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Lecture’s contents

Todays lecture will cover

I First/second-order properties of point processes

I Summary functions

I Poisson point process

I Log-Gaussian Cox process

I Neyman-Scott processes

I Matérn inhibition processes

I Pairwise interaction point processes
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Definition: Point processes

A point process N is a stochastic mechanism or rule to produce
point patterns or realisations according to the distribution of the
process.

A marked point process is a point process where each point xi of
the process is assigned a quantity m(xi ), called a mark. Often,
marks are integers or real numbers but more general marks can
also be considered.
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Two interpretations

I N is a counting measure. For a subset B of Rd , N(B) is the
random number of points in B. It is assumed that N(B) <∞
for all bounded sets B, i.e. that N is locally finite.

I N is a random set, i.e. the set of all points x1, x2, ... in the
process. In other words

N = {xi} or N = {x1, x2, ...}

Therefore, x ∈ N means that the point x is in the set N. The
set N can be finite or infinite. If it is finite the total number
of points can be deterministic or random.
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Remarks

Remark 1: We assume that all point processes are simple, i.e. that
there are no multiple points (xi 6= xj if i 6= j).

Remark 2: There is a large literature on processes {Z (t) : t ∈ T},
where T is a point process in time. There is an overlap of methods
for point processes in space and in time but the temporal case is
not only a special case of the spatial process with d = 1. Time is
1-directional.

Remark 3: To avoid confusion between points of the process and
point of Rd , the points of the process or point pattern (realization)
are called events (or trees or cells).
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Spatial point patterns

I One of the main questions for point pattern data is usually to
determine if we have clustering or repulsion.

I The completely random case corresponds to the Poisson point
process
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Examples

I Locations of betacells within a rectangular region in a cat’s
eye (regular)

I Locations of Finnish pine saplings (clustered)

I Locations of Spanish towns (regular)

I Locations of galaxes (clustered)

Remark: Very different scales, from microscopic to cosmic
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First-order properties (without marks)

The mean number of points of N in B is E(N(B)) (depends on the
set B). We use the notation

Λ(B) = E(N(B))

and call Λ the intensity measure.

Under some continuity conditions, a density function λ, called the
intensity function, exists, and

Λ(B) =

∫
B
λ(x) dx .
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Some properties of point processes: stationarity and
isotropy

A point process N is stationary (translation invariant) if N and the
translated point process Nx have the same distribution for all
translations x , i.e.

N = {x1, x2, ...} and Nx = {x1 + x , x2 + x , ...}

have the same distribution for all x ∈ Rd .

A point process is isotropic (rotation invariant) if its characteristics
are invariant under rotations, i.e.

N = {x1, x2, ...} and rNx = {rx1, rx2, ...}

have the same distribution for any rotation r around the origin.
If a point process is both stationary and isotropic, it is called
motion-invariant.
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First-order properties

If N is stationary, then

Λ(B) = λ|B|,

where 0 < λ <∞ is called the intensity of N and |B| is the
volume of B.

λ is the mean number of points of N per unit area, i.e.

λ =
Λ(B)

|B|
=

E(N(B))

|B|
.
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Two distribution functions

1. Let D1 denote the distance from an arbitrary event to the
nearest other event. Then, the nearest neighbour distance
function is

G (r) = P(D1 ≤ r)

If the pattern is completely spatially random (CSR),
G (r) = 1− exp(−λπr2). For regular patterns G (r) tends to
lie below and for clustered patterns above the CSR curve.

2. Let D2 denote the distance from an arbitrary point to the
nearest event. Then,

F (r) = P(D2 ≤ r)

If the pattern is completely spatially random,
F (r) = 1− exp(−λπr2). For regular patterns F (r) tends to
lie above and for clustered patterns below the CSR curve.
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Combination of the two

Using G and F we can define the so-called J function as

J(r) =
1− G (r)

1− F (r)

(whenever F (r) > 0)

If the pattern is completely spatially random, J(r) ≡ 1. For regular
patterns J(r) > 1 and for clustered patterns J(r) < 1.
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Second-order properties

The 2nd order properties of a stationary and isotropic point
process can be characterized by Ripley’s K function (Ripley, 1977)

K (r) = λ−1E[# further events within distance r of a typical event].

Often, (in 2D) a variance stabilizing and centered version of the K
function (Besag, 1977) is used, namely

L(r)− r =
√
K (r)/π − r ,

which equals 0 under CSR. Values less than zero indicate regularity
and values larger than zero clustering.
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Estimation of the K function.

I An naive estimate for the K function is given by

K̂ (r) =
1

nλ̂

n∑
i=1

∑
i 6=j

1{|| xi − xj ||≤ r}

where λ̂ = n−1
|W | is an estimate for λ

I Typically, a point pattern is observed in a (bounded)
observation window and points outside the window are not
observed. Hence this estimator is biased.
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Edge corrections

I Estimators of the summary functions (except for J(r)) need to
be edge-corrected

I An unbiased estimate for the K function is given by

K̂ (r) =
1

nλ̂

n∑
i=1

∑
i 6=j

w(xi , xj)1{|| xi − xj ||≤ r}

where w(xi , xj) is an edge correction term.

