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Nudging is an important data assimilation technique where partial field measurements are used to control
the evolution of a dynamical system and/or to reconstruct the entire phase-space configuration of the
supplied flow. Here, we apply it to the canonical problem of fluid dynamics: three-dimensional
homogeneous and isotropic turbulence. By doing numerical experiments we perform a systematic
assessment of how well the technique reconstructs large- and small-scale features of the flow with
respect to the quantity and the quality or type of data supplied to it. The types of data used are (i) field
values on a fixed number of spatial locations (Eulerian nudging), (ii) Fourier coefficients of the fields on a
fixed range of wave numbers (Fourier nudging), or (iii) field values along a set of moving probes inside the
flow (Lagrangian nudging). We present state-of-the-art quantitative measurements of the scale-by-scale
transition to synchronization and a detailed discussion of the probability distribution function of the
reconstruction error, by comparing the nudged field and the truth point by point. Furthermore, we show that
for more complex flow configurations, like the case of anisotropic rotating turbulence, the presence of
cyclonic and anticyclonic structures leads to unexpectedly better performances of the algorithm. We discuss
potential further applications of nudging to a series of applied flow configurations, including the problem of
field reconstruction in thermal Rayleigh-Bénard convection and in magnetohydrodynamics, and to the
determination of optimal parametrization for small-scale turbulent modeling. Our study fixes the standard
requirements for future applications of nudging to complex turbulent flows.
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I. INTRODUCTION

Turbulence is the chaotic, nonlinear, and multiscale
motion observed in fluids. From astrophysical and geo-
physical flows to engineering ones, it is a problem that
surrounds us all [1,2]. Thus, observing, measuring, recon-
structing, and then predicting the evolution of turbulent
flows are highly important tasks with direct consequences
for our day-to-day lives. A paradigmatic example is given
by the problem of state estimation in geosciences, of
particular importance to numerical weather prediction
(NWP) [3]. The chaotic and multiscale nature of turbulence

makes these tasks very difficult, as any small error in the
initial conditions will make predictions diverge from the
truth, and as it is not easy to access all active modes in a
fluid flow. This is particularly troublesome when one
considers that in a turbulent flow the number of active
degrees of freedom (d.o.f.) grows with the Reynolds
number as number of d.o.f.∝ Re9=4, with Re ¼ UL=ν,
given in terms of the typical rms velocity U, the energy
containing scale L, and the fluid viscosity ν. Data assimi-
lation (DA) is the family of mathematical protocols used to
reconstruct the states of a dynamical system, out of a series
of previous partial measurements, in order to ensure that
any future predictions will be as faithful as possible to what
the actual physical reality will be, and has proven to be of
key importance in the development of modern NWP [4–6].
Given the problem of trying to reconstruct the whole

flow configuration out of some partial data, one may ask
two crucial questions. The first one is about the quantity of
information that one needs to collect in order to achieve a
certain degree of reconstruction. The second one concerns
how the quality, or type, of information affects the level of
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reconstruction that can be attained. The two main tools
used in DA are based on either variational or ensemble-
averaged approaches. Variational methods, best exempli-
fied by the 4D-Var technique [7–9], rely on minimizing the
distance between a simulated system’s trajectory with the
available data. In order to do this, the statistics of the errors
are assumed to be Gaussian. Ensemble approaches work by
performing Kalman filtering operations [10–12] on the
probability distributions of different realizations of the state
to be reconstructed. Similarly to the variational approaches,
they also assume the statistics to be Gaussian. Operational
implementations of either technique usually rely on lin-
earizing the forward operator, so as to reduce the computa-
tional cost. This is known to generate problems when
assimilating over long windows of time where the cumu-
lative effect of nonlinearities becomes important [13]. Both
techniques have proven useful in NWP and have also been
applied to mildly turbulent channel flows [14–17], but they
have never been utilized in fully developed turbulence,
where the small-scale velocity statistics is intermittent with
fat and non-Gaussian tails, and the system is strongly out
of equilibrium and strongly nonlinear. This constitutes a big
hurdle to overcome also for NWP, as new technological
developments in computational and measuring tools allow
weather forecast centers to reach resolutions where three-
dimensional turbulent convection becomes important
[18,19], signaling we are entering an era where nonlinear
DA schemes have to be used. One possible scheme is
particle filtering [20], which works like the Kalman-filter-
based approaches but without employing the Gaussianity
assumption. This scheme has already been tested in two-
dimensional barotropic flows [21] and weather models
[22], showing better results than linear DA schemes, but
still presenting nontrivial obstacles when scaling to high-
dimensional systems. New techniques based on machine
learning have been applied to the flow reconstruction
problem as well [23,24], but only on two-dimensional
flows. One important point to make about the aforemen-
tioned techniques is that they can be hard and/or very
expensive to scale to three-dimensional flows. Take, for
example, ensemble-based methods which require one to
run several simulations; in a problem as computationally
intensive as turbulence, the cost can become prohibitive.
In this paper, we propose to use nudging [25–27], a fully

unbiased approach, to numerically study the problem of
assimilating data into a turbulent flow which is charac-
terized by a high- (infinite-) dimensional phase space with
strong non-Gaussian and intermittent multiscale fluctua-
tions [2,28]. Nudging has an old and prestigious past in
DA history [25,26]. It consists of applying a penalty term to
the right-hand side of the evolution equations that tries to
minimize the distance between the evolved flow and the
observations (see Fig. 1 for a sketch). In a way, nudging can
be viewed as the application of a Newton relaxation
feedback to fluid flows. In the context of NWP, different

