Example 2.32

In this example, we consider Hill’s equation®

i(t) +alt)y(t) =0, a(t+p)=alt) VteR, (2.43)

® George William Hill (1838-1914), US American.

where a is piecewise continuous and p > 0. Hill’s equation describes an un-
damped oscillation with restoring force at time t equal to —a(t)y(t). The two-
dimensional first-order system associated with (2.43) is given by

0 1

(1) = A(t)z(t), A(t):(_a(t) U) VteR. (2.44)

Let @ be the transition matrix function generated by A. Our intention is to
apply Theorem 2.31 in the context of (2.44). To this end, we calculate the
Floquet multipliers. Now,

det(M — @(p,0)) = A2 — A tr d(p, 0) + det B(p, 0),

and, by statement (2) of Proposition 2.7,

det B(p. 0) = exp ( A ptrA(s)ds) _1

Moreover, noting that @(t,0) is of the form
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where p; and 5 are the unique solutions of (2.43) satisfying 1 (0) = 1 = ¢5(0)
and ¢1(0) = 0 = p,(0), respectively, it follows that



tr@(p,0) = wi(p) + $2(p).

Consequently,
det(A — B(p,0)) = A —=2yA +1, where v:= 5(p1(p) +¢2(p)), (2.45)

and the Floquet multipliers are given by

A=V L

Invoking Theorem 2.31, we draw the following conclusions.

Case 1: |y > 1. Then Ay > 1 (if vy > 1) or A_ < —1 (if v < —1), and hence, at
least one solution of (2.44) is unbounded on R_.

Case 2: |y| < 1. Then AL =~ =i with > 0. Since ALA_ = 1, it follows that
Ayl = |A_| = 1. Moreover, A and A_ are simple (and a fortiori semisimple)
and hence all solutions of (2.44) are bounded on R.

Case 3: |y = 1. Then v = +1 and AL = A_ = 7. All solutions of (2.44) are
bounded on R if, and only if, v is semisimple. Since the algebraic multiplicity
of v is two, + is semisimple if, and only if, ker(v] —@(p,0)) = C?. Consequently,

~ is semisimple if, and only if, @(p,0) = ~I, that is, p1(p) = P2(p) = v and
¢1(p) = p2(p) = 0.

Irrespective of semisimplicity of «, by Proposition 2.20, there exists at least
one non-zero periodic solution of period p if v = 1 and of period 2p if v = —1.
Furthermore, we claim that, in the case of v being semisimple, every solution
is p-periodic (if v = 1) or 2p-periodic (if v = —1). To see this, assume that ~ is
semisimple. Then the matrix

_ (log~ 0
G = ( 0 log 7) '

is a logarithm of @(p,0) = ~I. By Theorem 2.30, there exists a piecewise
continuously differentiable p-periodic function © : R — C2*2 such that

B(t,0) = O(t) exp(tp'G) YteR.



If v = 1, then G = 0, and hence @&(t,0) = ©(t) for all t € R, showing that
&(t + p,0) = &(t,0) for all £ € R. Every solution z of (2.44) is of the form
z(t) = &(t,0)x(0) and is therefore p-periodic. If v = —1, then

im0
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(im/p)t
(1,0 = O(1) (8 y ) ¥t e R.

whence

0 e(iﬂf"p)t

Therefore, ®(t + 2p,0) = &(t,0) for all ¢t € R, showing that every solution x of
(2.44) is 2p-periodic.