I Edge correction methods include minus sampling or border
method, Ripley’s isotropic correction and translation
(stationary) correction
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Minus sampling/ border correction.

I Let W	r denote the subset of W the points in which are in
the interior of W and have a distance larger than r from the
boundary ∂W . We consider pair of points x ∈W	r and
y ∈W . Then an unbiased estimate for K is given by

K̂minus(r) =
1

λ̂2 |W	r |

∑
x∈X∩W	r

∑
y∈X

1{|| x − y ||≤ r}
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Translational edge-correction

I Applicable for stationary point processes

I The weights w(xi , xj) = 1
|W∩Wxi−xj

| are given by the area of

the intersection of W with the translated by xi − xj window
Wxi−xj .
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Isotropic edge-correction

I Applicable for stationary and isotropic point processes

I The weights w(xi , xj) =
ν1(∂b(xi ,||xi−xj ||)∩W )

2π||xi−xj || where ν1 denotes

the length of a curve, ∂ denote the boundary of a set and
b(xi , r) the ball centred at xi with radius r .

I The weights give the proportion of the circle that lies in W .
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Poisson process

A point process is a homogeneous Poisson process (CSR) if

(P1) for some λ > 0 and any finite region B, N(B) has a Poisson
distribution with mean λ|B|

(P2) given N(B) = n, the events in B form an independent random
sample from the uniform distribution on B

Inhomogeneous Poisson process: intensity λ (in homogeneous
Poisson process) replaced by an intensity function λ(x)
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Examples: realizations of Poisson processes

Left: Homogeneous Poisson point process with intensity 100
Right: A Poisson point process with a spatially varying intensity
function λ(x , y) = 100e−3x
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Summary statistics
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Log-Gaussian Cox process

I Hierarchical model, where X is a Gaussian random field and
Z | X is an inhomogeneous Poisson process where
λ(x , y) = exp(X (x , y))

I Example: X is a Gaussian random field with mean 3 and an
exponential covariance function.

Konstantinos Konstantinou Spatial Statistics and Image Analysis



Neyman-Scott processes

Cluster processes are models for aggregated spatial point patterns

For Neyman-Scott cluster process

(MC1) parent events form a Poisson process with intensity λ

(MC2) each parent produces a random number S of daughters
(offsprings), realized independently and identically for each
parent according to some probability distribution ps

(MC3) the locations of the daughters in a cluster are independently
and identically distributed according to a bivariate continuous
probability density function.

The cluster process consists only of the daughter points.
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Examples of Neyman-Scott processes

I Matérn cluster process: ps is a Poisson distribution and the
continuous distribution for the locations of offspring is the
uniform distribution on a disc

I Thomas cluster process:ps is a Poisson distribution and the
continuous distribution for the locations of offspring is the the
2-dimensional normal distribution
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Realization of a Matérn cluster process

Red: Parent points from a Poisson point process with intensity 7
Black: Daughter points with cluster radius 0.05 and average
number of daughter per cluster 5.
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Summary statistics
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Matérn I hard-core process

I Hard-core processes are models for regular spatial point
patterns

I Matérn I hard-core process:

1. Simulate a homogeneous Poisson process Z
2. Delete any point in Z that lies closer than a distance r from

the nearest other point

I There is a minimum allowed distance, called hard-core
distance, between any two points

I Matérn I hard-core process: A Poisson process with intensity
λ is thinned by deleting all pairs of points that are at distance
less than the hard-core radius apart.
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Realization of a Matérn I hard-core process

Left: Hard-core process with the initial Poisson intensity 300,
hard-core radius 0.04
Right: Poisson process with intensity 100
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Summary statistics
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Matérn II hard-core process

The thinning strategy for Matérn II hard-core processes is the
following

1. Simulate a homogeneous Poisson process Z

2. Mark each point in Z by “ages”, which are independent and
uniformly distributed numbers in [0,1].

3. Delete any point in Z that lies closer than a distance r from
another point that has has a higher age.
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Pairwise interaction processes

I Pairwise interaction processes are a subclass of Markov point
processes which are models for point patterns with interaction
between the events

I There is interaction between the events if they are
”neighbours”, e.g. it they are close enough to each other

I Models for inhibition/regularity
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Pairwise interaction processes: Strauss process

I Two points are neighbours if they are closer than distance R
apart

I The density function (with respect to a Poisson process with
intensity 1) is

f (x) = αβn(x)γs(x), β > 0, γ ≥ 0,

where
I β > 0 is the effect of a single event (connected to the intensity

of the process)
I 0 < γ ≤ 1 is an interaction parameter
I n(x) is the number of points in the configuration
I s(x) is the number of R close pairs in the configuration, where

R > 0 is an interaction radius (range of interaction)
I α is a normalizing constant
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Example: Strauss process

Left: Strauss process with β = 100, γ = 0.2 and R = 0.1
Right: Strauss process with β = 100, γ = 1 and R = 0.1

I γ = 1 corresponds to CSR

I γ < 1 corresponds to inhibition
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