formulations of nudging have been used to study the state
estimation problem using finite-dimensional dynamical
systems and weather models [25,29–31], and for boundary
condition matching [32–34]. In the context of turbulence,
for the cases of a two-dimensional Navier-Stokes equation
(NSE) [35–38], the three-dimensional Navier-Stokes α
model [39], and Rayleigh-Bénard convection [40,41], it
has been rigorously proven that given a sufficient amount
of input data, a nudged field will eventually synchronize
with its nudging field. Indeed, both DA [42] and nudging
can be framed as a synchronization problem; see Ref. [43]
for an application similar to Fourier nudging for turbulence.
Before moving on, we should note that in the current

data-driven age, parameter estimation and model
reconstruction are other key problems for accurate flow
prediction, modeling, and control. Here the goal is to
recover, out of some given data, the form and/or the
parameters of the underlying partial differential equation
(or ordinary differential equation) that generated such
data. Modern methods include (but are not restricted to)
symbolic regression coupled with sparsity methods
[44,45], physics informed neural networks [46,47], stat-
istical inference [48], minimum ignorance approaches
[49], and even pure data assimilation methods themselves
[50]. Recently, we have shown that nudging can be used to
infer parameters and physics even for the case of three-
dimensional fully developed turbulence, both isotropic
and under rotation [27]. Another related problem is the
one of equation-free modeling, where recent advances
haven been made in high-dimensional systems by using
reservoir computing techniques [51,52], and in turbulent
flows by using artificial neural networks [53]. Recent
studies have gone the extra step of combining both data
assimilation and machine learning for state reconstruction
and model estimation [54]. All in all, these problems point
to the pressing need to develop data-driven techniques that
can be scaled to nonlinear and high-dimensional prob-
lems, such as turbulence, and that can both incorporate
physical information when available or provide a patch
(estimation) when it is not. Out of all the techniques and
problems outlined, there probably is not, nor there will be,
a silver bullet that can solve them all. It is the combination
of suitable tools and ideas that can get the job done.

FIG. 1. Diagram outlining the nudging algorithm. In our
numerical experiments the reference data come from a well-
controlled direct numerical simulation, and the process of
measuring is summarized by the filtering operation I .
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Our novel goal is to present nudging as a tool to probe for
the key d.o.f. of a flow and understand where and what we
need to measure to ensure a certain level of reconstruction.
We tackle problems such as if it is better to (i) place the
probes in a regular equispaced way, (ii) followmeasurements
in a Lagrangian domain, along floating probes, or (iii) per-
form first a Fourier convolution to spread the information on
the whole configuration space. Furthermore, we will also
study nudging in the presence of inverse energy cascade [55]
with the formation of highly coherent cyclonic-anticyclonic
structures in rotating turbulence. These are the questions we
answer here and that have not been addressed before. Many
others will follow, which we leave for future research. What
about bounded flows [56,57]? Is it better to place the probes
close to the wall or in the bulk? What about multifield
equations as in Rayleigh-Bénard [58,59] or magnetohydro-
dynamics (MHD) [60,61]? Can we control temperature by
measuring velocity in convection, or control velocity by
measuring the magnetic field in MHD? All these questions
have applied and fundamental importance.
The paper is organized as follows. In Sec. II we outline

how the nudging protocol works: in Sec. II Awe write down
the equations, in Sec. II B we give details on the numerical
implementations of the technique and of the simulations
performed, and in Sec. II C we explain the different
quantities we use to measure the performance of nudging.
We then present the results of nudging in configuration space
in Sec. III A, the results of nudging in Fourier space in
Sec. III B, and the results of nudging under the presence of
large-scale structures in Sec. III C. Finally, we present our
conclusions in Sec. IV.

II. METHODS

A. Nudging the Navier-Stokes equations

Our application of nudging is based on the following
protocol. Suppose we have some measurements of a
reference field data uref available only on certain regions
of space (or for certain Fourier modes) and with a certain
cadence in time τ. And suppose we know that the field
evolution is described by the three-dimensional incom-
pressible NSEs with unit density:

∂turef þ uref · ∇uref ¼ −∇pref þ ν∇2uref þ f ref ;

∇ · uref ¼ 0;

þboundary conditions;

ð1Þ

where f ref is a forcing mechanism and ν the viscosity.
The aim is to reconstruct the whole space-time evolution
of uref by evolving a numerical simulation for another
incompressible velocity field u, which we call the nudged
field, where the distance from the input data uref − u enters
as a penalty term:

∂tuþ u · ∇u ¼ −∇pþ ν∇2u − αIðu − urefÞ
∇ · u ¼ 0;

þboundary conditions;

; ð2Þ

where α is the amplitude of the nudging term and I is a
filtering operator which projects u − uref onto the regions
of space (or the Fourier scales) in which the reference data
are known. We refer to Iuref as the nudging field. If the
cadence τ at which the observations are available does not
coincide with the time step used to evolve the nudged
system, one then has to define a reference field uτref time
interpolated between the two consecutive measurements.
There are two very important aspects to be noted here. First,
nudging can in principle be formulated for any dynamical
system or partial differential equation, as done, e.g., by
Refs. [62,63]; i.e., its formulation does not depend on the
application to the NSE. Second, the term f ref can be quite
general; it does not have to be just a simple mechanical
injection mechanism, it could also depend on uref , for
example. The filter operator I can take many forms, too.
The first one that we address here is based on local
measurements of the velocity field:

