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Ordinary di¤erential equations and mathematical modelling
MVE162/MMG511, spring 2021.

Lecture 1

Prerequisite knowledge for the course.

This relatively di¢ cult course uses the whole scope of linear algebra and analysis

that Chalmers students from the Technical mathematics group and GU students

from the group in mathematics learned during the �rst year. Students with di¤erent

backgrounds might lack some of this material.

Before starting learning this course it is good to check notions and theorems that

are supposed to be known during teaching this course.

If you miss some of them, check Appendix 1 and Appendix 2 in the course book

by Logemann and Ryan, where all necessary mathematical background is discussed

in detail.

Some internatinal students might also need to learn Matlab or use other pro-

gramming tools to make computations in obligatory modeling projects.

Notions from linear algebra and analysis:

Vector space, normed vector space, norm of a matrix. Eigenvectors and eigen-

values of a matrix. Matrix diagonalization.

Cauchy sequence. Complete vector space (Banach space). Open, closed and

compact sets in Rn. Continuous functions and their properties on compact sets.
Uniform convergence for continuous functions.
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Results from analysis:

Space C(I) of continuous functions on a compact I is a complete vector space

(Banach space). Example A.14, p. 272.

Bolzano-Weierstrass theorem. Theorem A.16, p. 273.

Weierstrass criterion for uniform convergence of functional series. Corollary A.23

, p. 277.
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1 Introduction. Initial value problem, existence

and uniqueness of solutions.

The main subject of the course is systems of di¤erential equations in the form

x0(t) = f (t; x(t)) (1)

classi�cation and qualitative properties of their solutions. Here f : J � G ! Rn is
a vector valued function regular enough with respect to the time variable t and the

space variable x. J is an interval; G is an open subset of Rn. Equations where the
function f is independent of t are called autonomous:

x0(t) = f(x(t))

Finding a function x(t) : L! Rn satisfying the equation (1) for t 2 L on the interval
L � J together with the initial condition

x(�) = � (2)

for � 2 L is called the initial value problem (I.V.P.).
The curves x(t) in G have the property that they are tangent to the vector �eld

f (t; x(t)) 2 Rn at each time t and point x(t) 2 G.
One can by integrating the left and rignt hand sides of (1), reformulate the I.V.P.

(1),(2) in the form of the integral equation

x(t) = � +

Z t

�

f (�; x(�)) d� (3)

Continuous solutions to the integral equation (3) can be interpreted as general-

ized solutions to (1),(2) in the case when f (t; x) is only piecewise continuous with

respect to t and therefore the integral in (3) does not have derivative in some iso-

lated points. If f is continuous, then these two formulations are equivalent by the
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Newton-Leibnitz theorem.

More general notions of solutions can be introduced in the case when f (t; x(t)) is

integrable in the sense of Lebesque, but we do not consider such generalised solutions

in this course.

2 Classi�cation of ordinary di¤erential equations

and the plan of the course.

1. Equations where the right hand side is independent of time:

x0(t) = f(x(t))

f = f(x); x 2 G;

are called autonomous as we mentioned before. General di¤erential equations are
with f = f(t; x) are called non-autonomous.
Autonomous equations have a nice graphical interpretation. One can consider

and also draw a picture of the vector �eld f : G ! Rn. For every point � 2 G this
vector �eld gives according to the di¤erential equation, the velocity of a possible

solution curve x(t) going through the point �.

All solutions to an autonomous di¤erential equation have the property that cor-

responding curves are tangent curves to the vector �eld f : G! Rn.
One often calls autonomous di¤erential equations continuous dynamical sys-

tems.
2. General (non-autonomous) linear systems of di¤erential equations in the

form

x0(t) = A(t)x(t); x(t) 2 Rn; t 2 J

with a matrix A(t), A(t) : J ! Rn�n that is a continuous matrix valued function of
time t on the interval J . A particular class of non-autonomous linear systems is the

class of periodic linear systems with periodic matrix A(t+ p) = A(t) with some
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period p:

3. We will also consider linear non-homogeneous systems of di¤erential equa-
tions in the form

x0(t) = A(t)x(t) + g(t); x(t); g(t) 2 Rn; t 2 J

with a given term g(t) in the right hand side, both autonomous and non-autonomous.

4. Linear autonomous systems of di¤erential equations in the form

x0(t) = Ax(t); x(t) 2 Rn; t 2 R

with a constant matrix A:

The plan for the course is: to consider after some introductory examples and then

all these types of equations in the reverse order, from simpler to more complicated:

linear autonomous, linear non-autonomous, linear periodic, nonlinear autonomous.

At the very end of the course we will consider the existence of solutions in the

most general non-linear non-autonomous case. Many ideas will be introduced and

exploated �rst on the example of linear autonomous ODEs. Later these ideas will be

developed further and applied in more complicated situations. This way of studying

pursues two goals: to have more material for exercises and to introduce many general

mathematical ideas in a more "user friendly" way.

The course is divided into two large qualitatively di¤erent parts:

A) one - devoted to linear equations and using and developing some advanced

linear algebra, and

B) another one - devoted to non-linear equations and using reasoning based on

relatively advanced analysis.

5



3 Main types of problems posed for systems of

ODEs

I) Existence and uniquness of solutions to I.V.P. Finding maximal interval of
existence of solutions to I.V.P.

We give here two simple examples illustrating that solutions to a di¤erential

equation might exist not on any time interval (solutions can blow up - tend to

in�nity in �nite time), and that solutions do not need to be unique (there can be

two di¤erent solution curves going through one point (t; x))

Example of bounded maximal interval. (Ex. 1.2, p.14, L.R.) I.V.P.

x0(t) = t � x3; x(0) = 1

. By separation of variables we arrive to a solution that exists only on a �nite time

interval (�1; 1) called later maximal interval for this initial condition.

dx

x3
= t dt;

Z
dx

x3
=

Z
t dt; � 1

2x2
=
t2

2
+
C

2
; � 1

x2
= t2 + C; C = �1;

�x2 =
1

t2 � 1; x2 =
1

1� t2 ; x =
1p
1� t2

10.50-0.5-1
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5

2.5

0

x

y

x

y

Point out that for another initial conditions the maximal interval can be di¤erent.
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Example of non-uniqueness. (Ex.1.1, p.13, L.R.) I.V.P.

x0(t) = t � x1=3; t 2 R; x(0) = 0:

Point out that the right hand side has in�nite slope in x variable d
dx
(x1=3). We will

say later, after giving corresponding de�nition, that this function is not Lipschitz
with respect to x.

Constant solution x(t) = 0 exists. On the other hand for all c > 0 functions

x(t) =
(t2 � c2)3=2

(3)3=2
; t � c

are also solutions to the equation. See the calculation below. By extending these

solutions by zero to the left from t = c we get a family of di¤erent solutions satisfying

the same initial conditions x(0) = 0:

54.543.532.521.5

20

15

10

5

0

x

y

x

y

Calculation of solutions uses separation of variables.

dx

dt
= tx1=3;

dx

x1=3
= tdtZ

dx

x1=3
=

Z
tdt;

3

2
x
2
3 =

1

2

�
t2 � c2

�
x2=3 =

t2 � c2
3

; x =
(t2 � c2)3=2

(3)3=2
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Here c is an arbitrary constant c � t. Check the solution:

d

dt
x(t) =

d

dt

 
(t2 � c2)3=2

(3)3=2

!
=
1

3
t
p
3t2 � 3c2 = tx1=3

II) One can for particular classes of equations pose the problem of �nding a

reasonable analytical description of all solutions to the above equation. Such an

expression is called general solution.
III) Find particular types of solutions: equilibrium points � 2 Rn of au-

tonomous systems (points where f(�) = 0), periodic solutions, such that after
some period T > 0 the solution comes back to the same point: x(t) = x(t + T ) for

any starting time t.

IV) Find how solutions x(t) behave in the vicinity of an equilibrium point � with

t ! 1 : it is interesting if they stay close to � starting arbitrarily close to it, or

solutions can go go out of � with time t ! 1 for some initial points � situated

arbitrarily close to � (we will call these properties for stability or instability of
the equilibrium point �).

V) Find a geometric description of the set of all trajectories of solutions to an

equation. By trajectory we mean here the curve x(t), that the solution goes along,

during the time t 2 I when it exists. In the case of autonomous systems of dimension
2 we will call such a picture phase portrait.

VI) Describe geometric properties of so called limit sets, or "attractors" of a
solution: such a set that the solution x(t) "approaches" in�nitely close when t!1.

Examples

Pendulum is described by the Newton equation: Force = m � Acceleration;
Acceleration = l � �00(t),V elocity = l � �0(t):
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ml�00(t) = �
l�0(t)�mg sin(�(t)) = 0

Both for theoretical analysis and for numerical solution one always rewrites the

second order equation as a system of two equations for x1(t) = �(t) and x2(t) = �
0(t) :

x01(t) = x2(t)

x02(t) = � 

m
x2(t)�

g

l
sin(x1(t))

We can rewrite it in general vector form as

x0(t) = f(x(t))

with

f(x) =

"
x2

� 

m
x2 � g

l
sin(x1)

#
This non-linear system of equations cannot be solved analytically. We show

below results of numerical solutions of this system in a form of a phase portrait
of the system.
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Phase portrait.

The picture of trajectories - curves (x1(t); x2(t)) corresponding di¤erent solutions

to the equation for the pendulum in the phase plane of variables x1 and x2 looks
as the following. Such pictures are called phase portrait of the system. We will
draw many of them in this course, in particular in modelling projects.

Points � = 0 + 2�k, �0 = 0 and � = � + 2�k, �0 = 0 on the �rst picture are

equilibrium points. One can see closed orbits around equilibrium points � = 2�k,

�0 = 0, corresponding to periodic solutions. Points � = �+2�k, �0 = 0 correspond to

the upper position of the pendulum that is a non-stable equilibrium point. Higher

up and down when the angular velocity is large enough we observe non-bounded
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solutions corresponding to rotation of the pendulum around the pivot. Orbits for

the pendulum without friction can be described by a non-linear equation.

In the case with friction on the second picture one observes the same equilibrium

points. But the phase portrait is completely di¤erent. Almost all trajectories tend

to one of equilibrium points � = 2�k, �0 = 0 when time goes to in�nity. No closed

orbits and no unbounded solutions are observed in this case.

Van der Pol equation . (Example 1.1.1. p. 2 in Logemann/Ryan)

x0(t) = f(x(t))

f(x) =

"
x2

�x1 + x2(1� (x2)2)

#

We see that the equilibrium point in the origin is unstable but all trajectories

tend to a limit set or "attractor" that is a closed curve (depicted in red) that seems

to be an orbit corresponding to a periodic solution.

Lorenz�s model for turbulence. Strange attractor.
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For two dimensional systems only stationary points and closed orbits and some

chains of stationary points connected with orbits are possible as "attractors". In

dimension 3 much more complicated attractors are possible with a classical example

being the Lorenz equation.

x0 = ��(x� y)
y0 = rx� y � xz
z0 = xy � bz

A trajectory for � = 10; r = 28, b = 8=7:

We can see that the trajectory tends to a set of very complicated structure.
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4 Linear autonomous systems of ODE

We will �rst consider general concepts in the course in the particular case for linear

system of ODEs with constant matrix (linear autonomous systems).

x0(t) = Ax(t); x(t) 2 Rn; t 2 R (4)

where A is a constant n� n matrix A 2 Rn�n.
In particular we will �nd solutions to initial value problem (I.V.P. ) with initial

condition

x(�) = �; (5)

We point out that all general results about linear systems of ODE are also valid

in the case of solutions found in the complex vector space x 2 Cn , � 2 Cn and
for complex matrix A 2 Cn�n: Some of the results are formulated in a more elegant
form in the complex case or might be valid only in complex form.

Several general questions that we formulated above will be addressed for this

type of systems.

The �nal goal in this particular case will be to give a detailed analytical descrip-

tion for the set of all solutions and to connect qualitative properties of solutions

with speci�c properties of the matrix A, its eigenvalues and eigenvectors together

with more subtle spectral properties such as subspaces of generalised eigenvectors

that will be de�ned later.

4.1 The space of solutions for general non-autonomous lin-

ear systems

Wemake �rst two simple observations that are valid even for general non-autonomous

linear systems with a matrix A(t) that is not constant but is a continuous function

of time on the interval J .

x0(t) = A(t)x(t); x(t) 2 Rn; t 2 J (6)
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Lemma. The set of solutions Shom to (4), and to (6) is a linear vector space.
Proof. Shom includes the zero constant vector and is therefore not empty. By

the linearity of the time derivative x0(t) and of the matrix multiplication A(t)x(t);

for a pair of solutions x(t) and y(t) their sum x(t) + y(t) and the product Cx(t)

with a constant C are also solutions to the same equation. Considering equations

for y(t) and x(t)

x0(t) = A(t)x(t)

y0(t) = A(t)y(t)

together with the above arguments we derive the conclusion:

(x(t) + y(t))0 = A(t)(x(t) + y(t))

(Cx(t))0 = A(t)(Cx(t))

�

4.2 Uniqueness of solutions to autonomous linear systems.

One shows the uniqueness of solutions to (4) by using a simple version of the Grön-

wall inequality that in general case will be considered later.

Grönwall inequality

Suppose that the I.V.P. (4),(5) for an autonomous linear system has a solution

x(t) on an interval I including � . Consider the case when � � t.
We can write an equivalent integral equation for x(t) for t 2 I; � � t

x(t) = � +

Z t

�

Ax(�)d� (7)

We calculate of the norm in Rn of the left and right sides in the integral equation
(7) and use the triangle inequality:
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kx(t)k � k�k+




Z t

�

Ax(�)d�






The triangle inequality for integrals:



Z t

�

x(�)d�





 � Z t

�

kx(�)k d�

and the de�nition of the matrix norm:

kAk def= sup
kxk6=0

(kAxk = kxk) = sup
kxk=1

(kAxk)

imply that

kx(t)k � k�k+
Z t

�

kAx(�)k d�

and �nally

kx(t)k � k�k+
Z t

�

kAk kx(�)k d�

We will prove now that this integral inequality for kx(t)k implies the famous Grön-
wall inequality for such kind of integral inequalities, giving an estimate for kx(t)k
in terms of the initial data k�k.
This is a standard argument that will be used within the course again later two

more times for more complicated types of equations.

