Tools in functional analysis
Let V be a vector space over
$$R$$
.
Def: A mapping $||\cdot||: V \rightarrow iR$
is a norm if for all viweV, dek
(i) $||v|| = 0 \iff v = 0$
(ii) $||\lambda v|| = |\lambda| \cdot ||v||$
(iii) $||v + w|| \le ||v|| + ||w||$
Two norms are equivalent
if $c ||\cdot||_a \le ||\cdot||_b \le C ||\cdot||_a$
Def: * A linear mapping $L: V \rightarrow R$
is called a Linear functional
* A bilinear form $a: V \times V \rightarrow R$
is (inear in both arguments.
* A bilinear form is symmetric
if $a(v,w) = a(w,v) + v,w \in V$
and positive if $a(v,v) > 0$ for

all non-zero VEV
x If both positive and symmetric
if is an inner product or
Scalar product and it induces
x norm
$$a(v,v)^{1/2} = 1|v||$$

 $\pm |f a is x scalar product and
 $a(v,w)=0$ we say v_iw are
 $or Muganal$
 $Ex \{-\nabla \cdot A\nabla u = f$ in $\mathcal{M} \subset \mathbb{R}^d$ T
 $u=0$ on \mathcal{P}
Mulhplichton with a topt
function v and S
 $L(v) = \int f \cdot v dx = \int -\mathcal{P} A \mathcal{P} u v dx = \int A \mathcal{P} u \nabla dx$
 $\frac{1}{2} emma$ Lef V be a vector space
with an inner product (\cdot, \cdot) and
 $I(\cdot I) = (\cdot, -)^{1/2}$
(i) Cauchy-Schwarz $|(v_iw)| = ||v||^2 + ||w||^2(u_i)=0$$

$$\frac{(ii)}{||v||^{2}} = (v, v)^{1/2} defines a norm on V.$$

$$\frac{Priof}{(i)} = (i) \quad let \quad t \in IR$$

$$O \leq ||v - tw||^{2} = (v - tw, v - tw) =$$

$$= ||v||^{2} - 2t(v, w) + t^{2} ||w||^{2}$$

$$Nowlet \quad t = \frac{(v, w)}{||w||^{2}} \quad assuming \quad W \neq O$$

$$O \leq ||v||^{2} - 2 \frac{(v, w)^{2}}{||w||^{2}} + \frac{(v, w)^{2}}{||w||^{2}} = ||v||^{2} - \frac{(v, w)^{2}}{||w||^{2}}$$

$$|(v, w)|^{2} \leq ||v||^{2} + ||w||^{2}$$

$$(ii) \quad ||v + w||^{2} = (v + w, v + w) = ||v||^{2} + ||w||^{2}$$

$$(iii) \quad ||v + w||^{2} = (v + w, v + w) = ||v||^{2} + 2(v, w) + ||w||^{2}$$

$$(iii) \quad ||v + w||^{2} = (v + w, v + w) = ||v||^{2} + 2(v, w) + ||w||^{2}$$

$$(iii) \quad ||v + w||^{2} = (v + w, v + w) = ||v||^{2} + 2(v, w) + ||w||^{2}$$

$$(iii) \quad ||v + w||^{2} = (v + w, v + w) = ||v||^{2} + 2(v, w) + ||w||^{2}$$

$$(iii) \quad ||v + w||^{2} = (v + w, v + w) = ||v||^{2} + 2(v, w) + ||w||^{2}$$

$$A \quad (inear functional is bounded if ||L(v)|| \leq C ||v|||, \quad \forall v \in V$$

$$The set \quad of \quad (incar functionals$$

forms a vetorspace called the dual space $V^* \parallel L \parallel_{V^*} = \sup_{v \in V, v \neq 0} \frac{|L(v)|}{||v||}$ A bounded bilinear form: There exists M > 0 s.t. $[a(v,w)] \in M ||v|| ||w||$ VINE V. and coercire if there is 9>0 st. $\alpha(v,v) \neq \alpha \parallel v \parallel^2$, $\forall v \in V$ Def. * A sequence {Vi}i=1 in V is said to converge to vev it |(Vi-V || -> 0 as i-> 0 * IF 11Vi-Vi 11-30 when 2j-20 the sequence is Cauchy. * A linear space is said to be complete if every Cauchy sequence CCNVerges * A complete space with a norm