Iuðx; tÞ ¼
XNp

i¼1

Z
uðx; tÞδ(x − XiðtÞ)dV: ð3Þ

Here XiðtÞ denotes the positions of theNp probes where the
input data are measured, and that can be fixed in space
(Eulerian case) or moving with the flow (Lagrangian case)
[see Eq. (8) in Sec. II B for details on the integration of
Lagrangian particles]. Our implementation of Eq. (3) will
actually act on small volumes and is thus a vector of the
same size as uref but with zero entries outside the observing
location. We present further details in Sec. II B. We refer to
this scheme as “configuration space nudging.” The second
family of nudging protocols that we study here is based on
a Fourier filtering:

Iuðx; tÞ ¼
X

k∈A
ûðk; tÞ exp ðik · xÞ; ð4Þ

where ûðkÞ are the Fourier coefficients of the field u and A
is a given subset of the Fourier space where we suppose to
know the evolution of the reference field coefficients
ûrefðkÞ. While in principle the set A can be arbitrary, in
this work we always use a low-pass filter:

A∶ fjkj < kng; ð5Þ

i.e., we nudge a band of large-scale modes in the flow.
Simulations performed using this filter are referred to as
“spectral nudging.” It is very important to note that we are
playing the reconstruction game in a fair way, without
assuming to know anything about the external forcing
mechanisms that have generated the reference field in
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Eq. (1). This is the minimal setup if we want to be realistic
(in most applications even the boundary conditions are
not fully under control and certainly not the space-time
configuration of the external stirring force). This setup will
prevent us from reaching any exact synchronization of the
two fields because uref ¼ u is not a solution of Eq. (2)
anymore, but it allows us to speak about a real-life problem.
The absence of a forcing stirring term in Eq. (2) also
implies that without nudging, the reconstructed flow would
decay to zero monotonically, as we inject energy only
by the information coming from the Iðu − urefÞ term.
Nudging, as is presented here, is thus a simple and unbiased
assimilation-reconstruction scheme that is fully nonlinear
and that can be understood as a generalized synchroniza-
tion setup, as the dynamics that generated the data used
[forced Navier-Stokes equations, i.e., Eq. (1)] is different
from the one that drives the model [nudged Navier-Stokes,
i.e., Eq. (2)]. For this reason, we focus on the problem
of reconstructing small scales, not on reconstructing initial
conditions. A proper assessment of the forecast quality
would also require us to introduce an injection term. While
this can be done, it is not within the scope of this paper. It is
fair to point out though that a drawback of our setup is the
inability to account for errors present in the model or data in
the framework itself.

B. Numerical protocols

In our study, the reference true data uref is generated by
numerically solving the Navier-Stokes equations (1),
instead of using experimental measurements or field obser-
vations. The obvious advantage is that we can benchmark
the reconstruction capabilities of nudging in a fully quanti-
tative way, as we have access to the truth in every point in
space and at every scale. Two different reference sets were
produced, at medium and high Reynolds number [see
Table I, where all the details of the numerical methods used
to solve Eqs. (1) and (2) are given]. In the rest of the paper, all
values are made dimensionless by fixing the kinetic energy,
the size of the box, and the viscosity. The exact protocol
adopted is the following. Starting from rest, we evolve
Eq. (1) until the system reaches a stationary state (marking
this moment as t ¼ 0). Then we run for 10 turnover times
(marking the final moment t ¼ T), saving the fields at high
frequency. We then solve Eq. (2) in the interval t ∈ ½0; T�,
using as initial condition Iurefðx; t ¼ 0Þ and inputting the
linearly interpolated field uτref into the nudging term. This is
done for different values of α and τ, and for the different
filters I (configuration Eulerian or Lagrangian or Fourier).
The time step of both the reference and the nudged
simulations is the same, and is chosen in accordance with
the Courant-Friederichs-Lewy condition [2].
The implementation of the point-measurement-based

filter, Eq. (3), is a bit delicate. As we do not have any
other injection mechanism in Eq. (2), nudging only in
points (i.e., one grid point) makes it difficult to inject

enough energy in order to maintain a stationary simulation
with comparable Re. For this reason, we actually nudge in
small spheres of radius r ¼ 1.25η centered around points
Xi. For the Eulerian setup, these points are always placed
on a uniform equispaced three-dimensional grid covering
the whole simulation box, so the only controlling parameter
is the total number of probes Np. The number we use to
characterize each grid is the volume fraction:

ϕ ¼ Np
ð4=3Þπr3

L3
; ð6Þ

which is the ratio between the nudged and the total
volumes. There are two useful wave numbers that can
be defined:

kl ¼
2πN1=3

p

L
; kr ¼

2π

r
; ð7Þ

where kl is associated with the minimum distance between
probes and kr with the probe size. For the Lagrangian setup,
the protocol is similar, with the only difference that the
probe positions will move in time following the equation of
a fluid tracer:

_XiðtÞ ¼ urefðXiðtÞ; tÞ: ð8Þ

Another important note to make is that, as the flow is
incompressible, in configuration space nudging the nudging
term Iðu − urefÞ must be projected onto the incompressible
modes via a Helmholtz decomposition in order for the flow
to remain incompressible.
In Fig. 2 we give a first qualitative anticipation of both

protocols, showing a 3D rendering of the reference field, of
the probe distributions (nudging stations), and of the
reconstructed flow for both Eulerian and Lagrangian