Introducing the notation G(t) = k�k+
R t
�
kAk kx(�)k d� for te right hand side in

the inequality, we conclude that G(�) = �, kx(t)k � G(t); and

G0(t) = kAk kx(t)k � kAkG(t)

Multiplying the last inequality by the integrating factor exp(�kAk t) and referring
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to the chain rool for the derivative of exp(�kAk t), we arrive to

G0(t) exp(�kAk t)� kAk exp(�kAk t)G(t) � 0

G0(t) exp(�kAk t) +G(t) (exp(�kAk t))0 � 0

(G(t) exp(�kAk t))0 � 0

Integrating the left and the right hand side from � to t we get the inequality

G(t) exp(�kAk (t)) � G(�) exp(�kAk (�))
G(t) � k�k exp(kAk (t� �))

The last relation implies the Grönwall inequality in this simple case:

kx(t)k � k�k exp(kAk (t� �)) (8)

that follows from the integral inequality:

kx(t)k � k�k+
Z t

�

kAk kx(�)k d�

�(Knowlege of this proof is required at the exam)
Lemma. The solution to I.V.P. (4),(5) is unique.

x0 = Ax; x(�) = �

Proof. Suppose that there are two solutions x(t) and y(t) to the I.V.P. (4),(5)
on a time interval including � and both are equal to � at the initial time t = � .

Consider the vector valued function z(t) = x(t) � y(t) and the case when � � t:

Then z(t) is also a solution to the same equation (4) and satis�es the initial condition

z(�) = 0.

The estimate (8) applied to z(t) implies that

kz(t)k � 0 exp(kAk (t� �)) = 0
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z(t) = 0 and therefore the uniqueness of solution to I.V.P. (4),(5). The proof of the

case � � t is similar.�
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4.3 Exponent of a matrix

Two ideas are used to construct analytical solutions to (4) :

1) One is to �nd a possibly simple basis fv1(t); :::; vN(t)g to the solutions space
Shom.
2) Another one is based on the observation that the matrix exponent

exp (A (t� �)) = eA(t��) def= I+A (t� �)+1
2
A2 (t� �)2+:::+ 1

k!
Ak (t� �)k ::: =

1X
k=0

1

k!
Ak (t� �)k

gives an expression of the the unique solution to the I.V.P. (1), (1a) in the form:

x(t) = eA(t��)�

One can derive this property of the matrix exponent by considering the integral

equation (7) for x(t)

x(t) = � +

Z t

�

Ax(�)d�

equivalent to the I.V.P. (4),(5). We can try to solve this integral equation by itera-

tions:

xk+1(t) = � +

Z t

�

Axk(�)d� (9)

x0 = �

xk(t) =

�
I + A (t� �) + 1

2
A2 (t� �)2 + :::+ 1

k!
Ak (t� �)k

�
�

Iterations xk(t) converge uniformly on any �nite time interval as k ! 1 and the

limit gives the series for exp(At) formulated above times the initial data �:

The series for exp(At) =
P1

k=0
1
k!
Ak (t� �)k converges uniformly on any �nite

time interval [�T; T ] including initial time point � 2 [�T; T ] by the Weierstrass
criterion. Most of you studied it before. We will remind it�s formulation here. It

will be used several times in the course.

Weierstrass criterion. Corollary A.23, p. 277 in L.R.
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Let X be a normed vector space, Y be a complete normed vector space (Banach

space)K � X be compact,ffn(x)g1n=1 ; x 2 K be a sequence of continuous functions

fn : K ! Y and let fmng1n=1 a real sequence such that kfn(x)k � mn for all x 2 K
and all n 2 N, where k:::k is the norm in Y .

If
P1

n=1mn is convergent, then
P1

n=1 fn(x) is unifomly convergent on K.�
You studied this theorem in the case when X = RN , Y = RM : In our situation

hereK is a closed interval in R for example [�T; T ] in R and Y is a space of matrices
RN�N (or CN�N).

To prove that our series satis�es the Weierstrass criterion, we will apply the

estimate for the norm of the product of two matrices: kABk � kAk kBk : It implies
that kA2k � kAk kAk, kA3k � kAk kAk kAk ; :::and



Ak

 � kAkk et.c.
Home exercise. Prove the inequality kABk � kAk kBk yourself!
Therefore the norm of each term in the series

P1
k=0

1
k!
Ak (t� �)k is estimated by

a term from a convergent number series:



 1k!Ak (t� �)k




 � 1

k!



Ak

 jt� � jk �
1

k!
kAkk jt� � jk � 1

k!
kAkk (2T )k

for the exponential function exp(kAk (2T )): We use here that jt� � j � 2T for each
t 2 [�T; T ]:
Application of the Weierstrass criterion to the series

P1
k=0

1
k!
Ak (t� �)k leads to

the solution of the I.V.P. in the form

x(t) = eA(t��)� = exp(A (t� �))� =
 1X
k=0

1

k!
(t� �)k Ak

!
�

We make this conclusion by tending to the limit k ! 1 in the integral equation

(9) de�ning iterations because the expression under the integral in (9) converges

uniformly and therefore the limit of the integral is equal to the integral of this

uniform limit. This solution is unique by the Lemma we proved before.
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Corollary 2.9 in L.&R.
The function x(t) = exp(A(t� �))� is the unique solution to the I.V.P. (4),(5).
This theoretical expression for unique solutions to (1) dispite of it�s elegansce has

a huge disadvantage that the series exp(At) =
P1

k=0
1
k!
(t� �)k Ak is not possible to

calculate analytically in a simple way.

We will try instead to �nd a basis of the vector space Shom of all solutions to (1).

4.4 The dimension of the space Shom of solutions to an au-
tonomous linear system of ODEs

Theorem. (Proposition 2.7, p.30, L.R. in the case of non-autonomous systems).
Let b1; :::; bN be a basis in RN(or CN). Then the functions yj : R! RN(or CN)

de�ned as solutions to the I.V.P. (4),(5)

x0(t) = Ax(t); A 2 RN�N(CN�N)

with yj(�) = bj, j = 1; :::N , by yj(t) = exp(A(t� �))bj; form a basis for the space

Shom of solutions to (4). The dimension of the vector space Shom of solutions to (4)
is equal to N - the dimension of the system (4).

The idea of the proof. This property is a consequence of the linearity of the
system and the uniqueness of solutions to the system and is independent of detailed

properties of the matrices A(t) and A in (4) and (6).

Proof. Consider a linear combination of yj(t) equal to zero for some time

� 2 R: l(�) =
PN

j=1 �jyj(�) = 0. Observe that the trivial constant zero solution

0(t) coinsides with l at this time point.

But by the uniqueness of solutions to (4) it implies that l(t) at arbitrary time

must coinside with the trivial zero solution for all times t and in particular at time

t = � . Therefore l(�) =
PN

j=1 �jbj = 0 (point out that yj(�) = bj). It implies

that all coe¢ cients �j = 0 because b1; :::; bN are linearly independent vectors in

RN(or CN). It implies that y1(t); :::; yN(t) are linearly independent for all t 2 R by
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de�nition. Arbitrary initial data x(�) = � in RN(or CN) can be represented as a
linear combination of basis vectors b1; :::; bN : � =

PN
j=1Cjbj. The construction of

y1(t); :::; yN(t) shows that an arbitrary solution to (4) can be represented as linear

combination of y1(t); :::; yN(t).

x(t) = exp(A(t� �))� = exp(A(t� �))
NX
j=1

Cjbj =

=
NX
j=1

Cj[exp(A(t� �))bj]
=yj(t)

=
NX
j=1

Cjyj(t)

Therefore fy1(t); :::; yN(t)g is the basis in the space of solutions Shom and therefore

Shom has dimension N:�

(Knowlege of this proof is required at the exam)

By taking � = e1; :::; en we observe that each column in the matrix exp(A (t� �))
is a solution to the equation (4). We have just shown in the theorem before that

these columns are linearly independent and build a basis in the space of solutions.

Lecture 2
Summary of the material introduced in Lecture 1

1. Initial value problem (I.V.P.) for an ordinary di¤erential equation (ODE).

x0(t) = f(t; x(t)); x(�) = �

2. Types of di¤erential equations: autonomous, non-autonomous, linear, linear

non-homogeneous, non-linear.

3. Questions of interest about ODEs.

a) Existence and uniqueness of solutions. Examples.

b) General solutions (an analytic expression for all solutions)

c) Finding speci�c solutions: equilibrium: f(x0) = 0 , periodic.
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d) Stability of equilibrium points (do all solutions stay close to an equilib-

rium point?)

e) Attractors of solutions (sets that solutions tend to when t ! 1;can be
equilibrium points or periodic orbits)

4. Autonomous linear ODEs (x0 = Ax with constant matrix A)

5. Exponent of a matrix as a tool for calculating solutions to I.V.P.

6. Uniqueness of solutions and the proof with Grönwalls inequality. (required
at the exam)
7. The space of solutions to x0 = Ax, it�s dimension and a construction of a

basis.(required at the exam)

4.5 Properties of the matrix exponent.

We collect in the following Lemma some (may be partially known) properties of the

matrix exponent.

For a complex matrix M the notation M� means transpose and complex conju-

gate matrix (called also Hermitian transpose)

Lemma (Lemma 2.10 , p. 34 in L.&R.) Let P and Q be matrices in RN�N or

CN�N

(1) For a diagonal matrix P = diag(�1; �2; :::; �n)

exp(P ) = diag(exp(�1); :::; exp(�n))

(2) exp(P �) = (exp(P ))�

(3) for all t 2 R,

d

dt
exp(At) = A exp(At) = exp(At)A

(4) If P and Q are two commuting matrices PQ = QP , then exp(P )Q =
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Q exp(P ) and

exp(P +Q) = exp(P ) exp(Q) = exp(Q) exp(P )

(5) exp(�P ) exp(P ) = exp(P ) exp(�P ) = I or exp(�P ) = (exp(P ))�1

Proof
Proofs of (1),(2) are left as exercises. We proof �rst (4) by direct calculation.

(P +Q)k =

kX
m=0

�
k

m

�
PmQk�m (for commuting matrices)�

k

m

�
notation
=

�
k!

m! (k �m)!

�
eP+Q =

1X
k=0

1

k!
(P +Q)k =

=
1X
k=0

1

k!

kX
m=0

�
k!

m! (k �m)!

�
PmQk�m

=
1X
k=0

X
m+p=k

Pm

m!

Qp

p!
=

 1X
m=0

1

m!
Pm

! 1X
p=0

1

p!
Qp

!
= eP eQ

(3) Can be proved in three di¤erent ways.

It follows from the de�nition of exp(At) by elementwise di¤erentiation of the

corresponding uniformly converging series.

It follows also from the observation above that each column in exp(At) with

index k is a solution to the system of equations x0 = Ax with initial data x(0) = ek
.

A straightforward proof can be given by the de�nition of derivative and using

the relation (4). We use the formula exp(P + Q) = exp(P ) exp(Q) for commuting

matrices, the fact that At and As commute for any t and s and the Taylor formula
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applied to for exp(Ah)� I for small h:

exp(A (t+ h))� exp(At) = (exp(Ah)� I) exp(At) =�
Ah+O(h2)

�
exp(At)

Therefore

d

dt
(exp(At)) = lim

h!0

(exp(A (t+ h))� exp(At))
h

=

lim
h!0

(Ah+O(h2)) exp(At)

h
= A exp(At)

�

4.6 Analytic solutions. Case when a basis of eigenvectors

exists.

We know that the unique solution to the initial value problem (I.V.P.) x0(t) = Ax(t),

x(�) = � can be expressed as

x(t) = exp(A(t� �))�

or x(t) = exp(At)� in the case when the initial time � = 0. But this beautiful

expression does not give an explicit formula for the solution because the matrix

exponent exp(At) is de�ned as an in�nite series.

An idea that leads to an explicit analytical solution is to use the theorem about

the basis in te space of solutions. We can try to �nd a basis fy1(t); :::; yN(t)g to the
solution space Shom by �nding a particular basis fv1; :::; vNg in CN or RN such that
the matrix exponent exp(At) acts on the elements of this basis in a particularly sim-

ple way, so that all solutions yk(t) = exp(A (t� �))vk can be calculated explicitely.
We will consider mainly the case � = 0 for autonomous systems.
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The simplest example that illustrates this idea is given by eigenvectors to A.

These are vectors v 6= 0 such that

Av = �v

for some number �. Numbers � are called eigenvalues of A. Eigenvalues must be

roots of the characteristic polynomial

p(�) = det(A� �I)

because rewriting the de�nition of an eigenvector we arrive to a homogeneous system

of linear equations with matrix (A� �I)

(A� �I) v = 0

with v 6= 0. Using the de�nition Av = �v for the eigenvalue and the eigenvector k
times we conclude that Akv = �kv. Substituting this formula into the expression

eAtv =
P1

k=0
1
k!
tkAkv we conclude that (!!!)

eAtv =
1X
k=0

1

k!
tk�kv = e�tv:

Important new idea.
Another more general idea leads to the same formula, but has an advantage that

it can be applied in more complicated situations. We use here that the eigenvector

v corresponding to the eigenvalue � makes all powers (A� �I)k v = 0 except k = 0:

eAtv = exp (�tI + (At� �tI)) v = exp (�tI) exp ((A� �I) t) v = (10)

=
�
e�tI

� 1X
k=0

1

k!
tk (A� �I)k v = e�tv:

This observation leads to a simple conclusion that if the matrix A has N linearly
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independent eigenvectors fvkgNk=1, then any solution to (4) with initial data � =PN
k=1Ckvk can be expressed as a linear combination in the form

x(t) =

NX
k=1

Ck
�
e�ktvk

�
with vector functions yk(t) = e�ktvk, k = 1; :::; N , building a basis for the space of

solutions to the equation x0 = Ax (4).

It is the case when a diagonalization of the matrix A exists:

Check the diagonalization property and it�s use for solution of ODEs in the course

of linear algebra!

We point out that � and v can be a complex eigenvalue and a complex eigenvector

here. In the case when all these eigenhvalues are real, this basis will be real. In

the case if a real matrix A has some complex eigenvalues; they appear as pairs of

complex conjugate eigenvalues and corresponding eigenvectors, that still can be used

to build a real basis for solutions. We will demonstrate it on a couple of examples

later.