is a Banach space. A Banach space with
inner product it is a Hilbert space
* If V is a Banach space so is V^{*}.
* A subset of a Hilbert space VoCV
is closed if it contains all limits of
sequences in Vo. A closed subspace
of a Hilbert space is also a
Hilbert space.
Thum A.I Riesz
Let V be a Hilbert space with
a scalar product (-,) and
a linear functional L on V.
Then there exists a unique UEV
Such that
$$L(v) = (u, v)$$
 the V.
Furthermore $||L||_{V^*} = ||u||_V$

Thm A.3 Lax-Milgram's Lemma Let V be a Hilbert space and assume a coercie and bounded and L linear functional that is bounded. Then bhere is a wrighe $u \in V$ sit $a(u, v) = L(v) \quad \forall v \in V$ L^P spaces I Pop Def let wCSL such that SIdx = O. Then wis a null set. A statement that is true except in a null set is said to be true almost everywhere Let A be a bounded domain in IR^d. $\|V\|_{L^{p}(\mathcal{A})} = \left(\int |v|^{p} dx\right)^{1/p} |\leq p < \infty$

 $\|V\|_{\mathcal{L}^{\infty}(\mathcal{A})} = ess \sup_{x \in \mathcal{A}} |V(x)| = \inf \{a \in \mathcal{R}: |V(x)| \leq a \in \mathcal{A}\}$ almost every XELS We define the L' spares as $\sum_{i=1}^{p} (\mathcal{A}) = \{ v : ||v||_{\mathcal{P}(\mathcal{A})} < \infty \}$ Thm Let VEL(A), WEL#(A) Ehon $\| v w \|_{L^{1}(\Lambda)} \leq \| v \|_{L^{p}(\Lambda)} \| w \|_{L^{q}(\Lambda)}$ P+f=1 Hölders inequality. $\|v+w\|_{L^{p}(\Lambda)} \leq \|v\|_{L^{p}(\Lambda)} + \|w\|_{L^{p}(\Lambda)}$ Mintowsti's inequility. Proof Mintursti p=1

IV+WI ≤ IV + WI. Assume V+W is not zero everywhere and

x . **x** .

$$\begin{split} \|v+w\|^{p} &\leq (|v|+|w|) \|v+w\|^{p-1} \\ &\int \|v+w\|^{p} dx \leq (|v|+|w|) (|v+w|)^{1-1} dx \\ &\leq \||v\||_{L^{q}(\Lambda)} \cdot \||v+w\|^{p-1}\|_{L^{q}(\Lambda)} \\ &\quad t \quad \|w\|_{L^{p}(\Lambda)} \cdot \||w\||_{L^{p}(\Lambda)}) \cdot (\int |v+v|^{p+1}|^{q} dx)^{p} \\ &\leq (\|v\||_{L^{p}(\Lambda)} + \|w\||_{L^{p}(\Lambda)}) \cdot (\int |v+v|^{p+1}|^{q} dx)^{p} \\ &\leq (\|v\||_{L^{p}(\Lambda)} + \|w\||_{L^{p}(\Lambda)}) \cdot (\int |v+v|^{p} dx)^{p} \\ &\leq (\|v\||_{L^{p}(\Lambda)} + \|w\||_{L^{p}(\Lambda)}) \cdot (\int |v+w|^{p} dx)^{p} \\ &\leq (|v|\|_{L^{p}(\Lambda)} + \|w\||_{L^{p}(\Lambda)}) \cdot (\int |v+w|^{p} dx)^{p} \\ &\leq (|v+w|^{p} dx)^{p} = (r-1) \left(\frac{p}{p-1}\right) = p \\ &\leq (1-1) \\ &= 1 \\ &\leq (1-1) \\ &\leq (1-1$$

$$\| \lambda v \|_{L^{p}(\Lambda)} = \| \lambda \| \| v \|_{L^{p}(\Lambda)}$$

In order for $\| l \cdot \|_{L^{p}(\Lambda)}$ to be a norm
Def: Functions V and W
that differs an null set
are said to be equivalent. We unite
 $V = W$ a.e.
 $K = \frac{1}{N} \frac{1}$