TABLE I. Parameters used for the different reference simulations
experiments. All the respective nudged simulations have the same
parameters. The code uses a two-step Adams-Bashfort scheme for
the time integration, and the “2=3 rule” for dealiasing. The values
listed are the total kinetic energy E ¼ 1=2hjuref ji2, the Reynolds
number Re ¼ Lð2EÞ1=2=ν, the viscosity ν, the eddy turnover time
tL ¼ L=ð2EÞ1=2, the Kolmogorov timescale tη ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νL=ð2EÞ3=2

p
,

the Kolmogorov wave number kη ¼ ½ν3L=ð2EÞ3=2�−1=4, and the
number of grid pointsN3. The largest scale of the flowL is equal to
2π in all simulations. In both cases f ref is a randomly generated,
quenched in time, isotropic field with support on wave numbers
with amplitudes k ∈ ½1; 2� whose Fourier coefficients are given
by f̂ refðkÞ ¼ f0k−7=2eiθk, where θk are random in ½0; 2πÞ and
f0 ¼ 0.02.

Type Eref Re ν tL tη kη N3

RUN1 1.20 3900 0.0025 4.06 0.065 78 2563

RUN2 1.27 25 000 0.0004 3.94 0.025 317 10243
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nudging at high Reynolds number. As a third variation, we
also explore nudging with spherical probes (placed on an
Eulerian grid) where the velocity is fixed to have the value of
a putative probe taken at the center of the computational
volume, making the filtered field Iuref piecewise constant
and mimicking the results from a localized reference field
measurement. We refer to this scheme as “solid” nudging.

C. Quantification of errors and correlations

We start by defining the difference between the two
fields (error field) at every space-time point:

uΔðx; tÞ ¼ uðx; tÞ − urefðx; tÞ: ð9Þ

Then, in order to quantify the nudging performances for
turbulent DA at both large and small scales, we define the
relative errors in the point-to-point energy and enstrophy
reconstruction, based on the time-averaged L2 norm:

EΔ

Eref
¼ hjuΔj2i

hjuref j2i
;

ZΔ

Zref
¼ hjωΔj2i

hjωref j2i
; ð10Þ

where ω ¼ ∇ × u is the vorticity field and the average is
defined as the mean on the whole volume V and on the
whole experiment duration T: h•i ¼ 1=ðTVÞ R T

0 dt
R
V dxð•Þ.

We sometimes look at the temporal variations, too, and in
those cases we explicitly remark that what we are showing
depends on time. So, for example, the time evolution of the
energy of a nudge simulation will be referred to as EðtÞ.
In order to have a scale-by-scale control of the degree of

synchronization, we introduce the energy spectrum of the
difference between the nudged and the reference field,
given by

EΔðk; tÞ ¼
1

2

X

k≤jkj<kþ1

jûΔðk; tÞj2: ð11Þ

The two most informative measures of the success of
reconstruction at large (small) scales are based on velocity
(vorticity) field correlations:

δE ¼ hu · urefi
hjujihjuref ji

; δZ ¼ hω · ωrefi
hjωjihjωref ji

: ð12Þ

Both quantities give account of how close the nudged and
the reference fields are to each other, independently of their
absolute values (see later), and do so by measuring the
degree of instantaneous, not statistical, reconstruction.
To clarify this, two realizations of the same flow that are
widely separated in time would have the same statistical
properties buy very low correlations (corresponding to
δ ¼ 0). Evidently, we have

FIG. 2. Top: Visualizations of (left) reference fields uref , (middle) filtered or nudging fields Iuref , and (right) nudged fields u for
Eulerian nudging. The parameters are αtη ¼ 6.5, τ=tη ¼ 1.5, ϕ ¼ 0.05. Bottom: Same as above but for Lagrangian nudging. The
parameters are αtη ¼ 6.5, τ=tη ¼ 1.5, ϕ ¼ 0.03. All flows are visualized at the final time of the simulations; see Sec. II B for more
details.
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−1 ≤ δE; δZ ≤ 1: ð13Þ
As these quantities are time averages, we define the error
associated with them as the standard deviation of the
original time-varying signal.
Finally, it will be instructive to look also at the probability

distribution function (PDF) of the pointwise error juΔðx; tÞj
in order to understand specific issues connected to worst-
case scenarios and/or whether there are spatial and/or
topological structures that are better reconstructed. The latter
point might not be so relevant for isotropic turbulence, but it
is a key issue in nonisotropic conditions, like in the presence
of boundaries or large-scale shear, as often happens in nature
or in applied turbulent realizations.