Example 1. Consider system x0 = Ax with matrix A =

"
0 1

1 0

#
. The matrix

A has characteristic polynomial p(�) = �2 � 1 and two eigenvalues �1 = 1 and

�2 = �1:
Corresponding eigenvectors satisfy homogeneous systems (A� �1) v1 = 0 with

matrix (A� �1I) =
"
�1 1

1 �1

#
and (A� �1I) v2 = 0 with matrix (A� �2I) ="

1 1

1 1

#
.

Eigenvectors are v1 =

"
1

1

#
and v2 =

"
�1
1

#
and are linearly independent

(in particular it follows from the fact that eigenvalues are di¤erent). Solutions

y1(t) = e
tv1 and y2(t) = e�tv2 are linearly independent.
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Arbitrary real solution to the system of ODEs has the form

x(t) = C1y1(t) + C2y2(t) = C1e
t

"
1

1

#
+ C2e

�t

"
�1
1

#

with arbitrary coe¢ cients C1 and C2:Corresponding phase portrait includes a par-

ticular solutions tending to in�nity along the vector v1 =

"
1

1

#
, a solutions tending

to the origin along the vector v2 =

"
�1
1

#
and other solutions �lling the rest of the

plain having orbits in the form of hyperbolas. One can observe it by integrating the

di¤erential equation

x01 = x2

x02 = x1

dx2
dx1

=
x1
x2
; x2dx2 = x1dx1

with separable variables that follows from the system and concluding that

x21 � x22 = Const

543210-1-2-3-4-5

5

4

3

2

1

0

-1

-2

-3

-4

-5

x

y

x

y

27



Similar phase portraits will be observed in the arbitrary case when the 2�2 real
non-degenerate matrix A (detA 6= 0) has real eigenvalues with di¤erent signs but the
picture will be rotated and might be less symmetric depending on the directions of

the eigenvectors v1 and v2 (here they are orthogonal). One can still draw trajectories

along eigenvectors and then sketch other trajectories according to the directions of

trajectories along eigenvectors.

5 Generalised eigenvectors and eigenspaces.

It is easy to give examples of matrices that cannot be diagonalized. For linear

autonomous systems with such matrices the expression of arbitrary solutions in

terms of linearly independent eigenvectors is impossible because we just do not have

N linearly independent ones.

Example 3.(
x01 = �x1
x02 = x1 � x2

or x0(t) = Ax with A =

"
�1 0

1 �1

#
, the characteristic

polynomial is p(�) = (�+ 1)2:

p(�) = �2 � �Tr (A) + det(A) in dimension 2
Matrix A has an eigenvalue � = �1 with algebraic multiplicity m(�) = 2. There is

only one linearly independent eigenvector v =

"
0

1

#
satisfying the equation

(A� �I)v = 0.

(A� (�1)I) =
"
0 0

1 0

#

The function x(t) = e�tv is a solution to the system. One likes to �nd a basis of

solutions to the space Shom of all solutions. We need another linearly independent
solution for that. Observe that

x1(t) = C1e
�t
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is the solution to the �rst equation, substitute it into the second equation and solve

it explicitely with respect to x2(t):

x02(t) = �x2(t) + C1e�t

etx02(t) + e
tx2(t) = C1�

etx2(t)
�0

= C1

etx2(t) = C2 + C1t

x2 = C2e
�t + C1t e

�t

Therefore the general solution to this particular system has the form

x(t) =

"
x1(t)

x2(t)

#
= C1e

�t

"
1

t

#
+ C2e

�t

"
0

1

#
=

C1e
�t

 "
1

0

#
+ t

"
0

1

#!
+ C2e

�t

"
0

1

#
= C1e

�t �v(1) + tv�+ C2e�tv
where v(1) =

"
1

0

#
. The phase portrait looks as:

1050-5-10

4

2

0

-2 x

y

x

y
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In this particular example we could �nd an explicit solution using the fact that

the matrix A is trianglular. This idea cannot be generalized to the arbitrary case

but can be used for linear system with variable coe¢ cients and triangular matrix.

We point out that the initial value for the derived solution

x(t) = C1e
�t �v(1) + tv�+ C2e�tv is x(0) = � = C1 " 1

0

#
+ C2

"
0

1

#
=C1v(1) + C2v.

Vector v(1) =

"
1

0

#
is linearly independent of the eigenvector v =

"
0

1

#
, and

applying the lemma about the basis of the solution space, we conclude that e�tv

and e�t
�
v(1) + tv

�
are linearly independent for all t 2 RN and build a basis for the

space of solutions to the system.

Observe that v(1) has a remarkable property that (A� �I) v(1) = v as"
0 0

1 0

#"
1

0

#
=

"
0

1

#
and therefore (A� �I)2 v(1) = (A� �I) v def

= 0. Such

vectors are called generalised eigenvectors to A corresponding to the eigenvalue
�:

We point out that the initial data in this explicit solution are represented as a

linear combination of an eigenvector and a generalised eigenvector: x(0)=C1v(1) +

C2v.

A more general idea!!!

We observe also that the general solution we have got could be derived by ap-

plying the same idea as in the formula eAt = exp (�tI) exp ((A� �I) t): (10) before,
but applied to the generalised eigenvector v(1):

exp(At)v(1) = exp (�tI + (At� �tI)) v(1) = exp (�tI) exp ((A� �I) t) v(1)

e�t
1X
k=0

1

k!
tk (A� �I)k v(1) = e�t

�
v(1) + t (A� �I) v(1)

�
=

= e�t
�
v(1) + tv

�
(A� �I)k v(1) = 0; k � 2
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This reasoning again gives the second basis vector in the space of solutions, that

we have got before by the trick with separation of variables, and gives a clue what

might be a general way to explicit solution to the linear system of ODEs x0 = Ax

with an arbitrary constant matrix A.�

De�nition of generalised eigenvectors.

A non-zero vector z 2 CN( or RN) is called a generalised eigenvector to the
matrix A 2 CN�N corresponding to the eigenvalue � with the algebraic multiplicity
m(�) if (A� �I)m(�) z = 0.�

If (A� �I)r z = 0 and (A� �I)r�1 z 6= 0 for some 0 < r < m(�) we say that
z is a generalised eigenvector of rank (or height) r to the matrix A.�
An eigenvector u is a generalised eigenvector of rank 1 because (A� �I)u = 0:
Notation.
The set ker

�
(A� �I)m(�)

�
- (kernel or nullspace) of all generalized eigenvectors

of an eigenvalue � is denoted by E(�) in the course book. E(�) is a subspace in

CN( or RN).
Proposition on A - invariance of E(�).
E(�) is A- invariant, namely if z 2 E(�), then Az 2 E(�).
Proof. We check it by taking z 2 E(�) such that (A� �I)m(�) z = 0 and

calculating (A� �I)m(�) (Az) = A
�
(A� �I)m(�) z

�
= 0, the last equality is valid

because A and (A� �I)m(�) commute:�
Proposition on exp(At) - invariance of E(�).
E(�) is invariant under the action of exp(At), namely if z 2 E(�), then

exp(At)z 2 E(�).
Proof. Consider the expression for the exp(At)z as a series

exp(At)z =
1X
k=0

1

k!
tkAkz = lim

m!1

mX
k=0

1

k!
tkAkz| {z }
2E(�)

9>>=>>; 2 E(�)
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All terms Akz in the sum belong to E(�). One can see it by repeating the

argument in the previous proposition.

The expression for exp(At)z is therefore a limit of linear combinations of elements

from the �nite dimensional generalized eigenspace E(�) that is a closed and complete

set. Therefore exp(At)z must belong to E(�).�
A remarkable property of generalised eigenvectors z is that the series for the

matrix exponent exp(At) applied to z namely exp(At)z can be expressed in such

a way that it would include only a �nite number of terms and can be calculated

analytically.

Notation.
�(A) is the set of all eigenvalues of the matrix A, or spectrum of the matrix A:

Theorem (2.11, Part 1), p. 35 in the course book) Let A 2 CN�N .
For an eigenvalue � 2 �(A) with algebraic multiplicity m(�) denote the subspace
of its associated generalised eigenvectors by E(�) = ker (A� �I)m(�) and for z 2
CNdenote by xz(t) = exp(At)z - the solution of I.V.P. with initial data xz(0) = z.
Then for any � 2 �(A) and any z 2 E(�) a generalised eigenvector

exp (At) z = e�t
m(�)�1X
k=0

tk

k!
(A� �I)k z

Proof.
We show it by the following direct calculation:

xz(t) = exp (At) z = exp (t�I) exp ((A� �I) t) z = (11)�
e�tI

� 1X
k=0

tk

k!
(A� �I)k z = e�t

m(�)�1X
k=0

tk

k!
(A� �I)k z

because powers (A� �I)k z = 0 - terminate on z 2 E(�) for all k � m(�) by the

de�nition of generalised eigenvectors.

We also use at the �rst step of calculations the property (4) from the Lemma

about matrix exponents: exp(P + Q) = exp(P ) exp(Q) for commuting matrices P
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and Q. �

5.1 Analytic solutions. General case using a basis of gener-

alized eigenvectors.

The next theorem gives a theoretical background for a method of constructing

analytic solutions to (4) (x0(t) = Ax(t)), by representing arbitrary initial data

x(0) = � using a basis of generalised eigenvectors to A in CN . We are going to
consider initial conditions for autonomous systems only at the point � = 0,

because all other solutions are derived from such ones just by a shift in time,

because the right hand side in the equation does not depend on time explicitely

and if x(t) is a solution, then x(t+ �) is also a solution.

De�nition The sum V1 + V2 + :::+ Vs of subspaces V1,V2 ...Vs in a vector space is

a set of vectors in the form v1 + v2 + :::+ vs with vectors vj 2 Vj, j = 1; :::; s: �

De�nition Direct sum V1 � V2 � :::� Vs of subspaces V1,V2 ...Vs is a usual
sum V1 + V2 + :::+ Vs of these subspaces with a special additional property that

any vector in v 2 V1 � V2 � :::� Vs is represented only in a unique way as a sum
v = v1 + v2 + :::+ vs of vectors vj 2 Vj, j = 1; :::; s: �

It makes in this case any set of vectors vj 2 Vj, j = 1; :::; s belonging to di¤erent Vj
linearly independent.

Subspaces Vj, j = 1; :::; s have only one common point - zero.

Theorem (generalized eigenspace decomposition theorem A.8, p. 268 in
the course book, without proof)

Let A 2 CN�N and �1; :::; �s be all distinct eigenvalues of A with multiplicities
mj,

Ps
j=1mj = N . Then CN can be represented as a direct sum of generalised

eigenspaces E(�j) = ker(A� �jI)mj to A having dimensions mj:

dim (ker(A� �jI)mj) = mj
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CN = ker(A� �1I)m1 � :::� ker(A� �sI)ms (12)

�
If the matrix A is real having real eigenvalues, then the result will be valid for

RN :
The formula (11) together with the decomposition of CN into direct the sum of

generalised eigenspaces gives a recipe for a �nite analytic representation of solutions

to I.V.P. to x0 = Ax (4) and a representation of te general solution to (4).

Theorem (2.11, part 2, p. 35 in the course book) Let z 2 E(�) be

a generalized eigenvector corresponding to the eigenvalue �. Denote by xz(t) =

exp(At)z - the solution of I.V.P. with xz(0) = z.

Let B(�j) be a basis in E(�j) having dimesion mj, and denote B = [sj=1B(�j)
- the union of all bases of generalized eigenspaces E(�j) for all distinct eigenvalues

�j 2 �(A).

The set of functions fxz : z 2 Bg is a basis of the solution space Shom of (4).

Proof. By the generalized eigenspace decomposition theorem CN = ker(A �
�1)

m1� :::�ker(A��s)ms and therefore all subspaces E(�j) = ker(A��j)mj making

them linearly independent. The total number of these basis vectors is
Ps

j=1mj = N

that is equal to the dimension of CN . Therefore B is a basis in CN :
From the theorem on the dimension of the solution space Shom of a linear system

it follows that solutions with initial data taken from the basis B build a basis in the
solution space Shom of (4).
�

Lecture 3
Summary of Lecture 2.

1. Generalized eigenvector z to a matrix A corresponding to an eigenvalue � is

a vector satifying the relation

(A� �I)m(�)z = 0
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where m(�) is the algebraic multiplicity of �: p(w) = (w � �)m(�)(:::):
2. Generalised eigenspace E(�) is a subspace of all gen. eigenvectors correspond-

ing to �:

3. A remarcable observation that series for exp(At)z include only �nite number

of terms up to te order m(�)� 1 in t:
4. There is a basis of generalized eigenvectors in CN(RN)
5. We will �nd general solution to x0 = Ax with help of such a basis.

Practical calculation of solutions to autonomous linear systems of
ODEs
We continue with a description of how this theorem can be used for practical

calculation of solutions to I.V.P.

Let the matrix A have s distinct eigenvalues �1; :::; �s with corresponding gen-

eralised eigenspaces E(�j). Represent the arbitrary initial data x(0) = � for the

solution x(t) in a unique way as a sum of its components from di¤erent generalised

eigenspaces:

� =
sX
j=1

x0;j; x0;j 2 E(�j)

We remind here that CN = E(�1) � E(�2) � ::: � E(�s) and it implies that any
vector � 2 CN is represented i such a way in a unique way. Here x0;j 2 E(�j) - are
components of � in the generalized eigenspaces E(�j) = ker(A��j)mj of the matrix

A. These subspaces intersect only in the origin and are invariant with respect to A

and exp(At). It implies that for the solution xz(t) with initial data z 2 E(�j), we
have xz(t) = exp(At)z 2 E(�j) for all t 2 R:
Let mj be the algebraic multiplicity of the eigenvalue �j. We apply the for-

mula (11) to this representation and derive the following expression for solutions for
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arbitrary initial data as a �nite sum (instead of series):

x(t) = eAt� = eAt

 
sX
j=1

x0;j

!
=

sX
j=1

eAtx0;j = (13)

sX
j=1

 
e�jt

"
mj�1X
k=0

(A� �jI)k
tk

k!

#
x0;j

!
(14)

Series expressing exp(At)x0;j terminates on each of the generalised eigenspaces

E(�j).

