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Very briefly about me…

• Scientist at RISE Research Institutes of Sweden, Gothenburg 
(Agriculture and Food department)

• Adjunct Associate Professor at Chalmers University of Technology, 
Gothenburg (Department of Mathematical Sciences)

• Applied math/stats - image analysis, spatial/stochastic modeling, 
machine learning, with applications in materials science and 
microscopy
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• We will cover three different types of microscopy/imaging

techniques and the related image analysis

1) Focused ion beam scanning electron microscopy (FIB-SEM)

2) Diffusion theory

3) Particle tracking of diffusing particles

4) Fluorescence recovery after photobleaching (FRAP)

Today
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Focused ion beam scanning 
electron microscopy (FIB-SEM)
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• Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)

• One slice (~50 nm) is peeled off using the FIB, then one image is 

acquired with the SEM, then another slice is peeled off, another is 

acquired, etc.

Acquiring FIB-SEM data
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• Each of these slices is 2D, but you can actually see ”into the pores”, 
making it 2.5D in a sense

• It is a destructive technique, because you destroy the material with the 
FIB

• Alternatives: 

– X-ray tomography (lower resolution)

– Transmission electron microscopy (TEM)-based tomography (only
for very thin samples)

Acquiring FIB-SEM data

6 RISE — Research Institutes of Sweden



• Ethyl cellulose hydroxypropyl cellulose

(EC/HPC) two-phase polymeric film used for 

controlled drug release in pharmaceutical

industry

• One phase is leached out, yielding solid-pore

structure for imaging

• Image analysis is a challenge because you can

”see into” the material (2.5-dimensional slices)

Example: EC/HPC films
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• Three datasets, each is 3000 x 2000 pixels and 200 slices

• We want to perform semantic segmentation i.e. differentiate between

solid and pore

• Why? Because we want to understand how the drug is transported

through the coating, therefore we need to characterize the 

geometry of the porous network

The data
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3D visualization
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Transport direction: 22 µm

Slice thickness:50 nm
200 slices



• Need annotated/labeled data for validating any automatic method and 

assessing its performance

• Data are too large for manual segmentation of it all (would take months)

• Solution

– Manual segmentation in 100 randomly placed square regions of size

256x256 by an expert (~0.5 % of the data)

– Takes more like a day instead of several months

Manual segmentation
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• 3 x 100 of these

Manual segmentation
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• What information do we use to classify one pixel?

• Use information not only in that pixel but in the surrounding
neighborhood

– Intensity information from 5 slices in each direction

– Information at different scales (original data + 
Gaussian smoothed data at different scales (sigma = 1, 
2, 4, 8, 16, 32, 64, 128 pixels), so-called scale space) -> 
averages values in different size regions

– In total we use 99 variables to predict solid or pore

Segmentation, approach I
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• Assigning each voxel to on of the classes (solid + pore), a classification problem

• Can use all sorts of machine learning algorithms for this

• We pick decision trees (see fig to right), a very simple method based on 
thresholding:

– If we have many different variables describing an image, say x1, x2, x3, …. 
Try to make a decision of class membership based on choosing threshold
values for these

– Combine a large number of decision trees -> random forest algorithm

– Combining simple decision trees by averaging their predictions

– Averaging of n = 151 decision trees (odd number, no ties)

Segmentation, approach I
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Example result
• Classification accuracy

– Training data: 98.0 %

– Test data: 92.2 %

• Porosity

– Expected: 30.0 %

– Obtained: 29.8 %
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• Convolutational neural networks (CNNs)

• Crash course in CNNs

• Conventional (artificial) (fully-connected) 
neural networks (ANNs) are based on a 
number of layers, each with a number of
nodes corresponding to nonlinear
mappings that together form a very
complex nonlinear mapping. This can be 
used to solve classification problems

Segmentation, approach II
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• Convolutational neural networks (CNNs), on the other hand, are built up
using convolutional filters. 

