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Credit risk can be decomposed into:

arrival risk, the risk connected to whether or not a default will happen in a given 
time-period

timing risk, the risk connected to the uncertainness of the exact time-point of the 
arrival risk (will not be studied here)

recovery risk. This is the risk connected to the size of the actual loss if default 
occurs 

default dependency risk, the risk that several obligors jointly defaults during some 
specific time period. This is one of the most crucial risk factors that has to be 
considered in a credit portfolio framework.

The course focuses default dependency risk for static static credit portfolios where 
timing risk is ignored



Let 𝐿𝐿2 denote the space of all random variables X such that 𝐸𝐸 𝑋𝑋2 < ∞

Let 𝑍𝑍 be a random variable and let 𝐿𝐿2(𝑍𝑍) ⊆ 𝐿𝐿2 denote the space of all random 
variables 𝑌𝑌 such that 𝑌𝑌 = 𝑔𝑔(𝑍𝑍) for some function g and 𝑌𝑌 ∈ 𝐿𝐿2

Note that 𝐸𝐸[𝑋𝑋] is the value μ that minimizes the quantity 𝐸𝐸 𝑋𝑋 − 𝜇𝜇 2. Inspired by 
this, we define the conditional expectation 𝐸𝐸[𝑋𝑋 | 𝑍𝑍] as follows:

Definition of conditional expectations
For 𝑋𝑋 ∈ 𝐿𝐿2, the conditional expectation 𝐸𝐸[𝑋𝑋 | 𝑍𝑍] is the random variable 
𝑌𝑌 ∈ 𝐿𝐿2(𝑍𝑍) that minimizes 𝐸𝐸 𝑋𝑋 − 𝑌𝑌 2



Properties of conditional expectations

1. If 𝑋𝑋 ∈ 𝐿𝐿2, then 𝐸𝐸[𝐸𝐸[𝑋𝑋 | 𝑍𝑍]] = 𝐸𝐸[𝑋𝑋]

2. If 𝑌𝑌 ∈ 𝐿𝐿2(𝑍𝑍) then 𝐸𝐸[𝑌𝑌𝑋𝑋 | 𝑍𝑍] = 𝑌𝑌𝑌𝑌[𝑋𝑋 | 𝑍𝑍]

If 𝑋𝑋 ∈ 𝐿𝐿2, we define 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋|𝑍𝑍) as 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋|𝑍𝑍) = 𝐸𝐸[𝑋𝑋2|𝑍𝑍] − 𝐸𝐸[𝑋𝑋|𝑍𝑍]2.  Then 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋|𝑍𝑍)] + 𝑉𝑉𝑉𝑉𝑉𝑉 (𝐸𝐸[𝑋𝑋 | 𝑍𝑍]).

For an event A, we define the conditional probability 𝑃𝑃[𝐴𝐴| 𝑍𝑍] as 

𝑃𝑃 [𝐴𝐴| 𝑍𝑍] = 𝐸𝐸[1𝐴𝐴 | 𝑍𝑍]

where 1𝐴𝐴 is the indicator function for the event 𝐴𝐴 (note that 1𝐴𝐴 is a random variable). 

An example: if 𝑋𝑋 ∈ {𝑎𝑎, 𝑏𝑏} let 𝐴𝐴 = {𝑋𝑋 = 𝑎𝑎}.  Then  𝑃𝑃 [𝑋𝑋 = 𝑎𝑎 | 𝑍𝑍] = 𝐸𝐸[1 𝑋𝑋=𝑎𝑎 |𝑍𝑍]



The binomial model: m obligors where each obligor can default up to  fixed time 𝑇𝑇, 
and all have the same constant credit loss ℓ. 

Let 𝑋𝑋𝑖𝑖 be a random variable such that

𝑋𝑋𝑖𝑖 = �1 if obligor i defaults before time T
0 otherwise, i.e. if obligor i survives up to time T

Assume that 𝑋𝑋1,𝑋𝑋2, . . .𝑋𝑋𝑚𝑚 are i.i.d, that is they are independent with identical 
distributions, and that 𝑃𝑃 [𝑋𝑋𝑖𝑖 = 1] = 𝑝𝑝 so that also 𝑃𝑃 [𝑋𝑋𝑖𝑖 = 0] = 1 − 𝑝𝑝.

The total credit loss in the portfolio at time 𝑇𝑇, called 𝐿𝐿𝑚𝑚 is given by 

𝐿𝐿𝑚𝑚 = �
𝑖𝑖=1

𝑚𝑚

𝑋𝑋𝑖𝑖 ℓ = ℓ�
𝑖𝑖=1

𝑚𝑚

𝑋𝑋𝑖𝑖 = ℓ𝑁𝑁𝑚𝑚 where 𝑁𝑁𝑚𝑚 = �
𝑖𝑖=1

𝑚𝑚

𝑋𝑋𝑖𝑖

Thus, 𝑁𝑁𝑚𝑚 is the number of defaults in the portfolio up to time 𝑇𝑇. Since ℓ is a 
constant, we have 𝑃𝑃 [𝐿𝐿𝑚𝑚 = 𝑘𝑘𝑘] = 𝑃𝑃 [𝑁𝑁𝑚𝑚 = 𝑘𝑘] so it is enough to study the 
distribution of 𝑁𝑁𝑚𝑚. It follows from the definition that 𝑁𝑁𝑚𝑚~𝐵𝐵𝐵𝐵𝐵𝐵(𝑚𝑚,𝑝𝑝)



The mixed binomial model 

randomizes the default probability and leads to stronger dependence. It works as 
follows: 

Let 𝑍𝑍 be a random variable (discrete or continuous) and let 𝑝𝑝(𝑥𝑥) ∈ [0, 1] be a 
function so that also 𝑝𝑝(𝑍𝑍) is a random variable.