The last formula still needs speci�cation to derive to an explicit solution. Gen-

eral solution can be written explicitely by �nding a basis of of eigenvectors vj and

generalized eigenvectors for each generalised eigenspace E(�j) and expressing all

components x0;j of � in the generalized eigenspaces E(�j) in the form

x0;j = :::Cpvj + Cp+1v
(1)
j + Cp+2v

(2)
j ::: (15)

including all linearly independent eigenvectors vj corresponding to �j (it might exist

several eigenvectors vj corresponding to one �j ) and enough many linearly inde-

pendent generalized eigenvectors v(1)j ,..., v
(l)
j :

We consider �rst the equation for usual eigenvectors

(A� �jI)v = 0

solve it using Gauss elimination and �nd the number of free variables that gives the

number of linearly independent eigenvectors. Then we look for linearly independent

generalized eigenvectors to build up the whole basis for E(�j):

We will start with examples illustrating this idea in some simple cases.

Example 4. Matrix 3x3 with two linearly independent eigenvectors.
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Consider a system of equations x0 = Ax with matrix A =

264 1 1 1

0 1 0

0 0 1

375 It is
easy to see that � = 1 is the only eigenvalue with algebraic multyplicity 3. The

characteristic polynomial is p(�) = (1� �)3.

The eigenvectors satisfy the equation (A� I) v = 0: A� I =

264 0 1 1

0 0 0

0 0 0

375. This
equation reads as: v1 + v2 = 0. It has two linearly independent solutions that can

be chosen as v1 =

264 10
0

375 and v2 =
264 0

1

�1

375. The eigenspace is a plane through the
origin orthogonal to the vector

264 01
1

375
We like to �nd a generalised eigenvector linearly independent of v1 and v2. We

take the eigenvector v1 and solve the equation

(A� �I)2v(1)1 = 0

(A� �I)v1 = 0

(A� �I)v(1)1 = v1:

because if it is valid, then

(A� �I)(A� �I)v(1)1 = (A� �I)v1 = 0

We denote it by two indexes to point out that it belongs to a chain with base on

v1. Denoting v
(1)
1 = [y1; y2; y3]

T we consider the system

37



264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 10
0

375

It gives a solution y3 = 1, y2 = 0, y1 = 0. v
(1)
1 =

264 00
1

375 . We point out that if
we try to �nd a chain of generalised eigenvectors starting from the eigenvector v2;

it leads to a system (A� I)v(1)2 = v2264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 0

1

�1

375
that has no solutions (the second and the third equation is never sati�ed).

If we try to extend the chain of generalised eigenvectors with one more: v(2)1 by

solving the system (A� I)v(2)1 = v
(1)
1264 0 1 1

0 0 0

0 0 0

375
264 y1y2
y3

375 =
264 00
1

375
we �nd that it has no solutions (in fact we know that there cannot be more linearly

independent generalised eigenvectors because we have already found 3 of them).

Vectors v1, v2 and v
(1)
1 form a basis in R3:

We can write general solution to the system of ODE with matrix A using the

general formula (13) and expressing the initial data as a linear combination of eigen-

vectros v1 and v2 and the generalised eigenvector v
(1)
1 :
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x(t) = e�t

"
2X
k=0

(A� �I)k t
k

k!

#�
C1v1 + C2v2 + C3v

(1)
1

�
� = C1v1 + C2v2 + C3v

(1)
1

m(�) = 3. It is why we put upper bound in the sum equal to m(�)� 1 = 2.
The expression above simpli�es (using that by the construction (A��I)v(1)1 = v1

and therefore (A� �I)2v(1)1 = (A� �I)v1 = 0: to

x(t) = exp(At)� = C1e
tv1 + C2e

tv2 + C3e
t [I + (A� I) t] v(1)1

= C1e
tv1 + C2e

tv2 + C3e
tv
(1)
1 + C3te

tv1

Example 5. Matrix 3x3 with one linearly independent eigenvector.

Consider a system of equations x0 = Ax with matrix A =

264 �1 �1 0

0 �1 �2
0 0 �1

375 It
is easy to see that � = �1 is the only eigenvalue with multiplicity 3: m(�) = 3:
Eigenvectors satisfy the equation

(A� �I) v = 0

A � �I = A + I =

264 0 �1 0

0 0 �2
0 0 0

375. It has one linearly independent solution that
can be chosen as v =

264 10
0

375.
We will build a chain of generalised eigenvectors starting with this eigen-

vector. Solve the equation (A� �I)2v(1) = 0 as before we take instead the equation
(A� �I)v(1) = v that would give us a solution to the �rst equation.
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(A+ I)v =

264 0 �1 0

0 0 �2
0 0 0

375
264 y1y2
y3

375 =
264 10
0

375
The �rst equation in the system implies that y2 = �1, and we are free to choose

y1 = 0 and y3 = 0. v(1) =

264 0

�1
0

375.
The next generalised eigenvector v(2) such that (A��I)m(�)v(2) = (A��I)3v(2) =

0 in the chain must satisfy the equation

(A� �I)v(2) = v(1)

(A+ I)v(2) =

264 0 �1 0

0 0 �2
0 0 0

375
264 y1y2
y3

375 =
264 0

�1
0

375

y3 = 1=2, y2 = 0, y1 = 0. v(2) =

264 0

0

1=2

375.Express initial data � as � =
C1v + C2v

(1) + C3v
(2).

x(t) = exp(At)� = e�t

"
2X
k=0

(A� �I)k t
k

k!

# �
C1v + C2v

(1) + C3v
(2)
�
=

C1e
�tv + C2e

�tv(1) + C2te
�t (A� �I) v(1) + C2

�
t2

2

�
e�t (A� �I)2 v(1)| {z }

=0

+C3e
�tv(2) + C3te

�t(A� �I) v(2)| {z }
=v(1)

+ C3

�
t2

2

�
e�t(A� �I)2 v(2)| {z }

=v
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x(t) = C1e
�tv + C2e

�tv(1) + C2te
�tv

+C3e
�tv(2) + C3te

�tv(1) + C3

�
t2

2

�
e�tv

x(t) = C1e
�t

264 10
0

375+ C2e�t
264 0

�1
0

375+ C2te�t
264 10
0

375

+C3e
�t

264 0

0

1=2

375+ C3te�t
264 0

�1
0

375+ C3�t2
2

�
e�t

264 10
0

375

x(t) =

264 C1e
�t + tC2e

�t + 1
2
t2C3e

�t

�C2e�t � tC3e�t
1
2
C3e

�t

375

�

5.2 Chains of generalised eigenvectors

A practical method for calculating a basis of linearly independent generalized eigen-

vectors in the general case is an extension of the approach that we used in the last

examples.

1) We �nd a basis of the eigenspace to � consisting of r(�) linearly independent

eigenvectors satisfying the equation (A� �I)u0 = 0:Their number r(�) is called

geometric multiplicity of � and r(�) � m(�).
2) Then for each eigenvector u0 6= 0 from this basis we �nd a vector u1 6= 0

satisfying the equation (A� �I)u1 = u0, and continue this calculation, building a
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chain of generalised eigenvectors u1; :::; ul satisfying equations.

(A� �I)uk = uk�1 (16)

up to the index k = l when there will be no solutions to the next equation. The

largest possible number l is (m(�)� r(�)� 1), but it can also be smaller if the
eigenvalue � has more than one linearly independent eigenvector.

Claim.
Point out that depending on the range of the operator with matrix (A� �I)

(column space of the matrix (A� �I)) one might need to be careful choosing non-
unique (!) eigenvectors u0 and generalised eigenvectors uk in the equations (16) so

that they would belong to the column space of the matrix (A� �I) (if possible!) to
guarantee that the next equations (16) have a solution.

Alternatively one can start this algorithm from above, solving �rst the equation

(A� �I)l ul = 0

(A� �I)l�1 ul 6= 0

for a generalized eigenvector of rank l and then can apply equations (16) to calculate

generalized eigenvectors of lower rank that belong to corresponding chain of gener-

alized eigenvectors. The last vector in this calculation will be an eigenvector. Check

the solution to the Exercise 864 in the �le with exercises, where these observations

are important.

Lemma. The chain of generalised eigenvectors constructed in (16) is linearly

independent. It can be proved by contradiction.(Exercise!)
�
Theorem. A set of generalised eigenvectors corresponding to p chains of eigen-

vectors as in (16) corresponding to the same eigenvalue � is linearly independent if

and only if eigenvectors in the bottom of corresponding chains of generalised eigen-

vectors are linearly independent.�
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In the case when all eigenvalues �1; :::; �s to a real matrix A 2 RN�N are real,
the generalized eigenvectors will be also real and therefore

RN = ker(A� �j)m1 � :::� ker(A� �j)ms = E(�1)� :::� E(�s)

In this case chains of eigenvectors and generalized eigenvectors built by the procedure

as above gives a basis in RN .
To �nd a basis in the generalized eigenspace E(�j) one can start with

1) �nding all linearly independent eigenvectors that are linearly independent

solutions to the equation (A� �jI) v = 0 and collecting them in a set denoted by

E .
2) Then �nd all linearly independent solutions to (A� �jI)2 v(1) = 0 (that are

not eigenvectors) and adding them E .
3) Next one �nds solutions to (A� �jI)3 v(2) = 0 linearly independent from those

in E and collecting them also in E e.t.c. Continuing in this way one �nishes when
the total number of the derived linearly independent generalised eigenvectors will

be equal to mj - the algebraic multiplicity of the eigenvalue �j.

A more systematic approach to this problem is to calculate such a basis as a chain

of generalised eigenvectors corresponding to each of linearly independent eigenvector

as it is was suggested in examples before:

(A� �jI) vj = 0;

(A� �jI) v(1)j = vj

(A� �jI) v(2)j = v
(1)
j

e:t:c:

(A� �jI) vlj = vl�1j

This approach has also an advantage that using chains of generalised eigenvectors

as a basis leads to a particularly simple representation of the system of equations

(4) with matrix A in so called Jordan canonical form, that we will learn later.
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Substituting the expression (15) for arbitrary initial data � in to the general

formula above and calculating all matrix (A� �jI) powers and matrix-vector, mul-
tiplications we get a general solution with a set of arbitrary coe¢ cients C1; :::; CN .

Keep in mind that (A� �jI) vj = 0 and (A� �jI)2 v(1)j = 0 e.t.c., so many terms

in the general expression for the solution can be zeroes.

Initial value problems. To solve an I.V.P. one needs to express a particular
initial data � in terms of the basis of generalized eigenvectors soving a linear system of

equations for coe¢ cients C1; :::; CN in (15) like for example � = C1v+C2v(1)+C3v(2).

We solve a linear system of equations for C1; :::; CN :

Look for exercises in a separate �le Exercises_3.pdf with exercises on linear

autonomous systems of ODE. Check modulus with lecture notes in Canvas.

Lecture 4 (mainly exercises considered in a separate �le)
Summary of the theory on autonomous linear ODEs given

in the �rst week of the course.

1. Initial value problem

x0(t) = Ax(t); x(0) = �

A 2 RN�N (A 2 CN�N)
x : R! RN (x : R! CN)

2. Existence of solutions and representation of the solution to an I.V.P. by a

matrix exponent:

x(t) = exp(At)� =

 1X
k=0

1

k!
Ak (t� �)k

!
�

Uniqueness of solutions to I.V.P. based on Grönwall�s inequality.
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3. The dimension of the solution space (= N): If fbkgNk is a basis in RN (CN);
then functions fexp(At)bkgNk form a basis of the solution space to the equation

x0(t) = Ax(t).

4. Generalized eigenvectors v and generalized eigenspaces E(�) for an eigenvalue

� to the matrix A; having algebraic multiplicity m(�)

(A� �I)m(�) v = 0

dim(E(�)) = m(�).

5. Decomposition of CN into a direct sum of generalized eigenspaces of all distinct
eigenvalues �1; :::�s of a matrix A.

CN = E(�1)� :::� E(�s)

RN = E(�1)� :::� E(�s) if all eigenvalues and the matrix A are real.
6. An important idea:

exp (At) = exp (t�I) exp ((A� �I) t) = e�t
1X
k=0

tk

k!
(A� �I)k

implies that for a generalized eigenvector z to te eigenalue � with algebraic multi-

plicity m(�) the exp (At) z can be expressed explicitely.

xz(t) = exp (At) z = exp (t�I) exp ((A� �I) t) z = (17)�
e�tI

� 1X
k=0

tk

k!
(A� �I)k z = e�t

m(�)�1X
k=0

tk

k!
(A� �I)k z

7. Together with the decomposition theorem it gives a way to �nd a basis of

the solution space for the equation x0 = Ax by �nding a basis for each of E(�j),

j = 1; :::; s. We do it using chains of generalised eigenvectors corresponding to each

linearly independent eigenvector vj of the eigenalue �j:
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(A� �jI) vj = 0;

(A� �jI) v(1)j = vj

(A� �jI) v(2)j = v
(1)
j

e:t:c:

(A� �jI) vlj = vl�1j

We continue with examples collected in the separate �le Exercises-Lecture4.pdf

.

5.3 Real solutions for systems with real matrices having

complex eigenvalues.

We will consider an example of a system in plane with real matrix having two

simple, conjugate complex eigenvalues (no more because of the small dimension).

The idea of solution was to build a complex solution corresponding to one of these

eigenvalues and use it�s real and imaginary part at two linearly independent solutions

to construct a general solution.

The same idea works in the general case when a real matrix might have conjugate

complex eigenvalues (might be multiple in higher dimensions).

We build a basis of eigenvectors and generalized eigenvectors for invariant gen-

eralized eigenspaces corresponding to distinct conjugate complex eigenvalues. One

can start with one of these eigenvalues and then can just choose the basis for the

second one as a complex conjugate . Then we construct arbitrary complex solutions

in the invariant generalized eigenspace corresponding to the �rst of these conjugate

eigenvalues. Real and imaginary parts of these solutions are linearly independent

and build a basis of solutions in the corresponding real invariant subspace.
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Example 2. Real matrix with complex eigenvalues.

x0 = Ax with A =

"
3 �2
4 �1

#
; �nd a general real solution to the system. In

this case we �nd �rst a general complex solution and then construct a general real

solution based on it.

Solution. A =

"
3 �2
4 �1

#
, characteristic polynomial: �2 � 2�+ 5 = 0;

Hint. We point out here that in the case of 2 � 2 matrices the characteristic
polynomial always has a simple representation

p(�) = �2 � �tr(A) + det(A)

where tr(A) is the sum of diagonal elements in A called trace, and det(A) is deter-

minant. Here tr(A) =�1 + �2; detA = �1�2:�

Eigenvalues are: �1 = 1� 2i; and �2 = 1 + 2i - complex conjugate
They are complex conjugate:

�1 = �2

p(�) = (�� �1)(�� �2)

because the characteriscic polynomial has real coe¢ cients.

