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Lecture 9: Credit risk
wrap up
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“As an alternative to the traditional 30-year mortgage, E:'g I:-_E:_-_ ry r_: :j :-_:_.:_+
we also offer an interest-only mortgage, balloon 1= o 1 p— I ecc

mortgage, reverse mortgage, upside down mortgage,
inside out mortgage, loop-de-loop mortgage, and the

spinning double axel mortgage with a triple lutz.” . .
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Credit risk can be decomposed into:
arrival risk, the risk connected to whether or not a default will happen in a given
time-period
timing risk, the risk connected to the uncertainness of the exact time-point of the
arrival risk (will not be studied here)

recovery risk. This is the risk connected to the size of the actual loss if default
occurs

default dependency risk, the risk that several obligors jointly defaults during some
specific time period. This is one of the most crucial risk factors that has to be
considered in a credit portfolio framework.

The course focuses default dependency risk for static static credit portfolios where
timing risk is ignored



Let L, denote the space of all random variables X such that E(XZ) < 00

Let Z be a random variable and let L,(Z) < L, denote the space of all random
variables Y suchthatY = g(Z) for some functiongandY € L,

Note that E[X] is the value p that minimizes the quantity E(X — u)?. Inspired by
this, we define the conditional expectation E[X | Z] as follows:

For X € L,, the conditional expectation E[X | Z] is the random variable
Y € L,(Z) that minimizes E(X — Y)?



Properties of conditional expectations

1.1fX € L,,then E[E[X | Z]] = E[X]
2.1fY € L,(Z) thenE[YX | Z] = YE[X | Z]

If X € L,, wedefineVar(X|Z) asVar(X|Z) = E[X?|Z] — E[X|Z]?. Then
Var(X) = E[Var(X|Z)] + Var (E|X | Z]).

For an event A, we define the conditional probability P[A| Z] as
PlA|Z] = E[14]Z]

where 1, is the indicator function for the event A (note that 1, is a random variable).

An example:if X € {a,b}letA = {X = a}. Then P[X = a|Z] = E[lx=q|Z]



The binomial model: m obligors where each obligor can default up to fixed time T,
and all have the same constant credit loss .

Let X; be a random variable such that

Y. — 1 if obligor i defaults before time T
L " |0 otherwise, i.e. if obligor i survives up to time T

Assume that X, X,,... X, arei.i.d, that is they are independent with identical
distributions, and that P [X; = 1] = p sothatalsoP [X; = 0] = 1 — p.

The total credit loss in the portfolio at time T, called L,,, is given by

m m m
L =zX,;£ — fZX,; — ¢N.,, where N,, =in
=1 =1 =1

Thus, N,,, is the number of defaults in the portfolio up to time T. Since £ is a
constant, we have P [L,,, = kf] = P [N,, = k] soitis enough to study the
distribution of N,,,. It follows from the definition that N,,,~Bin(m, p)



The mixed binomial model

randomizes the default probability and leads to stronger dependence. It works as
follows:

Let Z be a random variable (discrete or continuous) and let p(x) € [0,1] be a
function so that also p(Z) is a random variable.

Let X1, X5, ... X,,, be identically distributed random variables such that X; = 1 if
obligor i defaults before time T and X; = 0 otherwise.

Conditional on Z, the random variables X4, X5, ... X,,, are independent and each X;
has default probability p(Z), thatis P |[X; = 1| Z] = p(Z)

The economic intuition behind this randomizing of the default probability p(Z) is that
Z should represent some common background variable affecting all obligors in the
portfolio in the same way.



Example 1: A mixed binomial model with p(Z) = Z where Z has a beta
distribution, Z ~ Beta(a,b)

Example 2: A Logit-normal distribution for p(Z), which means that
1
1 + exp(—(u + 02))

where ¢ > 0 and u are parameters, and Z is a random variable which has a
standard normal distribution.

p(Z) =

Example 3: The mixed binomial model inspired by the Merton model with
N~(p) — JpZ)
J1-0p

where Z is standard normal and N(x) is the distribution function of a standard
normal distribution. Furthermore, p € [0,1]andp = P [Xi = 1].

p(Z) = N( )



The large portfolio approximation

For large portfolios in a mixed binomial model, the distribution of the fractional

N . . L
number of defaults 7’" in the portfolio converges to the distribution of the

random variable p(Z) asm — oo, thatis for any x € [0, 1] we have

N
P(Fm < x)—> P(p(Z) < x) when m — oo.

The distribution P (p(Z) < x) is called the Large Portfolio Approximation (LPA) to

the distribution of N,,,/ m.



Generalized inverse

~F(x) ~F(x)

\

F~1(y) x FT(y)

A
=

f
F~(y)

Here the inverse could be any value in the red interval. The generalized
inverse F (y) is arbitrarily defined to be the leftmost point of the interval



The correlation pybetween the default indicators for two obligors in a mixed binomial
models is

_Ep(2)* - p°
-~ p(1-p)

Px

In the Merton model py is the same as the parameter p of the model



Monte-Carlo simulation of portfolio credit loss

n = the number of simulations. Choose as large as conveniently possible

Forj=1,2,...,n, repeat the following five steps:

1. Simulate the random variable Z and compute p(Z) € [0, 1].

2. Simulate an i.i.d sequence Uy, U,, ..., U, with U; i uniformly distributed

on [0, 1] and independent of Z.

3.Fori = 1,2,...,mdefineX;as X; = 1ifU; < p(Z) and X;=0 otherwise
4. If losses are random, simulate £{(Z£),45,(Z),... £ (Z)

5. Compute L; = ;% X; £; (Z).

From the simulated sequence {L]-, j=1,2..n} one obtains the empirical
distribution function and can use it to find an estimate of Value-at-Risk etc.
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