Eigenvalue problems

$$
\begin{aligned}
& \left\{\begin{array}{c}
-\Delta u=\lambda u \text { in } \Omega \\
u=0
\end{array}\right. \\
& \Delta=\nabla \cdot \nabla
\end{aligned}
$$

$1 \bar{D}$ Guitor stuing, 110 Hz 2D Drum

Schridinger

$$
\frac{\text { dinger }}{-\Delta u}+V V_{t}=\frac{\lambda u}{\tau}
$$

$$
\begin{aligned}
& \Delta u \text { enargy } \\
& \uparrow \\
& \text { wave Eunchin }- \text { - }
\end{aligned}
$$

Weak form: find $0 \neq \phi \in V:=H_{0}^{\prime}(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$
a(\phi, v)=(\nabla \psi, \nabla v)=\lambda(\phi, v) \forall v \in V
$$

we could conider $A u=-\nabla \cdot a \nabla u+c u$ Thm G.I x are real and pesitive. Two eigen functions cerresponding to difterent eigenvalues are orthogenel in L'ault.'

Proof: Let $\{\lambda, \phi\}$ be an eigenpair Then $\lambda(\phi, \phi)=a(\phi, \phi) \geqslant a_{0}\|\phi\|_{H^{\prime}(\Lambda)}^{2}$

$$
\lambda\|\phi\|_{L^{2}(\Omega)}^{2} \geqslant \stackrel{v}{a}_{a_{0}}^{r}\|\phi\|_{H^{\prime}(\Omega)}^{2} \rightarrow \lambda \in \mathbb{R}, \lambda>0
$$

Let $\left\{\lambda_{1}, \phi_{1}\right\}$ and $\left\{\lambda_{1}, \phi_{2}\right\}$ be two eigenpuirs

$$
\begin{gathered}
\lambda_{1}\left(\phi_{1}, \phi_{2}\right)=a\left(\phi_{1}, \phi_{2}\right)=a\left(\phi_{2}, \phi_{1}\right)=\lambda_{2}\left(\phi_{1}, \phi_{1}\right) \\
\quad t \quad v=\phi_{1} \\
v=\phi_{2}\left(\lambda_{1}-\lambda_{2}\right)\left(\phi_{1}, \phi_{2}\right)=0 \Rightarrow\left(\phi_{1}, \phi_{2}\right)=0 \\
\Rightarrow a\left(\phi_{1}, \phi_{2}\right)=0
\end{gathered}
$$

Existence ct eigen pairs
We say that a set $M \subset L^{2}(\Omega)$ is pre-compact it every sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \in M$ contains a stonily convergent subsequence $\left\|u_{n}-u\right\|_{L^{2}(\Lambda)} \rightarrow$ as $n \rightarrow \infty$ It M is closed it is compact.
Lemma G,2 (Rellich)
A bounded set M of $A^{\prime}(\Omega)$ is pro-compal in $L^{2}(\Omega)$.

Lemma (Parallelogram law)
Let $v, w \in V$, where V is a Hichert spice.
Then $\|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}$
Proof:

$$
\begin{gathered}
\text { Proof: } \\
\begin{aligned}
\|v+w\|^{2}+\|v-w\|^{2} & =(v+w, v+w)+\left(v-w_{1} v-w\right) \\
& =2\|v\|^{2}+2\|w\|^{2}
\end{aligned}
\end{gathered}
$$

Thu 6.2
The infimum

$$
\begin{aligned}
& \lambda_{1}=\inf \left\{a(v, v): v \in H_{0}^{\prime}(\Omega),\|v\|_{E(v)}=1\right\} \\
&=\inf \} \\
& 0 \neq v \in H_{0}^{\prime}(\Omega) \frac{a(v, v)}{(v, v)}
\end{aligned}
$$

Rayleigh
is attained for a funchen $f_{\in} H_{0}^{\prime}(\Lambda)$. quatiant ϕ_{1} is the eigen function corresponding to the eigenvalue λ_{1} i.e. $a\left(\sigma_{1}, v\right)=\lambda_{1}(f, v) \forall v+V$.
Proof: We take a sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \in H_{0}^{\prime}(\Omega)$ such that $\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2}=a\left(u_{n}, u_{n}\right) \rightarrow \lambda_{1},\left\|u_{n}\right\|=1$ This sequence is boundedin $H^{\prime}(\Omega)$ therefore there exists a subsequence
that is strongly convergent in $L_{\infty}^{2}(\Omega)$ (delhch)
We call this subsequence $\left\{u_{n}\right\}_{n=1}^{\infty}$

$$
l_{n} \rightarrow \phi_{1} \text { in } L^{2}(\Omega)^{1}
$$

We what to shaw $\left\{U_{n}\right\}$ converges in $H^{\prime}(\Omega)$.