Eigenvectors satisfy the equations (A� �I)v1 =
"
2 + 2i �2
4 �2 + 2i

#
v1 = 0 and"

2� 2i �2
4 �2� 2i

#
v2 = 0.

These eigenvectors muct be also complex conjugate. We see it by considering

the equations for v1 that is

(A��1I)v1 = 0 and its formal complex conjugate (A��1I)v1 = 0 that is satis�ed
because the conjugate of the real matrix A is the matrix A itself. Therefore v1 is

the eigenvector corresponding to the eigenvalue �2 = �1. We point out that this

47



argument is independent of this particular example and would be valid for any real

matrix with complex eigenvalues.

The �rst and the second equation in each of these systems are equivalent because

rows are linearly dependent (homogeneous system has non-trivial solutions and the

determinant of the matrix A� �I is zero).
We solve the �rst equation in the �rst system by choosing the �rst component

in the complex vector v1 equal to 1. It implies that the second component denoted

here by z satis�es the equation 2 + 2i� 2z = 0 and therefore z = 1+ i. The second
eigenvector is just the complex conjugate of the �rst one.

v1 =

("
1

1 + i

#)
$ �1 = 1� 2i; and v2 = v1 =

("
1

1� i

#)
$ �2 = 1 + 2i.

They are linear independent as eigenvectors corresponding to di¤erent eigenval-

ues.

One complex solution is x�(t) = e�1tv1 = e(1�2i)t

"
1

1 + i

#
, another one is

y�(t) = e�2tv2 = e
(1+2i)t

"
1

1� i

#
x�(t) and y�(t) are linearly independent at any time as corresponding to linearly

independent initial vectors v1 and v2 (according to the theorem before) and build

a basis of complex solutions to the system. Therefore the matrix [x�(t); y�(t)] has

determinant det ([x�(t); y�(t)]) 6= 0.
Two linearly independent real solutions can be chosen as real and imaginary parts

of x�(t) (or y�(t)): Re [x�(t)] = 1
2
(x�(t) + y�(t)) and Im [x�(t)] = 1

2i
(x�(t)� y�(t))

that are linearly independent because the the matrix T = 1
2

"
1 1=i

1 �1=i

#
of the

transformation

[x�(t); y�(t)]T =

"
x�1 y�1

x�2 y�2

#"
1=2 1= (2i)

1=2 �1= (2i)

#
"

1
2
x�1 +

1
2
y�1

1
2i
x�1 � 1

2i
y�1

1
2
x�2 +

1
2
y�2

1
2i
x�2 � 1

2i
y�2

#
= [Re [x�(t)] ; Im [x�(t)]]
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is invertible: detT = � 1
2i
6= 0 and therefore, by the property of the determinant for

the product of matrices,

det [x�(t); y�(t)] det(T ) = det ([Re [x�(t)] ; Im [x�(t)]]) 6= 0

and Re [x�(t)] and Im [x�(t)] are linearly independent.

Therefore real valued vector functions Re [x�(t)] and Im [x�(t)] can be used as a

basis for representing the general real solution to the system:

x(t) = C1Re [x
�(t)] + C2 Im [x

�(t)] :

We express x�(t) with help of Euler formulas and separate real and imaginary

parts

x�(t) = e�1tv1 = e(1�2i)t
"

1

1 + i

#
= et (cos 2t� i sin 2t)

"
1

1 + i

#
=

et

"
cos 2t� i sin 2t

(1 + i) cos 2t+ (1� i) sin 2t

#
= et

"
cos 2t� i sin 2t

cos 2t+ sin 2t+ i (cos 2t� sin 2t)

#
=

et

"
cos 2t

cos 2t+ sin 2t

#
� i et

"
sin 2t

(sin 2t� cos 2t)

#

The answer follows as a linear combination of real and imaginary parts: x(t) =

C1Re [x
�(t)] + C2 Im [x

�(t)] :

Answer: x(t) = C1et
"

cos 2t

cos 2t+ sin 2t

#
+ C2e

t

"
sin 2t

sin 2t� cos 2t

#
:

We will transform this expression to clarify its geometric meaning and the shape

of orbits in the phase plane. We observe �rst that if we drop exponents et, in the

expression for x(t) and consider the expression x(t)e�t = C1

"
cos 2t

cos 2t+ sin 2t

#
+

C2

"
sin 2t

sin 2t� cos 2t

#
;we will observe that it represents a movement along ellipses

in the plane.

We use an elementary trick that makes that any linear combination of sin(
) and
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cos(
) is C sin(
 + �) or C cos(
 � �) with some constants C, �:

x1(t)e
�t = C1 cos(2t) + C2 sin(2t) =q

C21 + C
2
2

  
C1p
C21 + C

2
2

!
cos 2t+

 
C2p
C21 + C

2
2

!
sin 2t

!
=

q
C21 + C

2
2 (cos(�) cos 2t+ sin(�) sin 2t)

=
q
C21 + C

2
2 cos(2t� �)

� = arccos

  
C1p
C21 + C

2
2

!!

Similarly

[x2(t)� x1(t)] e�t = C1 sin(2t)� C2 cos(2t) =q
C21 + C

2
2

  
C1p
C21 + C

2
2

!
sin 2t� C2p

C21 + C
2
2

cos 2t

!
=

q
C21 + C

2
2 (cos(�) sin 2t� sin(�) cos 2t)

=
q
C21 + C

2
2 sin(2t� �)

Finally we arrive to a parametric expression for a periodic movement along ellipses

with size depending on C1 and C2.
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x(t)e�t = C1

"
cos 2t

cos 2t+ sin 2t

#
+ C2

"
sin 2t

sin 2t� cos 2t

#

=
q
C21 + C

2
2

"
cos(2t� �)

cos(2t� �) + sin(2t� �)

#

=
q
C21 + C

2
2

"
cos(2t� �)p

2 [sin(�=4) cos(2t� �) + cos(�=4) sin(2t� �)]

#

=
q
C21 + C

2
2

"
cos(2t� �)p

2 [sin(2t� � + �=4)]

#

illustrated in the next picture:

1050-5-10

10

5

0

-5

-10

x

y

x

y

This movement is modulated in our solution x(t) by the exponential term et giving

orbits as spirals going to in�nity out of the origin that is an unstable equilibrium

point for this system.
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Example. It is good to consider here the solution to the exercise 858.
Ideas about solutions to systems with complex eigenvalues demonstrated in ex-

ercises can in the general situation be expressed by the following Theorem.

Theorem 2.14. p. 38 on real solutions to autonomous systems with
real matrix and complex eigenvalues (without proof)

Let A 2 RN�N: for � an eigenvalue, let m(�) be the algebraic multiplicity of �,
E(�) = ker(A � �I)m(�) denote it�s generalised eigenspace. Let B(�) be a basis in
E(�) chosen to be real for real �.

For all z 2 CN ; we denote xz, yz : R ! RN real solutions to the equation

x0 = Ax as

xz = exp(At) Re z; yz = exp(At) Im z

Then

1) Let B0 (respectively B+) denote the union of all B(�) for all real eigenvalues

� to A (correspondingly for all � with Im� > 0) The set of real functions given by

fxz; z 2 B0 [B+g [ fyz : z 2 B+g

52



forms a basis of the solutuion space to x0 = Ax.

2) If � is a real eigenvalue to A, then for every generalized eigenvector z 2 E(�) ;
the solution xz is expressed as

xz(t) = e
�t

m(�)�1X
k=0

tk

k!
(A� �I)k z

3) If � = � + i� with � 6= 0, is an eigenvalue of A;then for every generalized

eigenvector z 2 E(�);
solutions xz = exp(At) Re z and yz = exp(At) Im z with initial data Re z and

Im z are expressed as

xz(t) = e�t
m(�)�1X
k=0

tk

k!
(A� �I)k Re z = e�t

m(�)�1X
k=0

tk

k!

h
cos(�t) Re

�
(A� �I)k z

�
� sin(�t) Im

�
(A� �I)k z

�i
yz(t) = e�t

m(�)�1X
k=0

tk

k!
(A� �I)k Im z = e�t

m(�)�1X
k=0

tk

k!

h
cos(�t) Re

�
(A� �I)k z

�
+ sin(�t) Im

�
(A� �I)k z

�i
�
The theorem shows the how m(�) real linearly independent solutions can be

obtained for a real matrix A with complex eigenvalues �. The part 1) of the theorem

shows that such solutions build a real basis of the solution space for x0 = Ax with

a real matrix.
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Lecture 5.

5.4 Jordan canonical form of a matrix. Functions of matri-

ces.

5.5 Change of variables. Properties of similar matrices.

Block matrices.

We tried in previous lectures to �nd a basis
n
v1; v

(1)
1 ; :::

o
in CN or in RN such that

expressing initial data � in I.V.P.

x0(t) = Ax(t); x(0) = �

in terms of this basis led to a particularly simple expression of the solution as an

explicit linear combination including polynomials of matrices t(A � �iI) acting on
basis vectors. We can interpret these results by introducing a linear change of

variables

x = V y; y = V �1x

with matrix V of this transformation having columns consisting of N linearly inde-

pendent basis vectors.

In terms of the new variable y the system of ODEs has the form:

x0(t) = A (V y) ; x(0) = �

Multiply by V �1 left and right hand sides:

V �1x0(t) = y0(t) =
�
V �1AV

�
y; y(0) = V �1�

y0(t) = V �1 (A (V y))

In the case when the matrix A has N linearly independent eigenvectros the
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matrix V �1AV = D is diagonal with eigenvalues f�1:::; �j; :::g of the matrix A
standing on the diagonal of D - m(�j) times equal to the algebraic multiplicity of

�j: The number r(�j) of linearly independent eigenvectors belonging to �j is called

geometric multiplicity of �j and is equal to m(�j) in this case.

De�nition. Matrices A and V �1AV are called similar.
They have several characteristics the same: determinant, and characteristic poly-

nomials. It is a simple consequence of properties of determinants of products of

matrices.

Prove it as an exercise using: det (AB) = det (A) det (B); det(B�1) =

(detB)�1 if detB 6= 0.
Using the associative property of matrix multiplication we arrive to the property

Theorem. If matrices A and B are similar through B = V �1AV , A = V BV �1

then

Bk = V �1(Ak)V ;

exp(B) = V �1(expA)V

Ak = V (Bk)V �1

exp(A) = V (expB)V �1

Prove it as an exercise.

Corollary. If the matrixA is diagonalisable, then exp(A) = V exp(D)V �1 where
V matrix of linearly independent eigenvectors and the matrixD is diagonal matrix of

eigenvalues �j and exp(D) is a diagonal matrix with exp(�j) on the diagonal. In this

case the system in new variables y(t) = V �1x(t) consists of independent di¤erential

equations y0j(t) = �jyj(t) for he components yj(t) of y(t) that have simple solutions

yj(t) = Cje
�jt

De�nition. Block - diagonal matrices
Block-diagonal matrices are square matrices that have a number of square blocks

B1,... along diagonal and other terms all zero. For example:
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B =

266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775

B2 =

266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775
266664
B1 O O O
O B2 O O
O O B3 O
O O O B4

377775 =
266664
B21 O O O
O B22 O O
O O B23 O
O O O B24

377775
These matrices have a property that their powers lead to block diagonal matrices

of the same structure with powers of original blocks on the diagonal:

Bk =

266664
(B1)k O O O
O (B2)k O O
O O (B3)k O
O O O (B4)k

377775
This simple observation leads immediately to the formula for the exponent of a block

diagonal matrix.

exp (B) =
1X
k=0

1

k!
Bk =

266664
exp (B1) O O O
O exp (B2) O O
O O exp (B3) O
O O O exp (B4)

377775
In fact the same relation would be valid even for an arbitrary analytical function f

with power series f(z) =
P1

k=0 akz
k, converging in the whole C:

56



f (B) =

266664
f (B1) O O O
O f (B2) O O
O O f (B3) O
O O O f (B4)

377775
Claim. Let the space CN or RN be represented as a direct sum of subspaces

V1; :::; Vs, invariant under the action of operator Ax:

CN = V1 � V2 � :::� Vs

It means that for all vectors z 2 Vk it is valid that Az 2 Vk for k = 1; :::s.
Then there is a basis fu1; :::; uNg in CN , correspondingly RN such that the op-

erator Ax in this basis has matrix B similar to A : B = U�1AU , or

UB = AU

that is block diagonal, with blocks of size equal to dimensions of subspaces V1; :::; Vs
and matrix U that has columns u1,...,uN .

The basis fu1; :::; uNg is easy to choose as a union of bases for each invariant
subspace Vj. It is easy to observe that this construction leads to a block diagonal

matrix for the operator Ax because columns with index j in the matrix B are equal

to U�1Auj that are coordinates of vectors Auj in terms of the basis fu1; :::; uNg and
belong to the same invariant subspace as uj.

We illustrate this fact on a simple example with two invariant sub-
spaces.
Consider a decomposition of the space CN into the direct sum of two subspaces V

and W ; dimV = m, dimW = p; m+ p = N invariant with respect to the operator

de�ned by the multiplication Ax. Choose base vectors in each of these subspaces:

fu1; :::; umg and fw1; :::; wpg. They constitute a basis fu1; :::; um; w1; :::; wpg for the
whole space CN .
Introduce a matrix T = [u1; :::; um; w1; :::; wp] with basis vectors of the whole CN
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collected according to the invariant subspace they belong to.

Represent a vector x in terms of this basis: x = Ty where

y = [y1; :::; ym; ym+1; :::; yp+m]

is a vector of coordinates of x in the basis consisting of columns in T . The operator

Ax acting on the vector x is expressed in terms of these coordinates y as

Ax = ATy

We express now the image of this operation also in terms of

the basis fu1; :::; um; w1; :::; wpg:

T
�
T�1Ax

�
= ATy

Here (T�1Ax) gives coordinates of the vectorAx in terms of the basis fu1; :::; um; w1; :::; wpg
that are columns in the matrix T . It implies that

T�1Ax =
�
T�1AT

�
y

So the matrix (T�1AT ) is a standard matrix of the original mapping Ax in terms of

the basis fu1; :::; um; w1; :::; wpg associated with invariant subspaces V and W . Now
observe that taking vector of y - coordinates with only components y1; :::; ym non-

zero we get vectors that belong to the invariant subspace V , namely vectors having

only y - coordinates 1; :::;m non-zero. It means that �rst m columns in (T�1AT )

must have elements m+ 1; :::m+ p equal to zero because A maps V into itself.