III. RESULTS

A. Nudging in configuration space

We start by studying the case of nudging in configuration
space, where the penalty term acts in confined regions in

space. From Fig. 2 we see qualitatively that the nudged
flows (right-hand panels) develop large-scale structures
very close to the reference fields (left), even though
nudging only acts locally. In this section we focus on
the effects of varying the nudging amplitude α and the
nudged volume fraction ϕ. In all simulations, the temporal
interpolation τ=tη ¼ 1.5 and only data from RUN1 are used
(see Table I). We study the response to varying the time-
interpolation cadence τ in Sec. III B.
In Fig. 3(a) we show the evolution of the total energy

for two nudged simulations, with ϕ ¼ 0.05 and ϕ ¼ 0.23.
Both have αtη ¼ 6.5. The evolution of the total reference
energy is also shown. As explained above, the initial
condition for the nudged simulations is given by filtered
reference at t ¼ 0, so they would look just like the middle
panel in Fig. 2. It takes about one eddy turnover time
for the nudged simulations to reach the stationary state,
and to synchronize with the reference evolution, as seen
in Fig. 3(a). The evolution of the energy shows some very

FIG. 3. (a) Evolution of the total energy for the reference field and for two nudged fields with different volume fraction, before and
close to full synchronization, ϕ ¼ 0.05, 0.23. (b) Log-log plots of the energy spectra for the reference field (the truth) uref ), the nudging
partial data Iuref , the nudged field on the whole volume u, and the spectrum of the error field uΔ at the end of the simulation for the
simulation with ϕ ¼ 0.05. (c) Same as (b) for the simulation with ϕ ¼ 0.23. Gray regions mark the two typical wave numbers kl and kr
(see text). Note the transition to full synchronization for (c), where the spectrum of the error field uΔ is negligible at all scales. (d) Two-
point correlation functions for the case with ϕ ¼ 0.05.
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interesting features. First, the energy of the nudged field is
always smaller than that of the reference field. This is to
be expected, as the only forcing term is the nudging term;
thus the energy will be set by Iuref whose energy is
always less than that of uref . Second, nudging a higher
volume fraction does indeed inject more energy and make
the nudged system resemble the reference one more
closely. It is important to remember that aside from the
nudging term, no energy is being injected in the simu-
lations as there is no external forcing mechanism present

FIG. 4. (a) Values of the velocity correlations δE (filled
symbols) and the vorticity correlations δZ (empty symbols).
(b) Values of the energy error EΔ=Eref (filled symbols) and
the enstrophy errors ZΔ=Zref (empty symbols). All values are
plotted as a function of the volume fraction ϕ and for different
values of the nudging amplitude α. Solid line in (a) represents the
linear scaling expected for no effects of nudging (see text). The
dashed red vertical lines mark the value ϕc ¼ 0.2 as the typical
estimate for transition to maximum synchronization in these
setups. Here and in all figures error bars are always plotted; when
they are not visible it means that they are smaller than the symbol
size. See Sec. II C for the definitions of the different quantities
and their errors.

FIG. 5. Histograms of the point-by-point reconstructing error
juΔjmeasured in the whole volume (top), only inside the nudging
regions (bottom), and only outside (inset). The vertical dashed
lines represent hjuref ji.

FIG. 6. Values of the velocity correlations δE (filled symbols)
and the vorticity correlations δZ (empty symbols) as a function of
the volume fraction ϕ for different nudging protocols.
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in Eq. (2). Third—and probably most striking—the
nudged simulations are always able to follow the dynami-
cal fluctuations of the reference field even in the presence
of an appreciable amplitude mismatch. The latter is the
indication that we can have good statistical correlations
among the two fields without complete synchronization.
This will be put into more quantitative terms below.
In Figs. 3(b) and 3(c) we compare the instantaneous

energy spectra of (i) the total reference field uref , (ii) the
filtered reference field used for nudging Iuref , (iii) the
resulting nudged field u and the one which quantifies
the synchronization error Eq. (11) for two different
nudging volume fractions ϕ ¼ 0.05 and ϕ ¼ 0.23, respec-
tively, all at time T, the final time of the simulations. First,
let us note that the spectrum of Iuref is mainly concentrated
at small scales (large wave numbers), with peaks located
at the minimum distance between probes kl and at the probe
size kr, indicating that we are not supplying a large amount
of information concerning the global large-scale motion

(small wave numbers). In spite of the fact that most of the
information provided is for the small scales, the scale-by-
scale synchronization error EΔðk; tÞ is smaller at large scales
(small wave numbers) than at small scales (large wave
numbers). A way to understand this is by looking at the
two-point correlation function CðrÞ ¼ huxðxÞuxðxþ rx̂Þi,
shown in Fig. 3(d) for the case with ϕ ¼ 0.05. Evidently,
some information on the correlations is input at almost every
scale, and nudging is able to fill in the gaps. Furthermore, in
the case with ϕ ¼ 0.23 [Fig. 3(c)], the errors remain small
across all scales, indicating a very good global reconstruction
and a transition to full synchronization already for such
relatively small volume fraction.
In Fig. 4 we show, for three different values of α, the

correlations δE and δZ given by Eq. (12) and the normalized
errors EΔ=Eref ; ZΔ=Zref given by Eq. (10) as a function of
ϕ. Good correlations and small relative errors in both the
velocity and vorticity fields can be achieved with small
nudged volume fractions. As one can see from Fig. 4(a),

FIG. 7. (a) Energy spectra for the nudged u, the reference uref , and the error uΔ fields. The gray area indicates the nudged scales,
k < kn. (b) Point-by-point error between the phases of the nudged field and the reference one in the kz ¼ 0 Fourier plane. (c) The same
as for (b) but for the normalized amplitudes of the z component. The red circle defines kn. (d) Two-point correlation functions.
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already at ϕ ∼ 0.2 and for a nudging coefficient strong
enough (αtη ∼ 5), we can reconstruct both total energy
and total enstrophy with an accuracy close to 90%. As
expected, δE converges faster than δZ, as it is determined
by the large scales. For very small volume fractions,
ϕ ≪ 0.1, the error is large, EΔ=Eref ¼ ZΔ=Zref ¼ 1, as
the nudging field is almost equal to zero due to the fact
that very little energy is injected into the system. As more
energy is injected, the relative error in the enstrophy
increases at the beginning while the one in the energy
always decreases. This is because the velocity field can
generate correlations more easily, while the vorticity field
does not, so for ϕ ≪ 0.1, one gets