• During training, the CNN learns the weights of the filters. 

• Pooling reduced dimension of the image. 

• Finish with a fully connected part.

Segmentation, approach II
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• We extract rectangular neighborhoods of different sizes around the 

voxel of interest to find the optimal size

Segmentation, approach II
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• We got best results for a 113x113x3 voxel neighborhood

• Classification of all voxels is done with a sliding-window approach, 

looping over all parts of the dataset

Segmentation, approach II
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Comparison on test data to random
forest:

RF: mIoU 0.7616, accuracy 0.8825

CNN: mIoU 0.7980, accuracy 0.9024



• CNNs perform slightly better but at the cost of much more training

time and hyperparameter optimization etc.

• Actually, when we added derivatives of the images (not published) as 

features in the random forest approach, we got an improvement by a 

couple of percent in accuracy, so close to CNNs…

In summary
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M. Röding, C. Fager, A. Olsson, C. von Corswant, E. Olsson, N. Lorén. Three-dimensional reconstruction of microporous polymer films 
from FIB-SEM nanotomography data using random forests. Journal of Microscopy, 281, 76-86, 2021.

F. Skärberg , C. Fager , F. Mendoza‐Lara, M. Josefson, E. Olsson, N. Lorén, M. Röding. Convolutional neural networks for segmentation 
of FIB‐SEM nanotomography data from porous polymer films for controlled drug release. Accepted in Journal of Microscopy.



Theory of diffusion
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• Diffusion is essentially random transport of particles (and 

concentrations of particles) driven by thermal energy

• Can be understood from a 

– microscopic point of view (a stochastic model)

– macroscopic point of view (a partial differential equation)

• Both these perspectives will be important for the microscopy 

techniques we will cover today

What is diffusion?
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• Brownian motion is the random motion of particles suspended in a 
medium (like a fluid)

• Even at thermodynamic equilibrium when the system is macroscopically 
stable, random fluctuations in the fluid will cause random motion of the 
suspended particles

• First documented by Robert Brown (1827)

Brownian motion
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• Polystyrene particles (diameter ~ 

500 nm) in water imaged by 

confocal laser scanning microscope

• Pushed in random directions by 

individual water molecules

• Note: They disappear when they 

move out of focus 

Brownian motion
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• Brownian motion can be modelled as a Gaussian random walk, with
normal distributed increments

Δ𝑥 = 𝑥 𝑡 + Δ𝑡 − 𝑥 𝑡 ~ 𝑁(𝜇 = 0, 𝜎2 = 2𝐷Δ𝑡)

• Where Δ𝑥 is a 1D displacement, Δ𝑡 a time step, and 𝐷 is the diffusion 
coefficient

• Alternatively, in terms of mean squared displacement (MSD)
𝐸(Δ𝑥2) = 2𝐷Δ𝑡 𝐸(Δ𝑥2 + Δ𝑦2) = 4𝐷Δ𝑡, 𝐸(Δ𝑥2 + Δ𝑦2 + Δ𝑧2) = 6𝐷Δ𝑡

• Einstein (1905) and von Schmolukowski (1906)

Brownian motion
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• If an infinite number of Brownian particles would start diffusing at 𝑥 =
0, 𝑡 = 0, then their distribution will be 

𝑓 𝑥; 𝑡 =
1

4𝜋𝐷𝑡
exp −

𝑥2

4𝐷𝑡

• This is also the so-called fundamental solution to the diffusion equation, 
or Fick’s second law (Fick 1855), that describes the evolution of a 
concentration of diffusing particles in time and space:

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2

Diffusion equation
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• The macroscopic description (Fick 1855) came 50 years before the 

microscopic-scale explanation of the phenomenon (Einstein et al 1905-

1906)

• Einsteins derivations were taken as proof that molecules exist

Diffusion & Brownian motion
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• Is Brownian motion inherently Gaussian? 