Let 𝑋𝑋1,𝑋𝑋2, . . .𝑋𝑋𝑚𝑚 be identically distributed random variables such that 𝑋𝑋𝑖𝑖 = 1 if 
obligor i defaults before time 𝑇𝑇 and 𝑋𝑋𝑖𝑖 = 0 otherwise. 

Conditional on Z, the random variables 𝑋𝑋1,𝑋𝑋2, . . .𝑋𝑋𝑚𝑚 are independent and each 𝑋𝑋𝑖𝑖
has default probability 𝑝𝑝(𝑍𝑍), that is 𝑃𝑃 [𝑋𝑋𝑖𝑖 = 1 | 𝑍𝑍] = 𝑝𝑝(𝑍𝑍)

The economic intuition behind this randomizing of the default probability 𝑝𝑝(𝑍𝑍) is that 
𝑍𝑍 should represent some common background variable affecting all obligors in the 
portfolio in the same way.



Example 1: A mixed binomial model with 𝑝𝑝(𝑍𝑍) = 𝑍𝑍 where 𝑍𝑍 has a beta 
distribution, 𝑍𝑍 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎, 𝑏𝑏)

Example 2: A Logit-normal distribution for p(Z), which means that  

𝑝𝑝(𝑍𝑍) =
1

1 + exp(−(𝜇𝜇 + 𝜎𝜎𝑍𝑍))
where 𝜎𝜎 > 0 and 𝜇𝜇 are parameters, and 𝑍𝑍 is a random variable which has a 
standard normal distribution. 

Example 3: The mixed binomial model inspired by the Merton model with 

𝑝𝑝(𝑍𝑍) = 𝑁𝑁 (
𝑁𝑁−1( 𝑝̅𝑝) − 𝜌𝜌𝑍𝑍)

1 − 𝜌𝜌
)

where Z is  standard normal and 𝑁𝑁(𝑥𝑥) is the distribution function of a standard 
normal distribution. Furthermore, 𝜌𝜌 ∈ [0, 1] and 𝑝̅𝑝 = 𝑃𝑃 [𝑋𝑋𝑋𝑋 = 1].



The large portfolio approximation

For large portfolios in a mixed binomial model, the distribution of the fractional
number of defaults  𝑁𝑁𝑚𝑚

𝑚𝑚
in the portfolio converges to the distribution of the 

random variable 𝑝𝑝(𝑍𝑍) as 𝑚𝑚 → ∞, that is for any x ∈ [0, 1] we have 

𝑃𝑃
𝑁𝑁𝑚𝑚
𝑚𝑚

≤ 𝑥𝑥 → 𝑃𝑃 𝑝𝑝 𝑍𝑍 ≤ 𝑥𝑥 when 𝑚𝑚 → ∞.

The distribution 𝑃𝑃 (𝑝𝑝(𝑍𝑍) ≤ 𝑥𝑥) is called the Large Portfolio Approximation (LPA) to
the distribution of 𝑁𝑁𝑚𝑚/ 𝑚𝑚.
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Here the inverse could be any value in the red interval. The generalized
inverse 𝐹𝐹←(𝑦𝑦) is arbitrarily defined to be the leftmost point of the interval
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The correlation 𝜌𝜌𝑋𝑋between the default indicators for two obligors in a mixed binomial 
models is 

𝜌𝜌𝑋𝑋 =
𝐸𝐸𝐸𝐸 𝑍𝑍 2 − 𝑝̅𝑝2

𝑝̅𝑝(1 − 𝑝̅𝑝)

In the Merton model 𝜌𝜌𝑋𝑋 is the same as the parameter 𝜌𝜌 of the model



Monte-Carlo simulation of portfolio credit loss

n = the number of simulations. Choose as large as conveniently possible

For j = 1, 2, . . . , n, repeat the following five steps:

1. Simulate the random variable 𝑍𝑍 and compute 𝑝𝑝(𝑍𝑍) ∈ [0, 1].
2. Simulate an i.i.d sequence 𝑈𝑈1,𝑈𝑈2, . . . ,𝑈𝑈𝑚𝑚 with 𝑈𝑈𝑖𝑖 i uniformly distributed
on [0, 1] and independent of 𝑍𝑍.
3. For 𝑖𝑖 = 1, 2, . . . ,𝑚𝑚 define 𝑋𝑋𝑖𝑖 as 𝑋𝑋𝑖𝑖 = 1 if 𝑈𝑈𝑖𝑖 ≤ 𝑝𝑝(𝑍𝑍) and 𝑋𝑋𝑖𝑖=0  otherwise
4. If losses are random, simulate ℓ1(𝑍𝑍), ℓ2(𝑍𝑍), . . . ℓ𝑚𝑚(𝑍𝑍)
5. Compute 𝐿𝐿j = ∑𝑖𝑖=1𝑚𝑚 𝑋𝑋𝑖𝑖 ℓ𝑖𝑖 (𝑍𝑍).

From the simulated sequence {𝐿𝐿j, j = 1, 2 …𝑛𝑛} one obtains the empirical 
distribution function and can use it to find an estimate of Value-at-Risk etc.
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