ZΔ

Zref
¼ hjω − ωref j2i

hjωref j2i
≈
hjωj2i þ jhωref j2i

hjωref j2i
≈ 2;

where we have used that hω · ωrefi ≈ 0 and that hjωj2i≈
hjωref j2i. By comparing the behavior for the three different
values of tηα, one sees that by increasing α the transition to
synchronization becomes sharper and little improvement is
obtained as soon as α is of the same order of the highest
frequency in the turbulent flow, ∼1=tη. It should be noted
that in the presence of noisy data, additional factors should
be taken into account when choosing α. Supposing that
the nudging data are affected by some noise of typical
amplitude ϵ, this is equivalent to using a perfect data uref
plus a forcing term of αϵ that acts only where the filter I
is active [this can be seen by exchanging uref for uref þ ϵ
in Eq. (2)]. A reasonable constraint would then be to
have αϵ <

ffiffiffiffiffiffiffiffiffiffi
2Eref

p
=tη.

All in all, the key parameter that drives the transition to
synchronization is the volume fraction. We can estimate the
critical value at which the level of reconstruction obtained
saturates at the maximum level as

ϕc ∼ 0.2:

In Fig. 4 we also plot the naive expectation obtained by
supposing that nudging works only where we supply the
information and gives fully uncorrelated results otherwise.
In this case, the correlation coefficients would just scale as
the volume fraction ϕ [solid line in Fig. 4(a)].
In Fig. 5 we show the PDF for the point-by-point error,

juΔj ¼ ju − uref j, with the statistics taken over the whole
volume (top panel), only inside the nudged regions (bottom
panel), and only outside the nudged regions (inset), for
different values of αtη and with ϕ ¼ 0.05. In accordance
with Fig. 2, the errors inside the nudged regions are usually
quite small, especially if compared with the mean hjuref ji,
denoted by the dashed vertical line in each figure. The
statistics outside the nudged regions dominate the statistics

FIG. 8. Values of the velocity correlations δE (filled symbols)
and the vorticity correlations δZ (empty symbols) as a function
of the maximum nudged wave number kn for different values
of the nudging amplitude α and the interpolation time τ.
In (a) τ=tη ¼ 0.77 and in (b) αtη ¼ 1.3.

FIG. 9. Values of the velocity correlations δE (filled symbols)
and the vorticity correlations δZ (empty symbols) as a function of
the maximum nudged wave number kn (spectral case) or the
mean nudged wavelength kl (Eulerian case).
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over the whole volume, as the volume fraction is small.
Increasing α pushes the mean and the mode of the errors
closer to zero, without producing any fat tails in the
distribution. An analysis of the PDF of each field (not
of the differences) can be found in our previous work [27].
Finally, in Fig. 6 we compare the three different ways of

performing nudging in configuration space described in
Sec. II A, Eulerian nudging, solid nudging, and Lagrangian
nudging, by looking at δE and δZ as function of the nudging
volume fraction. In all three cases, αtη ¼ 6.5 and τ=tη ¼ 1.3.
As one can see from δE, the velocity field gets well
reconstructed by all schemes. On the other hand, δZ indicates

that vorticity reconstruction does not work well for the
“solid” schemes, as one could have expected because of
the lack of small-scale information for this case. Surprisingly,
also Lagrangian nudging performs slightly worse. One
possible explanation is that the movement of the probes
does not leave enough time for the flow synchronization at
each point. One possible way to fix this problem could be to
implement delayed-coordinates nudging, where the past
history of the data is also used at each instant to guide the
reconstruction, as was proposed formuch simpler dynamical
systems in Ref. [31], but has not been applied to turbulence
until now.

B. Nudging in Fourier space

We now turn to characterizing how nudging in Fourier
space works. We analyze the effects of varying the nudging
amplitude α, the interpolation time τ, and the maximum
nudged wave number kn in Eq. (5). To get a first glimpse of
spectral nudging, we show in Fig. 7(a) the instantaneous
energy spectrum for the full reference field uref , that of
the corresponding nudged field u, and the scale-by-scale
synchronization error EΔðk; tÞ, for a simulation with
αtη ¼ 0.65, τ=tη ¼ 0.77, and kn=kη ¼ 0.13. The gray
region indicates the nudged window k ∈ ½0∶kn�. Nudging
is able to synchronize the nudged scales correctly, as
seen by the fact that EΔðk; tÞ is very small for k < kn,
and also in Figs. 7(b) and 7(c), where the synchronization
error for an instantaneous realization of Fourier phases
and amplitudes is shown, respectively. The red circle in
Figs. 7(b) and 7(c) denotes the maximum nudged wave
number kn. Finally, in Fig. 7(d) we show the two-point
correlation functions CðrÞ for this case. Concerning the
transition to synchronization, we study now what happens
when changing kn. Figure 8 shows the equivalent of
Fig. 4 but for Fourier nudging, i.e., δE and δZ, as a function
of kn=kη for different values of α while keeping τ fixed
[Fig. 8(a)], and for different values of τ while keeping α
fixed Fig. 8(b)]. Velocity field correlations start at high
values, already for small kn, as the smallest wave numbers
contain most of the energy, but vorticity field correlations
require a larger number of modes to be nudged in order to
build up. At around

kn ¼ kc ≈ 0.2kη;

both δE and δZ show perfect synchronization being both
equal to one.
By looking at Fig. 7(a), one recognizes that k=kη ¼ 0.2

is around the end of the inertial range, indicating that one
has to nudge everything but the viscous modes in order
to reach the transition-to-synchronization limit. A similar
result was found in Ref. [43], where, in contrast to our
method, synchronization was studied by imposing the
nudged modes to be equal to the reference ones (something
similar to α → ∞) and by supplying also the exact external