T�1AT =

"
B1 O
O B2

#
If we choose y coordinates with only components ym+1; :::ym+p non-zero, we get a

vector that belongs to the subspace W; namely vectors that have only coordinates

m + 1, ...;m + p non-zero. It means that last p columnst in (T�1AT ) must have
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elements 1; :::m equal to zero because A maps W into itself. It means �naly that

(T�1AT ) has a block diagonal structure with blocks of size m�m and p� p corre-
sponding to the invariant subspaces V and W .

59



5.6 Jordan canonical form of a matrix and it�s functions.

We will observe now that a basis of generalised eigenvectors

CN = E(�1)� E(�2)� :::� E(�s)

build with help of chains of generalised eigenvectors as we discussed before, leads to

a particular "canonical" matrix J similar to the matrix A by the transformation

V �1AV = J

or A = V JV �1 with the matrix

V =
�
:::v; v(1); :::; v(r�1):::

�
where columns are generalised eigenvectors from di¤erent chains of generalised eigen-

vectors corresponding to linearly independent eigenvectors put in the same order as

in (18).

Consider �rst an m � m matrix A in Cm�m that has one eigenvalue � from

the characteristic polynomial p(z) = (z � �)m, of multiplicity m and only one

linearly independent eigenvector v:Corresponding chain of generalised eigenvectors�
v; v(1); :::; v(m�1)

	
has rank m equal to the dimension of the space and satis�es

equations:

(A� �I) v = 0; (18)

(A� �I) v(1) = v

(A� �I) v(2) = v(1)

e:t:c:

(A� �I) v(m�1) = v(m�2)
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(A� �I)m v(m�1) = 0:
We rewrite this chain of equations as

Av = �v

Av(1) = �v(1) + v

Av(2) = �v(2) + v(1)

e:t:c:

Avm�1 = �v(m�1) + v(m�2)

Using the de�nition of the matrix product and the matrix V de�ned as

V =
�
v; v(1); :::; v(m�1)

�
we observe that vector equations for the chain of generalised eigenvectors are equiv-

alent to the matrix equation

AV = V D + VN = V (D +N )

where D is the diagonal matrix with the eigenvalue � on the diagonal and the matrix

N has all elements zero except elements over the diagonal that are equal to one:

N =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
;

Shifting property of the right multiplication by the matrix N .
The speci�c structure of N makes that the product BN of an arbitrary square
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matrix B by the matrix N from the right is a matrix where each column k is a

column k � 1 from the matrix B shifted one step to the right, except the �rst one

that consists of zeroes. It follows from the de�nition of the matrix product and the

observation that elements from the column k in the matrix B in the product BN
meet exactly one non zero element 1 in the column k + 1 in the matrix N :

B =

266666666664

B11 B12 B13 ::: B1(m�1) B1m

B21 B22 B23 ::: B2(m�1) B2m
...

...
. . . . . .

...
...

...
...

... :::
...

...

B(m�1)1 B(m�1)2 B(m�1)3 ::: B(m�1)(m�1) B(m�1)m

Bm1 Bm2 Bm3 ::: Bm(m�1) Bmm

377777777775
; N =

26666666664

0 1 0 ::: 0 0

0 0 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: 0 1

0 0 0 ::: 0 0

37777777775
;

We observe this transformation in equations for the chain of generalized eigen-

vectors with the matrix V instead of an arbitrary matrix B .

Observe also that Nm = 0, were m is the size of N .
Therefore

AV = V (D +N )
V �1AV = (D +N ) = J

De�nition of the Jordan block. The matrix J = D +N

J =

26666666664

� 1 0 ::: 0 0

0 � 1 ::: 0 0
...
...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: � 1

0 0 0 ::: 0 �

37777777775
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is called Jordans block. Here D is a diagonal matrix with the eigenvalue � on the

diagonal and the matrix N de�ned above, consists of zeroes except for the diagonal

above the main one consisting of ones.

We have proven the following theorem.

Theorem (special case of Theorem A.9 , p. 268) Let m � m matrix A

have one eigenvalue of multiplicity m (characteristic polynomial p(z) = (z � �)m)
and only one linearly independent eigenvector v. Then the matrix A is similar to

the Jordans block J with the similarity relations:

A = V JV �1

J = V �1AV

where the matrix V has columns V =
�
v; v(1); :::; v(m�1)

�
that are elements from the

chain of generalized eigenvectors built as solutions to the equations (18).

The "shifting" property of the matrixN implies thatN 2 consists of zeroes except

the second diagonal over the main one �lled by 1, N 3 consists of zeroes except the

third diagonal over the main one �lled by 1, and �nally Nm = 0.

De�nition A matrix with such property that for some integer r we have N r = 0

is called nilpotent.

Corollary

exp(J) = exp(D +N ) = exp(D) exp(N ) = e�
m�1X
k=0

1

k!
(N )k (19)

exp(J) = e�

26666666664

1 1 1=2 ::: 1
(m�2)!

1
(m�1)!

0 1 1 ::: 1
(m�3)!

1
(m�2)!

...
...

...
. . .

...
...

0 0 0 ::: 1 1=2

0 0 0 ::: 1 1

0 0 0 ::: 0 1

37777777775
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because exp(J) = exp(�I+N ) = exp(�I) exp(N ) = e�
Pm�1

k=0
1
k!
(N )k and each term

with index k in the sum is a matrix with k -th diagonal over the main one, �lled by
1
k!
�
Similarly

exp(Jt) = e�t
m�1X
k=0

tk

k!
(N )k (20)

exp(Jt) = e�t

26666666664

1 t t2=2 ::: tm�2

(m�2)!
tm�1

(m�1)!

0 1 t ::: tm�3

(m�3)!
tm�2

(m�2)!
...
...

...
. . .

...
...

0 0 0 ::: t t2=2

0 0 0 ::: 1 t

0 0 0 ::: 0 1

37777777775

By properties of similar matrices we arrive to the

Corollary. See proof of the spectral theorem 2.19 on page 60-61 in
Logemann Ryan.
For anm�m matrix A having just one eigenvalue of multiplicitym and only one

linearly independent eigenvector v it follows the following expression for exp(At) :

exp(At) = V exp(Jt)V �1 = V

 
e�t

m�1X
k=0

tk

k!
(N )k

!
V �1

Remark.
If instead of the exponential function we like to calculate an arbitrary analytical

function that has converging in C Maclorain series

f(z) =
1X
k=0

f (k)(0)

k!
zk
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then the same reasoning and the Maclorain series for the function f lead to an

expression for the matrix function f(J)

f(J) =

m�1X
k=0

f (k)(�)

k!
(N )k (21)

Theorem A.9 , on Jordan canonical form of matrix p. 268 in Logemann
Ryan.
Let A 2 CN�N ,. There is an invertible matrix T 2 CN�N and an integer k 2 N

such that

J = T�1AT

has the block diagonal structure

J =

266664
J1 O O O
O J2 O O
...

...
. . .

...

O O O Jk

377775
where Jj has dimension rj � rj and is a Jordan block.

Jj =

26666666664

�j 1 0 ::: 0 0

0 �j 1 ::: 0 0
...

...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: �j 1

0 0 0 ::: 0 �j

37777777775
Furthermore,

Pk
j=0 rj = N and if rj = 1 them Jj = � for some eigenvalue � 2 �(A).

Every eigenvalue � occurs at least at one block; the same � can occur in more than

one block. The number of blocks with the same eigenvalue � on the diagonal is equal

to the number of linearly independent eigenvectors corresponding to this eigenvalue

� (it�s geometric multiplicity g(�)).
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Lecture 6
Summary of the main new material in Lecture 5.

1) The block diagonal structure of standard matrix for linear operators Ax having

invariant subspaces V1;...,Vs that decompose the whole space RN into a direct sum:
RN(CN) = V1�...�Vs:

8x 2 Vi =) Ax 2 Vi

2) The standard matrix of the operator Ax having just one eigenvalue and just

one linearly independent eigenvector v has a particularly simple structure in terms

of the basis consistig of the chain of generalised eigenvectors associated with this

eigenvector: Jordan block:

Jj =

26666666664

�j 1 0 ::: 0 0

0 �j 1 ::: 0 0
...

...
...
. . .

...
...

0 0 0 ::: 1 0

0 0 0 ::: �j 1

0 0 0 ::: 0 �j

37777777775
3) 1) and 2) together with the theorem about generalized eigenspaces for a matix

A 2 CN�N imply the theorem;
J = T�1AT

has the block diagonal structure

J =

266664
J1 O O O
O J2 O O
...

...
. . .

...

O O O Jk

377775
where columns in the matrix T are chains of generalized eigenvectors corresponding

to linearly indepenent eigenvectors.
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4) Explicit formula for the exponent of a Jordan block and Jordan matrix:

exp(Jt) = e�t

26666666664

1 t t2=2 ::: tm�2

(m�2)!
tm�1

(m�1)!

0 1 t ::: tm�3

(m�3)!
tm�2

(m�2)!
...
...

...
. . .

...
...

0 0 0 ::: t t2=2

0 0 0 ::: 1 t

0 0 0 ::: 0 1

37777777775
Speci�cation of detailes for Theorem A.9 with a sketch of the proof.

1) Our considerations about chains of generalised eigenvectors and the special
case of Theorem A.9 considered above imply that the matrix T in the general
theorem A.9 on Jordan canonical form can be chosen in such a way that it�s columns

are elements from chains of generalised eigenvectors built on the maximal number

of linearly independent eigenvectors to the matrix A.

2) The matrix J = T�1AT describing how operator Ax acts in terms of the

basis of columns in the matrix T; has a block diagonal structure with one block

corresponding to each linearly independent eigenvector. It follows from the fact

that generalised eigenspaces are invariant with respect to the transformation A and

from the fact that linear envelopes of the chains of generalised eigenvectors are

linearly independent of each other and are also invariant with respect to A.

3) Each block corresponding to a particular eigenvector is a Jordan block with

corresponding eigenvalue on diagonal, because of the special case of Theorem A.9

considered above. The size of a particular Jordan block in the Jordan canonical form

depends on the length of the corresponding chain of generalised eigenvectors, that is

the smallest integer r such that the equations (A��I)rv(r) = 0 and (A��I)r�1v(r) 6=
0 are satis�ed.

4) It follows from the structure of the canonical Jordan form that the algebraic

multiplicity m(�) of an eigenvalue � is equal to the sum of sizes rj of Jordan blocks

corresponding to � and coinsides with the dimension of it�s generalised eigenspace

E(�) = ker
�
(A� �)m(�)

�
.
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De�nition. An eigenvalue is called semisimple if it�s generalised eigenspace

consists only of eigenvectors and its algebraic multiplicity is equal to its geometric

multiplicity: m(�) = r(�). In this case corresponding the Jordan blocks will all have

size 1� 1.
Jordan blocks in the Jordan canonical form are unique but can be combined

in various orders. The position of Jordan blocks within a canonical Jordan form

depends on positions of the chains of generalised eigenvectors in the transformation

matrix T and is not unique in this sense.

Example of calculating the Jordan canonical form of a matrix.
(Try to solve yourself exercises from the �le with exercises on linear autonomous

systems, where all answers and some solutions are given)

Consider matrix C =

266664
1 �1 �2 3

0 0 �2 3

0 1 1 �1
0 0 �1 2

377775, Find its canonical Jordan�s form and
corresponding basis.

Find �rst the characteristic polynomial.

det(C��I) = det

266664
1� � �1 �2 3

0 �� �2 3

0 1 1� � �1
0 0 �1 2� �

377775 = (1� �) det
264 �� �2 3

1 1� � �1
0 �1 2� �

375 =
(1� �) (��) det

"
1� � �1
�1 2� �

#
� (1� �) det

"
�2 3

�1 2� �

#
=

(1� �) (��)
�
�2 � 3�+ 1

�
�(1� �) (2�� 1) = (1� �)

�
3�2 � �� �3

�
+(1� �) (1� 2�) =

(1� �)
�
3�2 � 3�� �3 + 1

�
= (1� �) (1� �)3 = (1� �)4.

Matrix C has one eigenvalue � = 1 with multiplicity 4. Consider the equation

for eigenvectors (C � I)x = 0 with matrix

(C��I) =

266664
0 �1 �2 3

0 �1 �2 3

0 1 0 �1
0 0 �1 1

377775Gauss elimination gives=)
266664
0 �1 �2 3

0 0 0 0

0 0 �2 2

0 0 �1 1

377775
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=)

266664
0 �1 �2 3

0 0 �2 2

0 0 0 0

0 0 0 0

377775
with two free variables: x1 and x4. Therefore the dimension of the eigenspace is

2. There are two linearly independent eigenvectors that can be chosen as

v1 =

266664
1

0

0

0

377775 and v2 =
266664
1

1

1

1

377775 : Each of these eigenvectors might generate a chain
of generalised eigenvectors.

We check the equation (C��I )v(1)1 = v1 with extended matrix

266664
0 �1 �2 3 1

0 �1 �2 3 0

0 1 0 �1 0

0 0 �1 1 0

377775

and carry out the same Gauss elimination as before: =)

266664
0 �1 �2 3 1

0 0 0 0 �1
0 0 0 �2 2

0 0 0 �1 1

377775 :
The second equation is not compatible and the system has no solution.

