + βS(XsS − µ).
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Autonormal model: simulated images

Realizations of the autonormal model (µ = 0.5, σ = 0.3)

I βW = βE = βN = βS = 0.24 (left)

I βW = βE = 0 and βN = βS = 0.48 (middle)

I βW = βE = −0.24 and βN = βS = 0.24 (right)
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Simulation of MRFs

We want to simulate realizations from the distribution
P(x) = P(x1, ..., xn) but it is difficult due to the normalizing
constant Z .

Simulating realizations from P(xs |xt , t 6= s) (or P(xs |Ns)) is,
therefore, quite easy by using Markov chain Monte Carlo (MCMC)
methods

I Gibbs sampling

I Metropolis-Hastings algorithm
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Simulation of MRFs: Gibbs sampling

Step 1: Choose a starting value x0

Step 2: Repeat for i = 1, ...,N:

I Draw x
(i)
1 from P(x1|x (i−1)

2 , ..., x
(i−1)
n )

I Draw x
(i)
2 from P(x2|x (i)1 , x

(i−1)
3 , ..., x

(i−1)
n )

I ...
I Draw x

(i)
n from P(xn|x (i)1 , ..., x

(i)
n−1)

Step 3: Use x(K), ..., x(N) as a sequence of dependent draws
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Gibbs sampling

I Samples are approximately from the distribution P(x). Under
some mild conditions, P(x (i)) converges to P(x).

I K should be chosen large enough so that the chain has
converged.

I Samples are dependent. You can make them more
independent if you sample only every kth sample.
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Ising model: simulation

I From top to bottom,
β = 0.11, 0.22, 0.4407, 0.88
and 1.76.

I From left to right, a purely
random start configuration,
after 1 sweep (K ), after 4
sweeps, after 16 sweeps, and
after 64 sweeps.
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Autonormal model: simulation

I µ = 0.5, σ = 0.3, and
βW = βE = βN = βS = 0.24 (top)

βW = βE = 0, βN = βS = 0.48 (middle)

βW = βE = −0.24, βN = βS = 0.24 (bottom)

I From left to right, a purely
random start configuration,
after 1 sweep (K ), after 16
sweeps, after 128 sweeps,
and after 256 sweeps.
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Metropolis-Hastings algorithm

We update the sites in a similar manner as in Gibbs sampling (one
at the time) but the proposal distribution depends on the current
state:

I Site s is in state xs and the neighbouring sites are in state
x(Ns).

I Propose a new state y for the site s by using a proposal
density gs(y |xs).

I Accept the proposal with probability (Hastings ratio)

min
{

1,
P(y |x(Ns))gs(xs |y)

P(xs |x(Ns))gs(y |xs)

}
I The proposal density can depend on the site s and the values

xs . In the case where the MRF takes only a finite number of
values, gs can be uniform.
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Gibbs sampling or Metropolis-Hastings algorithm?

I In general, Gibbs sampler tends to converge more slowly than
Metropolis-Hastings

I For binary (black and white) MRFs, it is trivial to apply the
Gibbs sampler but when the number of possible values at each
site is large, Gibbs sampler can be cumbersome and costly in
computer time.

I Gibbs sampler is a special case of Metropolis-Hastings, where
the proposal distribution is P(y |x(Ns)).

I Metropolis-Hastings algorithm updates always a site if the
proposal is ”better” than the current value, Gibbs sampler
does not.
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Bayesian image restauration

The true (random) image X = (Xs , s ∈ S) is given by an MRF but
we observe a distorted image Y = (Ys , s ∈ S).

Question: How to reconstruct X from Y ?

Simple model for the observed Y : We assume that

I the Ys variables are independent given X

I the distribution of Ys only depends on Xs , i.e.

P(Y = y |X ) =
∏
s∈S

P(Ys = ys |Xs). (1)

Restauration of X : To find the original image, we would need to
compute the posterior distribution (Bayes theorem)

P(X = x |Y = y) =
P(Y = y |X = x)P(X = x)

P(Y = y)
(2)

which can be difficult computionally.
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Bayesian image restauration

I Markov chain Monte Carlo algorithms can be used to compute
the posterior distribution

I MRF models can be used as priors for the unobserved image
X but it can be difficult to specify realistic priors for typical
images.
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