FIG. 10. (a) Values of the velocity correlations δE (filled
symbols) and the vorticity correlations δZ (empty symbols) as
a function of the maximum nudged wave number kn for different
Reynolds numbers. Red dashed line marks the kc ∼ 0.2kη value
where transition to synchronization is obtained. (b) Energy
spectra of the reference simulation RUN2 (round markers) and
spectra of the difference field uΔ at different kn (triangular
markers). The value of kn=kη for each nudged simulation is
annotated with arrows. Inset: Nonlinear and viscous contributions
to the energy fluxes for the reference simulation RUN2.
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forcing field. It is important to remark that the number of
d.o.f. necessary to control for full synchronization,
kc ∼ 0.2kη, implies that the number of modes being nudged
is still much smaller compared to the total number of d.o.f.,
around 1% actually, as the system is three dimensional.
From Fig. 8 we also see that similar to the case of nudging
in configuration space, increasing α has a positive effect
(where the comment on the possible new constraints using
noisy data would introduce mentioned above still holds).
As expected, increasing τ negatively impacts the level of
reconstruction, with lower values for the correlations and
larger errors. The smaller the scales that we nudge, the
more sensitive they become to the choice of τ. This is
because each Fourier mode has a characteristic correlation
time, given the sweeping time τsðkÞ ∼ 1=ð ffiffiffiffiffiffi

2E
p

kÞ [64–66],
that becomes shorter the higher the wave number. So if the
correlation time of a particular mode becomes shorter than
the interpolation time τ, the interpolation starts to introduce
unwanted errors.
In Fig. 9 we show the value of δE and δZ for Fourier

nudging as a function of kn=kη and for configuration space
nudging as a function of kl=kη. The functional behavior
is very similar, with the Fourier case expectedly doing
much better than the Eulerian one for the large-scale
reconstruction at small kc as information over the whole
domain is used and not just in selected points. All this
indicates that both Fourier and configuration d.o.f. play a
similar role in driving the chaotic evolution of isotropic
turbulence. In other words, there are no preferred leading
variables that drive the global and local flow configuration.
The situation can be obviously very different whenever the
flow is driven by boundary effects, as in channel turbulence,
external fields, as for convection and MHD, or influenced
by the global setup, as for rotation (see Sec. III C). The fact
that kl does serve as a good proxy for the effective scale at
which Eulrian nudging is acting can also be used to choose
an appropriate value for τ, following the argument presented
in the previous paragraph.

The effect of increasing the Reynolds number is studied
in Fig. 10(a), where we compare velocity and vorticity
correlations for RUN1 and RUN2 (see Table I) as a function
of kn=kη. The fact that these two scans collapse on top of
each other when plotting against kn=kη shows that kη is the
determining scale here. This can be understood better when
looking at the energy spectra and flux. Figure 10(b) shows
the energy spectra when nudging at different kn for the high
Reynolds case. We see that when correlations are high, the
spectra of the differences stays small for non-nudged wave
numbers. The inset of the figure shows the nonlinear ΠðkÞ
and dissipative ΠDðkÞ contributions to the energy flux [55]
for the reference simulation (RUN2). The value of kn=kη
for which synchronization is achieved is the same value at
which the dissipation flux and the energy flux become
equivalent, but it is smaller than that at which dissipation
completely dominates. This certifies that one has to nudge
all the scales dominated by inertial effects in order to
have a complete synchronization of the nudged flow with
respect to the reference data. It is important to note that
the Reynolds number of RUN2 is quite high, especially
compared to the standard simulations done in other studies
of data assimilation [14–16].

C. Nudging under the presence of large-scale
structures

Finally, we show the results of nudging a system where
large-scale structures are present. As we mentioned in
Sec. III A, it is reasonable to expect that different systems
can show different sensitivity to a given nudging scheme.
Homogeneous and isotropic turbulence can be considered
the worst-case scenario as it lacks large-scale coherent
structures. In order to show that nudging can indeed be
more efficient in the presence of some coherency in the
system, we applied it to a rotating turbulent flow. Rotating
turbulence is known for generating large columnar vortices

(a) (b) (c)

