

 $S_h = S_h'$. $V_{L} = 5_{L} \Lambda H_{0}(\Lambda) = \{v \in S_{L} : v\}_{p} = 0\}$ Let N denote the nodes in Th Edizien ESh is the set and of tent functions spanning Sh $\begin{cases} 1 & (=) \\ 0 & \bar{i} \neq \bar{j} \end{cases}$ $\varphi_i(X_i) = \sigma_{ij} =$

 $S_{h} \subset H'(\Lambda)$, $V_{h} \subset H'(\Lambda)$ A Function in Sh is determined by its nodel values. There here of N= |N| there is a onc-one correspondance between Sh and IR". Therefore Sh is camp be ire achied subset of H'(M) => Hilbertspace. Approximation of functions For VEC(A) we define the nodal interpolant $T_{k}v = \sum_{i \in \mathcal{N}} v(x_{i}) \varphi_{i}(x)$

 $T_1: ((\tilde{\Lambda}) \rightarrow S_h$ $\|T_{h}v - v\|_{L^{2}(k)} + h_{k}|T_{h}v - v|_{H'(k)} \leq$ $\leq C_{k} h_{k} | v |_{\mu^{2}(k)}$ $\forall K \in T_{k}, V \in H'(k)$ So nodal interpolation is not ideal in rough Scholer spares (ite H'(A). W:= U{KETL: X; EK} WK = UJ Wi: KEWiz $T_h v = \overline{Z}_{i \in W} \frac{\int v dx}{\int v dx} f_i$

 $L_{L}: L'(\Lambda) \rightarrow S_{L}$ Thm: For any VEH1+5(1), 5=0,1 $||v - T_{L}v||_{L^{2}(K)} + h_{K}||v - T_{L}v||_{H^{1}(K)} \leq$ $\leq (h_{k}^{1+S})|V||_{H^{1+S}(W_{k})}$ $\| (v - \tilde{L}_{h} v \|_{L^{2}(\partial K)} \leq C h_{k}^{1/2+s} \| v \|_{H^{H_{s}}(u_{k})}$ 3K K Since The is shape regular $\| \left(V \right) \|_{H^{1+s}(\mathcal{N})}^{2} \leq \sum_{K \in \mathcal{T}_{L}} \| V \|_{H^{1+s}(w_{k})}^{2} \leq \sum_{K \in \mathcal{T}_{L}} \| V \|_{H^{1+s}(w_{k})}^{2}$ $\leq C_{\mu} \| \nabla \|_{\mu^{1+5}(\Lambda)}^{2}$ The finite element method

We consider : find ueHo(A) s.t.

$$a(u,v) = L(v)$$
, $\forall v \in H_0(A)$.
where $a(u,v) = (a \nabla u, \nabla v) + (b \cdot \nabla u, v)^{+}$
 $L(v) = (F_1v)$, $u_1v \in H_0'(A)$
with the notation $(v_1w) = \int v \cdot w \, dx$.
FEM: find $U_n \in V_h \subset H_0'(A)$
such that $a(u_h, v) = L(v)$, $v \in V_h$.
Thus: $f \in L^2(A)$, $O \le a \le a \le a \le a$
 $1b \le b_1$, $c \le c_1 \quad c - \frac{1}{2} \nabla \cdot b \ge O$
 $\forall x \in A$. Then there exists
unique solution U_h and
 $||u_v||_{H'(A)} \le c ||f||_{L^2(A)}$
 $P_{cont}: Since V_h \subset H_0(A)$ Hilbert

is done over elements K $(A^{k})_{kl} = (a \nabla \mathcal{L}_{l}, \nabla \mathcal{L}_{k}) + (b \cdot \nabla \mathcal{L}_{l}, \mathcal{L}_{k}) + (b \cdot \nabla \mathcal{L}_{l}, \mathcal{L}_{k})$ $+(c \not\in (, \not\in f))^{2}(k)$ $(b^{K})_{l} = (f_{l} q_{l})_{L^{2}} | K), k, (=1, ..., d+l$ The integrals are computed rummically. Sgdx ~ Z W; g(p,t) |K| W_1 W_2 W_3 GRUSS points are typically used Let nx cN be a dtl vector of node numbers of K

Inihate empty A for KETh $A(n_{k}, n_{k}) = A(n_{k}, n_{k}) \quad \text{ncdes} = \begin{bmatrix} 0 & c_{1} \\ 0 & c_{2} \end{bmatrix}$ $+ A^{k}$ $b(n_{k}) = b(n_{k}) + b^{k}$, $triangeb = \begin{bmatrix} 13/12\\1/17\\12/13 \end{bmatrix}$ $\frac{1}{12} \frac{8}{5} \frac{7}{5} \frac{7}{8} \frac{1}{5} \frac{7}{5} \frac{7}{5} \frac{8}{5} \frac{6}{5} \frac{7}{5} \frac{8}{5} \frac{6}{5} \frac{7}{5} \frac{7}{5} \frac{1}{5} \frac{1$ en d $\rho = \begin{bmatrix} 0 & \frac{1}{2} & 1 & 0 & \frac{1}{2} & 1 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} &$ e = [...]