For the second eigenvector v2 we solve similar system (C � �I )v(1)2 = v2 with

the extended matrix

266664
0 �1 �2 3 1

0 �1 �2 3 1

0 1 0 �1 1

0 0 �1 1 1

377775

Gauss elimination implies the echelon matrix

266664
0 �1 �2 3 1

0 0 0 0 0

0 0 �2 2 2

0 0 �1 1 1

377775 =)
266664
0 �1 �2 3 1

0 0 �1 1 1

0 0 0 0 0

0 0 0 0 0

377775
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that has a two-dimensional set of solutions. We choose one as v(1)2 =

266664
1

1

�1
0

377775 and
build up the chain of generalized eigenvectors by solving one more equation (C��I

)v(2)2 = v
(1)
2 with the extended matrix

266664
0 �1 �2 3 1

0 �1 �2 3 1

0 1 0 �1 �1
0 0 �1 1 0

377775 =)
266664
0 �1 �2 3 1

0 0 0 0 0

0 0 �2 2 0

0 0 �1 1 0

377775 =)
266664
0 �1 �2 3 1

0 0 1 �1 0

0 0 0 0 0

0 0 0 0 0

377775 leading to a generalized eigenvector (not unique)

v
(2)
2 =

266664
1

�1
0

0

377775. Finally we conclude that the Jordan canonic form of the matrix

C in the basis v1, v2, v
(1)
2 , v

(2)
2 is J = T�1CT =

266664
1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

377775 , with transforma-

tion matrix T =

266664
1 1 1 1

0 1 1 �1
0 1 �1 0

0 1 0 0

377775, inverse: T�1 =
266664
1 1 2 �4
0 0 0 1

0 0 �1 1

0 �1 �1 2

377775 ;

If we like to solve x0 = Cx, with initial condition x(0) = �, we apply general

formulas to

� = C1v1 + C2v2 + C3v
(1)
2 + C4v

(2)
2

and �nd C1, C2; C3, C4 such that
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We could use the general formula for solutions to the ODE as

x(t) = T exp(J)T�1�

exp(Jt) = e�t

26666666664

1 t t2=2 ::: tm�2

(m�2)!
tm�1

(m�1)!

0 1 t ::: tm�3

(m�3)!
tm�2

(m�2)!
...
...

...
. . .

...
...

0 0 0 ::: t t2=2

0 0 0 ::: 1 t

0 0 0 ::: 0 1

37777777775

exp (Ct) =
1X
k=0

tk

k!
Ck =

266664
exp (tJ1) O O O
O exp (tJ2) O O
::: ::: ::: O
O O O exp (tJr)

377775
6
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7 Theorem about conditions for the exponential

decay and for the boundedness of the norm

kexp(At)k (Corollary 2.13)
Theorem.
Let A 2 CN�N be a complex matrix (the real case A 2 RN�N is included!). Let

�A = max fRe� : � 2 �(A)g where �(A) is the set of all eigenvalues to A. �A is the
maximal real part of all egenvalues to A.

Then three following statements are valid.

1. kexp(At)k decays exponentially if and only if �A < 0. ( It means that there
are M� > 0 and � > 0 such that kexp(At)k �M�e

��t )

2. limt!1 kexp(At)�k = 0 for every � 2 CN (it means that all solutions to the
ODE x0 = Ax tend to zero) if and only if �A < 0:

3. if �A = 0 then supt�0 kexp(At)k < 1 if and only if all purely imaginary

eigenvalues and zero eigenvalues are semisimple meaning that m(�) = g(�).

Remark. One can prove this theorem in two slightly di¤erent but essentially

equivalent ways.

1) Using the similarity of the matrix A and it�s Jordan matrix J

J = T�1AT ; A = TJT�1

corresponding expression of exp(At) in terms of exp(Jt) that is known explicitely:

exp (At) = T exp(Jt)T�1

2) Using the expression for general solution to a linear autonomous system in
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terms of eigenvectors and generalized eigenvectors to A :

x(t) = exp(At)x0 =
sX
j=1

 "
mj�1X
k=0

(A� �jI)k
tk

k!

#
x0;je�jt

!

for solutions with initial data x0 =
Ps

j=1 x
0;j with x0;j 2 E(�j) - components of x0

in the generalized eigenspaces E(�j) = ker(A � �j)mj of the matrix A, where �j;

j = 1:::; s are all distinct eigenvalues to A with algebraic multiplicities mj.

The �rst method is shorter and more explicit.

In the course book the second method is used for proving Theorem 2.12 that is

formulated in a slightly unfriendly style.

The Corollary 2.13 is almost equivalent and can be proven in exactly the same

way as Theorem 2.12 but a bit simpler.

We give here a proof based on the expression exp (At) = T exp(Jt)T�1 using

Jordans canonical matrix J .

Proof.
We point out that any matrix A 2 CN�N can be represented with help of its

Jordan matrix J as A = TJT�1 where T is an invertible matrix with columns that

are linearly independent eigenvectors and generalized eigenvectors to A ordered as in

chains of generalised eigenvectors. The Jordan matrix J is a block diagonal matrix

J =

26666664
J1 O ::: O O
O J2 ::: O O
::: ::: ::: ::: :::

O O ::: Jp�1 O
O O ::: O Jp

37777775
where the number of blocks p is equal to the number of linearly independent eigen-

vectors to A. The symbol O denotes zero block.
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Each Jordan block Jk has the structure as the following:

Jk =

26666664
�i 1 0 0 0

0 �i 1 0 0

0 0 �i 1 0

0 0 0 �i 1

0 0 0 0 �i

37777775
with possibly some blocks of size 1� 1 being just one number �i : The sum of sizes

of blocks is equal to N .

We use the expression

exp (At) = T exp(Jt)T�1

that reduces analysis of the boundedness and limits of the norm kexp (At)k to the
similar analysis for the matrix exp(Jt) because for two matricesA andB the estimate

kABk � kAk kBk and therefore

kexp (At)k � kTk


T�1

 kexp(Jt)k

For exp(Jt) we have the following explicit expression in terms of eigenvalues and

their algebraic and geometric multiplicities:

exp(Jt) =

26666664
exp(J1t) O O O O
O exp(J2t) O O O
O O ::: O O
O O O exp(Jp�1t) O
O O O O exp(Jpt)

37777775 (22)

where for example the block of size 5� 5 looks as
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exp(Jkt) = exp(�it)

26666664
1 t t2

2!
t3

3!
t4

4!

0 1 t t2

2!
t3

3!

0 0 1 t t2

2!

0 0 0 1 t

0 0 0 0 1

37777775 (23)

For a block of the size 1 � 1 we will get exp(Jkt) = exp(�it). If an eigenvalue �i
is semisimple, that means it has the number of linearly independent eigenvectors

(geometric multiplicity) r(�i) equal to the algebraic multiplicity m(�i) of �i. In

this case all blocks corresponding to this eigenvalue and corresponding blocks in the

exponent exp(Jt) all have size 1� 1 and have this form exp(Jkt) = exp(�it).

Matrices N �N build a �nite dimentional linear space with dimension N �N .
All norms in a �nite dimensional space are equivalent. It means that for any two

norms k�k1 and k�k2 in the space of matrices, there are constants C1, C2 > 0 such
that for any matrix A

C1 kAk1 � kAk2 � C2 kAk1

It is easy to observe that the expression maxi;j=1:::N jAijj =kAkmax is a norm in

the space of matrices and therefore can be used instead of the standart eucledian

norm. There are constants B1 and B2 > 0 such that

B1 kAkmax � kAk � B2 kAkmax

I makes that to show the boundedness of the matrix norm kexp(Jt)k for exp(Jt);
it is enough to show boundedness of all elements in exp(Jt). Similarly, to show that

kexp(Jt)k ! 0 when t!1 it is enough to show that all elements in exp(Jt) go to

zero when t!1
To prove the statements in the theorem we need just to check how elements in

the explicit expressions (23) for blocks in exp(Jt) see (22), behave depending on the

maximum of the real part of eigenvalues: max fRe� : � 2 �(A)g and check situations
when blocks of size 1� 1 not including powers tp can appear.
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� We observe in (23) that all elements in exp(Jt) have the form: exp(�it) or

C exp(�it)t
p with some constants C > 0 and some p > 0 with possibly similar �i in

di¤erent blocks.

� Absolute values of the elements in exp(Jt) have the form: exp((Re�i) t) or
C exp((Re�i) t)t

p where all Re�i � �A. because jexp(i Im�j)j according to the
Euler formula.

We prove �rst su¢ ciency of the conditions in the statement 1. for the formulated
conclusions.

1. If �A < 0 then maximum of absolute values of all elements [exp(Jt)]ij in

exp(Jt) satisfy the inequality

max
i;j

���[exp(Jt)]ij��� �M exp [(�A + �)t] �!
t!1

0

and tends to zero exponentially for some constant M > 0 and � so small that

�� = �A + � < 0. It follows because

exp(Re�it)t
p � exp(�At)t

p = exp [(�A + � � �) t] tp

= exp [(�A + �) t] (t
p exp [��t])| {z }

�M

�M exp [��t]

Therefore kexp(Jt)k � M� exp [��t] �!
t!1

0 with another constant M� and

therefore kexp(At)k � (kTk kT�1kM�) exp [��t] decays exponentially.

Now we prove the su¢ ciency of the conditions in the statement 2. for the
formulated conclusion.

2. The de�nition of the matrix norm implies immediately that if �A < 0 then by

the result for the matrix norm kexp(At)k that limt!1 kexp(At)�k � k�k limt!1 kexp(At)k =
0 for every � 2 CN :

Now we prove the su¢ ciency and necessity of the conditions in the statement 3.
for the uniform boundedness of the transition matrix exp(At): supt�0 kexp(At)k <
1:
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3. If �A = 0 and then there are purely imaginary or zero eigenvalues �. Then

elements in the blocks of exp(Jt) corresponding to purely imaginary or zero

eigenvalues will have the form exp(i Im�it) or C exp(i Im�it)tp. The absolute

values of these elements will be 1 or Ctp because jexp(i Im�it)j = 1. Therefore
absolute values of these elements will be bounded if and only if corresponding

blocks are of size 1 � 1 and therefore elements Ctp with powers of t are not
present. This situation takes place if and only if purely imaginary and zero

eigenvalues are semisimple (have geometric and algebraic multiplicities equal:
m(�) = g(�)). Elements in exp(Jt) in the blocks corresponding to eigenvalues

with negative real parts will be exponentially decreasing by the arguments in

the proof of statement 1.

Finally we prove necessity of the condition in the Statement 1. We observe that
if �A = 0 then referring to the analysis in 3. absolute values of the elements
corresponding to purely imaginary or zero �i in exp(Jt) are be bounded in

the case if the conditions in 3. are sati�ed, or otherwise they have the form
Ctp and go to in�nity when t ! 1: Therefore the norm kexp(At)k does not
decay exponentially in this case. If �A > 0 the matrix exp(Jt) will include

terms that are exponentially rising and the norm kexp(At)k can not decay
exponentially in this case.

The nessecity of the conditions in the statement 2 follows from the behaviour
of the elements in exp(Jt) considered before or from the formula for general

solution to the linear autonomous system.

The condition �A � 0 means that there are eigenvalues � with real part Re�
positive or zero. In the �rst case choosing vector � equal to a generalized

eigenvector or an eigenvector corresponding to �i with Re�i > 0 we get a so-

lution exp(At)� represented as a sum with terms including exponents exp(�it)

such that jexp(�it)j = jexp(Re�it)j ! 1. In the second case there are eigen-
values �i = i Im�i. Choosing � equal to one of corresponding generalized

eigenvectors we obtain a solution exp(At)� represented as a sum including

terms with constant absolute value or an absulute value that rises as some
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power tp with t ! 1. It implies the necessity of conditions in 2. for having
limt!1 exp(At)� = 0 for every � 2 CN .�

The proof of the Corollary 2.13 in the book uses the explicit expression of solutions

that we discussed at the beginning of this chapter of lecture notes and is a bit

more complicated.

x0(t) = Ax(t) =) x(t) = exp(At)�

8 De�nition of stable equilibrium points.

De�nition: A point x� 2 G is called an equilibrium point to the equation x0 = f(x)
if f(x�) = 0:

The corresponding solution x(t) � x� is called an equilibrium solution.

De�nition. (5.1, p. 169, L.R.)
The equilibrium point x� is said to be stable if, for any " > 0; there is � > 0 such

that, for any maximal solution x : I ! G to the I.V.P.

x0 = f(x)

x(0) = �

such that 0 2 I and kx(0)� x�k � � we have kx(t)� x�k � " for any t 2 I \ R+
for all "future times".

Below a picture is given in the case x� = 0.
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De�nition. (5.14, p. 182, L.R.)
The equilibrium point x� of (??) is said to be attractive if there is � > 0 such

that for every � 2 G with k� � x�k � � the following properties hold: the solution
x(t) = '(t; �) to I.V.P. with x(0) = � exists on R+and '(t; �)! x� as t!1.
De�nition. We say that the equilibrium x� is asymptotically stable if it is

both stable and attractive.

In the analysis of stability we will always choose a system of coordinates so that

the origin coinsides with the equilibrium point. In the course book this agreement

is applied even in the de�nition of stability.

De�nition. The equilibrium point x� is said to be unstable if it is not stable.

It means that there is a "0 > 0; such that for any � > 0 there is point x(0) :

kx(0)� x�k � � such that for some t0 2 I we have kx(t0)� x�k > "0:(a formal

negation to the de�nition of stability).

9 Classi�cation of phase portraits of autonomous

linear systems in the plane.

Characteristic polynomial for a 2� 2 matrix A is

p(�) = �2 � �TrA+ detA

Eigenvalues are:

�1;2 =
TrA

2
�

s
(TrA)2

4
� detA

The line detA = (TrA)2

4
separates points in the plane (TrA; detA) corresponding

to real and complex eigenvalues of the matrix A.

For TrA; detA in the �rst and second quadrants in the plane (TrA; detA) both

Re�1;2 are correspondingly positive and negative.
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In the half plane where detA < 0 eigenvalues �1;2 are real but have di¤erent

signs.

These observations imply the following classi�cation of phase portraits for linear

autonomous systems in plane.

A classi�cation of phase portraits for non-degenerate linear autonomous
systems in plane in terms of the determinant and the trace of the matrix
A.
Stable (unstable) nodes when eigenvalues �1; �2 are real, di¤erent, negative

(positive). det(A) < 1
4
(tr(A))2; det(A) > 0; tr(A) < 0, ( tr(A) > 0):

Saddle (always unstable) when eigenvalues �1; �2 are real, with di¤erent signs.
det(A) < 0:

Stable (unstable) focus - spiral when �1; �2 are complex, with negative (pos-
itive) real parts. det(A) > 1

4
(tr(A))2 6= 0; tr(A) < 0 ( tr(A) > 0):

Stable (unstable) improper - degenerate node when eigenvalue �1 is real
negative (positive) with multiplicity 2 having only one linearly independent eigen-

vector. det(A) = 1
4
(tr(A))2; tr(A) < 0 ( tr(A) > 0):
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Center (stable but not asymptotically stable) when �1; �2 are complex purely
imaginary. tr(A) = 0 ; det(A) > 0

Stable (unstable) star, when eigenvalue �1 is real negative (positive) with
multiplicity 2 as for improper node, but having two linearly independent eigenvectors

(diagonal matrix A)

�

Lecture 7
Examples of phase portraits for linear autonomous ODEs in

plane
and calculations of matrix exponents.