FIG. 11. Visualizations of the local energy field of (a) a reference simulation uref , (b) a filtered field Iuref , (c) and a nudged simulation
u of a rotating turbulent flow for ϕ ¼ 0.15, αtη ¼ 5.0, and τ=tη ¼ 2.0. The reference simulation has Eref ¼ 1.3, ν ¼ 0.002, N3 ¼ 2563,
L ¼ 2π, tL ¼ 3.89, tη ¼ 0.05, Re ¼ 5000, and Ro ¼ 0.06. The forcing f ref is a randomly generated, quenched in time, isotropic field

with support on wave numbers with amplitudes k ∈ ½1; 2� whose Fourier coefficients are given by f̂ refðkÞ ¼ f0k−7=2eiθk, where θk are
random in ½0; 2πÞ and f0 ¼ 0.005.
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with a strong translational symmetry in the direction
parallel to the rotation axis [1,67–69]. It is known that
nudging can reconstruct the inverse cascade present in
rotating flows [27], although this was shown only for
spectral nudging. Equations (1) and (2) were modified by
adding to the right-hand side a Coriolis term of the form
−2Ωẑ × u, withΩ being the rotation frequency (see caption
of Fig. 11 for more details on the simulations). Figure 11
shows a visualization of horizontal slices of the energy of
the full reference field, of the filtered or nudging field,
and of the nudged field with applications of the protocol on
the configuration domain. The aforementioned large-scale
structures are quite easy to spot, and it is evident how
nudging works better in this scenario. Figure 12 compares
the value of δE and δZ for one of the previous cases with
nudging homogeneous isotropic turbulence and one case of
nudging rotating turbulence. When the flow is under
rotation, nudging is able to synchronize both the velocity
and vorticity fields to the reference data at much lower
volume fractions. This indicates that nudging can be a very
powerful tool in problems that have large-scale structures
but are still nonlinear and chaotic.

IV. CONCLUSIONS

We have presented the first systematic application of
nudging to three-dimensional homogeneous and isotropic
turbulence for big-data assimilation (high Reynolds num-
ber regime). We have investigated the transition to full or
scale-by-scale synchronization when changing the quantity
and the quality (type) of information used. In particular, we
have implemented nudging with measurements of (i) field

values on a fixed number of spatial locations (Eulerian
case), (ii) Fourier coefficients of the fields on a fixed range
of wave numbers (Fourier case), or (iii) field values along a
set of moving probes inside the flow (Lagrangian case).
Concerning the quantity of information, we have shown
that full synchronization is achieved as soon as the
number of d.o.f. supplied by the nudging field covers a
range of scales that is about one-quarter of the dissipative
Kolmogorov wave number (i.e., the largest wave number
where nonlinear inertial d.o.f. are still active), coinciding
with the scale at which inertial and viscous fluxes match
each other. We have tested this at both moderate and
high Reynolds numbers, where kη ∼ k0Re3=4, and k0 is the
energy containing scale. Similarly for nudging in con-
figuration space, the critical volume fraction to reach
synchronization is ϕc ∼ 0.2. We have found that nudging
in Fourier space improves data reconstruction, although
paying the price that it is more difficult to apply in realistic
field-data applications. Concerning the quality of infor-
mation, we have found that inputting Lagrangian data
tends to deteriorate the ability to reconstruct but opens
a much more flexible tool for environmental applications.
Our Lagrangian approach differs from the usual Lagrangian
data assimilation [13,70], as we are not nudging or assimi-
lating a tracer’s position, we are only using the information
along its trajectory. This situation can be improved by
implementing a delay-coordinate nudging scheme [31],
where information on the time evolution of each particle
over a specified time window is used. It is also important
to note that the fields we reconstruct have many points
(on the order of 107), so at high volume fractions, applying a
smooth three-dimensional interpolation scheme in order to
try to reconstruct the fields could be prohibitively expensive.
Finally, we applied nudging to a turbulent rotating flow
and showed that, despite the dynamics being richer with a
split forward and backward energy cascade [1,2,55], the
presence of large-scale coherent structures helps nudging to
reconstruct the reference flow at lower volume fractions than
in the isotropic case, an important fact for many potential
applications.
It is important to remark that our implementation of

nudging is different from the usual one, because we do not
supply information about the external forcing mechanisms
in the nudged field evolution. This is done on purpose, to
broaden its applicability to realistic conditions that are
often encountered in the lab or in the open fields. Also for
this reason, the focus of this work is on reconstructing
small scales, not initial conditions, as any forward
unnudged simulation would require some injection
mechanism. Adding a forcing mechanism is, of course,
possible and will be the subject of our future work. It is
safe to say though that nudged solutions will necessarily
be better than just using the supplied data, especially
when full-scale synchronization occurs. Furthermore, the
application of nudging to big data goes well beyond the

FIG. 12. Values of the velocity correlations δE and the
vorticity correlations δZ (empty symbols) as a function of the
volume fraction ϕ for homogeneous and isotropic turbulence
(HIT) or under rotation. The HIT simulations have αtη ¼ 6.5
and τ=tη ¼ 1.5, and the rotating turbulence ones have αtη ¼ 5

and τ=tη ¼ 2.0.
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data assimilation scope, as it can be seen as an unbiased
equation-informed tool for classification of complex fields
[27] and/or as a tool to highlight a hierarchy of correlations
inside fluid turbulent applications, thanks to the mapping
from input to output data mediated by the equations of
motion. For example, it is tempting to imagine that nudging
could be used in thermal Rayleigh-Bénard convection
and in MHD to understand the casual correlation between
temperature or magnetic field with the velocity field
and in bounded flows to disentangle the relative importance
of near-wall versus bulk regions for driving the scale and
location dependent turbulent fluctuations. Work in this
direction will be reported elsewhere. Finally, this study
must be seen as a first step toward a more systematic side-
by-side comparison of different data assimilation tech-
niques to fully developed turbulent flows, and work in such
direction will certainly be highly beneficial for the com-
munities working in geosciences and fundamental and
applied fluid dynamics.
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