• No, it’s a result of the central limit theorem i.e. the sum of a large number

of small displacements is approximately Gaussian

• If you zoom in enough, Brownian motion will be locally rather straight 

(ballistic motion) when it’s pushed by a fluid particle, then changed

direction when hit by the next

Diffusion & Brownian motion

27 RISE — Research Institutes of Sweden



Particle tracking

RISE — Research Institutes of Sweden28



• Particle tracking experiments are performed for various reasons, like

– Estimating a diffusion coefficient (or a distribution)

– Estimating mechanical properties of the medium (particle tracking
microrheology)

– Estimating both diffusion and flow velocity at the same time

• …today, only pure diffusion

Particle tracking
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• Classical method: Smooth the 
image, find intensity maxima and if
the maxima are above a threshold
value, it is a particle

• Template matching: Fit example
particle intensity profiles to the 
image (in the lower images, particles
can be both bright or dark)

• Depends on microscopic technique

Particle detection
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• Classical method: In frame n+1, find the 
particle positions closest to the ones in frame
n. If a particle is sufficiently far away from all 
in frame n, it’s likely the start of a new 
trajectory

• Distance threshold based on prior information 
about mobility (”how far is it reasonable to 
move between two frames?”)

• Very short trajectories (1 or 2 frames) are
likely just noise

Particle linking
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• Analysis of the mean square displacement (MSD) can be 

useful to detect the type of motion of the particles

• Pure diffusion 𝑀𝑆𝐷 𝑡 = 4𝐷𝑡 (assuming # dimensions = 2)

• Diffusion + localization error (𝜎 = 𝜀) 𝑀𝑆𝐷 𝑡 = 4𝜀2 + 4𝐷𝑡

• Diff + loc err + flow (vel. v) 𝑀𝑆𝐷 𝑡 = 4𝜀2 + 4𝐷𝑡 + 𝑣 2𝑡2

MSD analysis
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• Image individual diffusing fluorescent particles, performing Brownian

motion, at ~ 15 frames per second using a confocal laser scanning 

microscope (CLSM)

• We observe the particles in a box-shaped detection region, the size of

which is determined by field of view (~60 x 60 µm) and other parameters

Diffusion and concentration
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• The data consists of a list of particle trajectories. Particles move in and 

out and the same particle can appear more than once

• From them, their durations (number of positions) and estimated diffusion 

coefficients for each trajectory can be obtained

• We want to estimate diffusion coefficient, 𝐷, and (number) 

concentration, 𝑐 (and we will obtain also the thickness of the detection

region 𝑎𝑧 as a bi-product)

Diffusion and concentration

34 RISE — Research Institutes of Sweden



• To write down a model in terms of simple 

equations is not so simple, but easy to simulate

(basically, just Gaussian random walks moving

in and out of a box)

• Therefore, simulation-based inference, more

precisely Approximate Bayesian computation

(ABC), is a very useful tool, for estimating 𝜃 =

(𝐷, 𝑎𝑧, 𝑐)

Diffusion and concentration
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M. Röding, M. Billeter. "Massively parallel approximate Bayesian computation for estimating nanoparticle diffusion coefficients, sizes and concentrations using confocal laser 
scanning microscopy." Journal of Microscopy 271, 174-182, 2018.
M. Röding, E. Zagato, K. Remaut, K. Braeckmans. ”Approximate Bayesian computation for estimating number concentrations of monodisperse nanoparticles in suspension by optical
microscopy”. Physical Review E, 93, 063311, 2016.
M. Röding, H. Deschout, K. Braeckmans, M. Rudemo. Measuring absolute number concentrations of nanoparticles using single-particle tracking. Physical Review E, 84, 031920, 
2011.
M. Röding, H. Deschout, K. Braeckmans, A. Särkkä, M. Rudemo. Self-calibrated concentration measurements of polydisperse nanoparticles. Journal of Microscopy, 252, 79-88, 2013.