$$
\begin{aligned}
& \left\|\nabla\left(u_{n}-u_{m}\right)\right\|^{2}=2\left\|\nabla u_{n}\right\|^{2}+2\left\|\nabla u_{m}\right\|^{2}-4\left\|\frac{1}{2} \nabla u_{n}+u_{n}\right\|^{2} \\
& \leqslant\left\{\left\|\frac{1}{2} \nabla\left(u_{n}+u_{m}\right)\right\|^{2} \geqslant \lambda_{1}\left\|\frac{1}{2}\left(u_{n}+u_{n}\right)\right\|^{2}\right\} \\
& \leqslant 2\left\|\nabla u_{n}\right\|^{2}+2\left\|\nabla u_{m}\right\|^{2}-4 \lambda_{1}\left\|\frac{1}{2}\left(u_{n}+u_{m}\right)\right\|^{2} \\
& \uparrow \lambda_{1} \quad \uparrow \lambda_{1} \quad \rightarrow \phi_{1} \\
& \text { and }\|d,\|=1 \\
& \left\|\nabla\left(u_{n}-u_{m}\right)\right\|^{2} \rightarrow 0 \text { as } n, m \rightarrow \infty
\end{aligned}
$$

ie. a Cuuclysequence in $H_{0}(\Omega)$
\Rightarrow (cuverges to $\phi_{1} \in H_{0}^{\prime}(\Omega)$.

$$
x_{1}=\left\|\nabla \phi_{1}\right\|^{2} \text { with }\left\|\phi_{1}\right\|=1 \text {. }
$$

We what to show $a\left(f_{1}, v\right)=\lambda_{1}\left(\phi_{1}, v\right) \forall v \in H_{0}^{1}(\Omega)$
For any $w \in H_{0}^{\prime}(\Omega) \quad \frac{a(w, w)}{(w, w)} \geqslant \lambda_{1}$,
For any $\alpha \in \mathbb{R}$

$$
\begin{aligned}
& \text { any } \alpha \in \mathbb{R} \\
& \lambda_{1} \leqslant \frac{a\left(\phi_{1}+\alpha v, \phi_{1}+\alpha v\right)}{\left(\phi_{1}+\alpha v, \phi_{1}+q v\right)}=\frac{\lambda_{1}+2 \alpha a\left(\phi_{1}, v\right)+\alpha^{2} a(v, v)}{\left.1+2 \alpha\left(\phi_{1}, v\right)+\alpha^{2} \pi v\right)^{2}}
\end{aligned}
$$

$$
\lambda_{1}+2 \lambda_{1} \alpha\left(\phi_{1}, v\right)+\lambda_{1} \alpha^{2}\|v\|^{2} \leq \lambda_{1}+2 \alpha a\left(\phi_{1}, v\right)+q^{2} a(v, v)
$$

or $2 \alpha\left(a\left(\phi_{1}, v\right)-\lambda_{1}\left(\phi_{1}, v\right)\right)+\alpha^{2}\left(a(v, v)-\lambda_{1}(v, v)\right) \geqslant 0$
If $a\left(d_{1}, v\right) \neq \lambda_{1}\left(\phi_{1}, r\right)$ we can pick a small enough with appropriate sign to violate the inequality. i.e. contradiction ie

$$
\begin{gathered}
a\left(d_{1}, v\right)=\lambda_{1}\left(d_{1}, v\right) \forall v \in V . \\
\lambda_{2}=\inf \left\{a(v, v): v \in H_{0}^{\prime}(\Omega),\|v\|=1,\left(\phi_{1}, v\right)=0\right\}
\end{gathered}
$$

$\lambda_{2} \geqslant \lambda_{1}$ and the int is a trained for $\phi_{2} \in H_{0}^{\prime}(\Omega) \quad\left(\phi_{1}, \phi_{2}\right)=0$. Furthermore

$$
a\left(\phi_{2}, v\right)=\lambda_{2}\left(\phi_{2}, v\right) \quad \forall v \in\left\{v \in H_{0}^{\prime}(\Omega):\left(v, \phi_{1}\right): 0\right\}
$$

But $a\left(\phi_{1}, \phi_{2}\right)=\lambda_{1}\left(\phi_{1}, \phi_{2}\right)=0$ and any $V=\alpha \phi_{1}+\omega$ with

$$
\begin{array}{ll}
& \left.w \in\left\{v \in H_{v}^{\prime}(\Omega):\left(w_{1} \not\right)_{1}\right)=0\right\} \\
\Rightarrow a\left(\phi_{2}, v\right)=\lambda_{2}\left(\phi_{2}, v\right) \quad \forall v \in V
\end{array}
$$

Similarly

$$
x_{n}=\inf \left\{a(v, v): v \in H_{0}^{\prime}(\Omega),\|v\|=1,\left(\ell_{j}, v\right)=0\right\}
$$

The number of eigenpairs is in finite.
Thu 6.3 It holds $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$