Fluorescence recovery after
photobleaching (FRAP)
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Fluorescence Recovery After Photobleaching (FRAP)

• In FRAP, we move from studying individual particles to a 
concentration of particles in space and time; we “zoom out”

• That means we move from the Brownian motion/mean square 
displacement model to the diffusion equation for modeling

• In thermodynamic equilibrium, nothing is happening at the 
macroscopic scale because the concentration is already uniform in 
the sample

• To get something to measure, we have to perturb the system out of 
equilibrium….this is the idea of FRAP



Fluorescence Recovery After Photobleaching (FRAP)

• Fluorescent particles, uniformly distributed in a sample, are bleached (kill the 

fluorescence) in a circular or rectangular bleach region using a powerful laser

• The time evolution of the concentration/fluorescence intensity back to equilibrium 

contains information about the motion of particles

• If we image this process using e. g. confocal laser scanning microscopy (CLSM), we can 

estimate e. g. diffusion coefficients

256x256 pixel images, from Schuster et al. (2014)
Recovery curve i.e. average intensity in bleach region



Numerical model

• Solve diffusion equation 
𝜕𝑐

𝜕𝑡
= 𝐷∇2𝑐 numerically on a grid 

corresponding to the image we are simulating (256x256 plus 

padding around it -> 512x512 grid)

• Direct time-stepping too slow -> use spectral/Fourier domain 

methods -> analytical time-stepping in Fourier domain

• Initial condition is the bleached concentration, so what we solve is 

the time evolution back to equilibrium (uniform distribution of 

concentration)

M. Röding, L. Lacroix, A. Krona, T. Gebäck, N. Lorén. A highly accurate pixel-based FRAP model 
based on spectral-domain numerical methods. Biophysical Journal, 116(7), 2019, 1348-1361.



40

Comparison between ”micro” and ”macro”

Deterministic
(numerical solution 
to diff eq)

Stochastic ( Gaussian
random walks)



Parameter estimation

• Assume normal distributed noise with constant variance, and do non-linear least 

squares fitting of the model to either

– the recovery curve data (just a function of time, most common)

– the full image/video data (2D + t)

• Sometimes also weighted least squares or maximum likelihood (depending on noise

assumptions in the data)



Computational speed is sometimes a problem

• Detailed numerical models can be heavy to run

• Nonlinear least squares should entail multiple fits with different initial parameter  

guesses to ensure global optimum

• Hence, analysing large batches of data can take time

• Can we use neural networks to speed up parameter estimation?

• Yes we can…



Artificial neural networks (ANNs) for predicting parameters

• Classical (fully-connected) ANNs can be used for classification (predicting class

memberships) and regression (predicting numerical values)

• An ANN is essentially a composition of operations that together form an arbitrarily 

complex nonlinear mapping from input to output

• In each layer of the ANN, a number of nodes receives a weighted sum of input, applies a 

nonlinear activation function and sends the result to the nodes of the next layer



Data for ANN

• Three parameters to predict: Diffusion 

coefficient 𝐷, initial intensity/conc 𝑐0, 

bleaching depth 𝛼

• Also, variance of normal distributed

image noise, 𝑎

• Generate 220 (~1,000,000) for training

and 218 (~250,000) for validation and test

Parameter Distribution

𝐷 Log-uniform in [10−12, 10−9] m2/s

𝑐0 Uniform in [0.5, 1]

𝛼 Uniform in [0.45, 0.95]

𝑎 Log-uniform in [10−4, 10−2]



Experimental validation

• One example fit to the data (A), showing almost identically the same recovery curve fit 

for least squares (B) as for neural networks (C)

Skärström, V. W., Krona, A., Lorén, N., & Röding, M. (2020). DeepFRAP: Fast 
fluorescence recovery after photobleaching data analysis using deep neural networks. 
Journal of Microscopy. 2021, 282, 146-161.



• If you want to discuss, get more info or papers sent on these topics today, 

just contact me at

magnus.roding@ri.se

Finishing off…
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