Prof: Compactress. Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ orthonarmal eigenvectors and assume $\left\|\nabla u_{n}\right\|^{2}=\lambda_{n} \leqslant C, n \geqslant 1$
Then there is a subrequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ that converger in $L^{2}(\Omega)$ (leClich)
Butbyortlogonaluty

$$
\left\|u_{n}-u_{m}\right\|^{2}=\left\|u_{n}\right\|^{2}+\left\|u_{m}\right\|^{2}=2 \text { contadich? }
$$

If $\lambda_{n}<\lambda_{n+1}=\ldots=\lambda_{n+m}<\lambda_{n+m+1}$
we say x_{n+1} has mulbiplicity m
Ex: $\Theta \theta$
Thm b.4 The eigentunctions $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ form an orthonormel besis ct $L^{2}(\Omega)$ and any $v \in L^{2}(\Omega) \quad V=\sum_{i=1}^{\infty}\left(l, f_{i}\right) \phi_{i}$
Furthermone $\sum_{j=1}^{\infty} \lambda_{j}\left(v, \phi_{j}\right)^{2}$ is convougunt ift

$$
v \in H_{0}^{\prime}(\Omega) \sum_{j=1}\|\nabla v\|_{L^{2}(\Omega)}^{2}=a(v, v)=\sum_{j=1}^{\infty} \lambda_{j}(v, \not, j)^{2}
$$

Thm 6.5 We have

$$
\lambda_{n}=\min _{V_{n} \subset H_{0}^{\prime}(\Omega)} \max _{v \in V_{n}} \frac{a(v, v)}{(v, v)}
$$

Where V_{n} varies over all $\operatorname{subspi}(e)+H I_{0}^{\prime}(\Omega)$ of dimension n.
Proof: Let $E_{n}=\operatorname{span}\left(\{\phi ;\}_{i=1}^{n}\right)$

$$
\begin{aligned}
& \max _{v \in E_{n}} \frac{a(v, v)}{\left(v_{1} v\right)}=\max _{\alpha_{1}, \ldots, r_{n}} \frac{a\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i}, \sum_{j=1}^{n} \alpha_{j} \phi_{j}\right)}{\left(\sum_{i=1}^{n} \alpha_{i} \phi_{i} \sum_{j=1}^{n} \alpha_{j} \phi_{j}\right)} \\
& =\max _{\alpha_{1, \ldots, 1}, \alpha_{n}} \frac{\sum_{i=1}^{n} \alpha_{j}^{2} \lambda_{j}}{\sum_{j=1}^{n} \alpha_{j}^{2}}=\lambda_{n}
\end{aligned}
$$

It remains to show for any V_{n} that $\max _{v \in V_{n}} \frac{a(v, v)}{(v, v)} \geqslant \lambda_{n}$. We pick $w \in V_{n}$

Such that $\left(w, \phi_{j}\right)=0 \quad \forall j=1, \ldots, n-1$
othermse V_{n} can not have dim n all members of V_{n} would be lined Combinabas of $\left\{d_{i}\right\}_{i=1}^{n-1}$
Since $x_{n}=\min _{\substack{\left(v, d_{i}\right)=0, i=1, \ldots, n-1}} \frac{a(v, v)}{(v, v)} \leq \frac{a(w, w)}{(w, w)}$

$$
\begin{aligned}
i=1, \ldots, n-1 & \leq \max _{v \in V_{n}} \frac{a(v, v)}{(v, v)}
\end{aligned}
$$

Lemma 6.1 Let $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be an orthonormal(basis in $L^{2}(\Omega)$. Then the best approximation of $v \in L^{2}(\Omega)$ by a linear combination of
$\left\{\phi_{i}\right\}_{i=1}^{N}$ is $v_{N}=\sum_{i=1}^{N}\left(v, \phi_{i}\right) \phi_{i}$
Prot: $\left\|v-\sum_{i=1}^{n} \alpha_{i} \phi_{i}\right\|^{2}=\|v\|^{2}-2 \sum_{i=1}^{N} \alpha_{i}\left(v, r_{i}\right)+\sum_{i=1}^{N} \alpha_{i}^{2}$

$$
=\|v\|^{2}+\sum_{i=1}^{N}\left(\alpha_{i}-\left(v_{i} \phi_{i}\right)\right)^{2}-\sum_{i=1}^{N}\left(v_{i} \phi_{i}\right)^{2}
$$

which is minimal when $\alpha_{i}=\left(v, f_{i}\right), i=1, \ldots, N_{0}$

$$
\begin{aligned}
& \text { Paseval } \quad \sum_{i=1}^{\infty}\left(v, d_{i}\right)^{2}=\|v\|^{2} \\
& 1+\quad a(u, v)=(a \nabla u, \nabla v)+(c u, v)=\lambda(u, v) \\
& a d \quad 0<a_{0} \leq a \leq a, \quad 0 \leq c \leq c_{1} \\
& \lambda_{1}=\min _{v \in H_{u}^{\prime}(\Omega)} \frac{(a \nabla v, \nabla v)+(C v, v)}{(v, v)}
\end{aligned}
$$