Summary of new material in lecture 6.

1. General theorem on boundedness and on zero limit for ALL solutions to a

linear autonomous ODE: ALL solutions tend to zero exponentially if and only if for

eigenvalues � the largest Re� < 0; ALL solutions are bounded if and only if the

largest Re� � 0 and all eigenvalues � with Re� = 0 are semisimple (have m(�)

linearly independent eigenvectors).

2. Equilibrium points: stable, unstable, attracting, asymptotically stable (in the

general case of nonlinear ODEs).

3. Classi�cation of equilibrium points for linear autonomous ODEs in plane.

Eigenvalues in terms of tr(A); det(A); Poincare diagram for phase portraits in plane

depending on tr(A); det(A):

Example.
An example on instability: saddle point. There are trajectories (not all) that

leave a neighbourhood kxk < d of the origin for initial conditions � arbitrary close
to the origin: for any " > 0 and 0 < k�k � " after some time T".

r0 = Ar with A =

"
1 1

2 0

#
, characteristic polynomial: �2 � �� 2 = 0;
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eigenvectors and eigenvalues are :

("
1

�2

#)
$ �1 = �1;

("
1

1

#)
$ �2 = 2:

Eigenvectors satisfy homogeneous systems of equations with matrices A � �1I ="
2 1

2 1

#
and A� �2I =

"
�1 1

2 �2

#
.

r = C1e
2t

"
1

1

#
+C2e

�t

"
1

�2

#
- is the general solution. The equilibrium point

in the origin is unstable.

Choosing a ball kxk � 1; and for arbitrary " > 0; � = "

"
1=
p
2

1=
p
2

#
, k�k we

see that the corresponding solution x(t) = e2t"

"
1=
p
2

1=
p
2

#
will leave this ball kxk �

1;after time 2T" = � ln ".

7.552.50-2.5-5-7.5

7.5

5

2.5

0

-2.5

-5

-7.5

x

y

x

y

Exercise.
Consider the following system of equations:(
x0 = 2y � x
y0 = 3x� 2y

1. a) can the system have a trajectory going from the point (�a2 � 1;�1)
above_the_line

to the

point (1; a2 + 1)?
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b) which type of �xed point is the origin?

c) draw a sketch of the phase portrait. (4p)

Solution

Matrix of the system is A =

"
�1 2

3 �2

#
. Characteristic polynomila is det(A�

�I) = det

"
�1� � 2

3 �2� �

#
= �2 + 3� � 4. Eigenvalues and eigenvectors are:

�1 = �4; �2 = 1.

Eigenvectors v1 =

"
�2
3

#
$ �1 = �4; satis�es the equation (A� �1I) v1 = 0

with (A� �1I) =
"
3 2

3 2

#

v2 =

"
1

1

#
$ �2 = 1;satis�es the equation (A� �2I) v2 = 0 with (A� �2I) ="

�2 2

3 �3

#
x(t) = C1 exp(�4t)v1 + C2 exp(1t)v2
Origin is a saddle point and is unstable. Trajectories are hyperbolas asymptot-

ically approaching with t ! 1 or t ! �1 trajectories L1, L2, L3, L4, that are

straight lines through the origin and are parallell to the eigenvectors.

Checking points (�a2�1;�1) and (1; a2+1) we observe that they are separated
by the above mentioned straight trajectories L1, L2, L3, L4. Therefore no one

trajectory can go between these two points because such a trajectory should cross

one of L1, L2, L3, L4 that is impossible because of the uniquness of solutions to

linear systems.�

Exercise 868. Exponent of a matrix with complex eigenvalues and
phase portrait of the ODE with such matrix.

Calculate exp(A) for the matrix A =

"
0 �1
1 0

#
; with eigenvalues �i.
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We will consider �rst the general case.

Complex numbers in matrix form

The set of matrices of the structure Z =

"
a �b
b a

#
have the same properties

with respect to matrix multiplication and addition as complex numbers of the form

a+ ib.

In particular matrices of the form

"
a 0

0 a

#
behave as real numbers and matrix"

0 �1
1 0

#
behave as imaginary unit i.

We check that

"
0 �1
1 0

#"
0 �1
1 0

#
=

"
�1 0

0 �1

#
= �

"
1 0

0 1

#
= �I and"

a 0

0 a

#"
b 0

0 b

#
=

"
ab 0

0 ab

#
and observe that the diagonal matrix

"
a 0

0 a

#

and the matrix

"
0 �1
1 0

#
commute.

It makes that we can apply the Euler formula!!!!!!

exp(a+ ib) = exp(a)(cos(b) + i sin(b))

for computing the exponent of a matrix of such structure:

exp(Z) = exp

 "
a �b
b a

#!
= exp

 "
a 0

0 a

#
+

"
0 �b
b 0

#!
= exp "

a 0

0 a

#!
exp

 "
0 �b
b 0

#!
=

exp(a)I

"
cos(b)

"
1 0

0 1

#
+ sin(b)

"
0 �1
1 0

##
= exp(a)

"
cos(b) � sin(b)
sin(b) cos(b)

#

exp(tZ) = exp(at)

"
cos(bt) � sin(bt)
sin(bt) cos(bt)

#
�
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Corollary
Trajectories of the system of di¤erential equations x0(t) = Zx(t) with matrix

Z =

"
a �b
b a

#
are spirals

x(t) = exp(at)

"
cos(bt) � sin(bt)
sin(bt) cos(bt)

#
x(0)

build by a circular movement

"
cos(bt) � sin(bt)
sin(bt) cos(bt)

#
around the origin together with

movement towards the origin if a < 0 and out from the origin if a > 0.

In the case when a = 0, trajectories go along circles around the origin.

�
General calculations imply immediately that exp(A) = exp

 
0 �1
1 0

!
=

"
cos(1) � sin(1)
sin(1) cos(1)

#
Lemma

For any real 2 � 2 matrix A =
"
a11 a12

a21 a22

#
with complex eigenalues � = � � i�

there is a non-degenerate matrix M =

"
a11 � � ��
a21 0

#
such that M�1AM ="

� ��
� �

#
.

It implies that trajectories of the system with matrix A in this case will be also

spirals, but squeezed. It the case if � = 0 they will be ellipses instead of circles that

were observed in the preious example.

Example of a stable but NOT asymptotically stable equilibrium point.

Consider the system x0(t) = Ax(t) with A =

"
0 �2
2 0

#
: Eigenvalues of the

matrix A are � = �2i are purely imaginary (and non-zero). Therefore there are no

other equilibrium points except the origin. The exp(At) =

"
cos(2t) � sin(2t)
sin(2t) cos(2t)

#
.
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The solution to the initial value problem with initial data [�1; �2]
T is

x(t) = exp(At)� =

"
�1 cos(2t)� �2 sin(2t)
�1 sin(2t) + �2 cos(2t)

#
= j�j

"
�1
j�j cos(2t)�

�2
j�j sin(2t)

�1
j�j sin(2t) +

�2
j�j cos(2t)

#
=

= j�j
"
cos(�) cos(2t)� sin(�) sin(2t)
cos(�) sin(2t) + sin(�) cos(2t)

#
= j�j

"
cos(� + 2t)

sin(� + 2t)

#

with cos(�) = �1
j�j : Therefore orbits of solutions are circles around the origin with

the radius equal to j�j. It implies that the equlibrium point in the origin is stable.

�" > 0 in the de�nition of stability can be chosen equal to " > 0 .�

Example. Two positie real eigenvalues. Tr(A) > 0, det(A) < 1
4
(Tr(A))2

Calculate exp(At) for the constant matrix A =

"
3 �1
2 0

#
and sketch phase

portrait for the system x0 = Ax.

Solution.

The characteristic polynom for A is

"
3 �1
2 0

#
,X2�3X+2 = (X � 1) (X � 2) =

0, so eigenvalues are �1 = 1, �2 = 2. Eigenvectors are v1 =

("
1

2

#)
$ �1;

v2 =

("
1

1

#)
$ �2

A direct formula following from diagonal Jordan form is the following: exp(At) as

exp(At) = P

"
et 0

0 e2t

#
P�1, where the matrix P has columns of eigenvectors: P =

(v1; v2)=

"
1 1

2 1

#
and the inversion of P can be calculated by Cramer�s formulas:

P�1 =

"
1 1

2 1

#�1
=

"
�1 1

2 �1

#
:We derive the �nal expression by multiplication

of the three matrices:
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exp(At) = P

"
et 0

0 e2t

#
P�1 =

"
1 1

2 1

#"
et 0

0 e2t

#"
�1 1

2 �1

#
="

et e2t

2et e2t

#"
�1 1

2 �1

#
=

"
�et + 2e2t et � e2t

�2et + 2e2t 2et � e2t

#

An alternative solution is based on using general solution to the di¤erential

equation x0 = Ax :

x(t) = C1v1e
t + C2v2e

2t:

There are two positive eigenvalues to the matrix A: It corresponds to the phase

portrait with unstable node (source), where red lines parallel to v1 and v2 correspond

to solutions with one of coe¢ cients C1 or C2 equal to zero.

Columns in exp(At) are solutions to the system above with initial data e1 ="
1

0

#
and e2 =

"
0

1

#
.
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The plan is to �nd �rst the general solution, and then these two particular

solutions.

To satisfy the initial data x(0) = C1v1et + C2v2e2t = e1
we solve a system of two equations for C1 and C2:

C1

"
1

2

#
+ C2

"
1

1

#
=

"
1

0

#
or in matrix form

"
1 1

2 1

#"
C1

C2

#
=

"
1

0

#
"
�1 0

2 1

#"
C1

C2

#
=

"
1

0

#
=) C1 = �1 and C2 = 2. Therefore the �rst

columnt in exp(At)

is: �v1et + 2v2e2t =
"
�1
�2

#
et +

"
2

2

#
e2t =

"
�et + 2e2t

�2et + 2e2t

#
Similarly we �nd the second column:

C1

"
1

2

#
+ C2

"
1

1

#
=

"
0

1

#
;

"
1 1

2 1

#"
C1

C2

#
=

"
0

1

#
;

"
�1 0

2 1

#"
C1

C2

#
="

�1
1

#
=) C1 = 1 and C2 = �1.

The second column in exp(At) is: v1et � v2e
2t =

"
1

2

#
et +

"
�1
�1

#
e2t ="

et � e2t

2et � e2t

#

and �nally exp(At) =

"
�et + 2e2t et � e2t

�2et + 2e2t 2et � e2t

#

9.1 A general way to calculate exponents of matrices. (par-

ticularly useful for matrices having complex eigenval-

ues)

We use here general solution to the equation x0 = Ax:

We clarify �rst in which way it can be used.
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� For any matrix B the product Bek gives the column k in the matrix B.

� Therefore the column k in exp(A) is the product exp(A)ek, where vector ek
is a standard basis vector, or colum with index k from the unit matrix I.

� On the other hand exp(At)� is a solution to the equation x0 = Ax with initial
condition x(0) = �

� The expressions xk(t) = exp(At)ek is a solution to the equation x0 = Ax with
initial condition x(0) = ek

� Therefore the value of the solution in time t = 1: xk(1) = exp(A)ek gives the
column k in the matrix exp(A)

� Having the general solution for example in the case of dimension 3:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

in terms of linearly independent solutions 	1(t), 	2(t), 	3(t); we can for every

k �nd a set of constants C1;k,C2;k,C3;k, corresponding to each of the initial data

ek: Namely we solve equations C1;k	1(0) +C2;k	2(0) +C3;k	3(0) = ek ; k =

1; 2; 3

� that are equivalent to the matrix equation

[	1(0);	2(0);	3(0)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = [e1; e2; e3] = I
� Values at t = 1 of corresponding solutions:

xk(1) = C1;k	1(1) + C2;k	2(1) + C3;k	3(1) = exp(1 � A)ek

will give us columns exp(1 � A)ek in exp(A).
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� In the matrix form this result can be expressed as264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = [	1(0);	2(0);	3(0)]�1

exp(A) = [	1(1);	2(1);	3(1)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375
= [	1(1);	2(1);	3(1)] [	1(0);	2(0);	3(0)]

�1

We demonstrate this idea using the result on the general solution from
the problem 859.

We can calculate exp

0B@
264 3 �3 1

3 �2 2

�1 2 0

375
1CA, eigenvalues: �1 = �1; �2 = 1 � i;

�3 = 1 + i

General solution to the system x0 = Ax is:

x(t) = C1	1(t) + C2	2(t) + C3	3(t)

= C1e
�t

264 1

1

�1

375+ C2et
264 cos t� sin tcos t

sin t

375+ C3et
264 cos t+ sin tsin t

� cos t

375
introducing shorter notations for each term: x(t) = C1	1(t)+C2	3(t)+C3	3(t):

We calculate initial data for arbitrary solution by

x(0) = C1	1(0) + C2	3(0) + C3	3(0)=C1

264 1

1

�1

375+ C2
264 11
0

375+ C3
264 1

0

�1

375
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x(0) = [	1(0);	3(0);	3(0)]

264 C1C2
C3

375 =
264 1 1 1

1 1 0

�1 0 �1

375
264 C1C2
C3

375
exp(A) has columns that are values of x(1) for solutions that satisfy initial con-

ditions x(0) = e1, e2; e3 and therefore

264 1 1 1

1 1 0

�1 0 �1

375
264 C1;1C2;1

C3;1

375 =

264 10
0

375 = e1;

264 1 1 1

1 1 0

�1 0 �1

375
264 C1;2C2;2

C3;2

375 =
264 01
0

375 = e2;
264 1 1 1

1 1 0

�1 0 �1

375
264 C1;3C2;3

C3;3

375 =
264 00
1

375 = e3;
We solve all three of these systems for

264 C1;kC2;k

C3;k

375 in one step as a matrix equation
264 1 1 1

1 1 0

�1 0 �1

375
264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 = I

It is equivalent to the Gauss elimination of the following extended matrix:

264 1 1 1 1 0 0

1 1 0 0 1 0

�1 0 �1 0 0 1

375 :
The result at the rigth half will be the inverted matrix:

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375 =
264 1 1 1

1 1 0

�1 0 �1

375
�1

=

264 �1 1 �1
1 0 1

1 �1 0

375
It can also found by applying Cramer�s rule.

We arrive to the expression of the matrix exponent by collecting these results

through the matrix multiplication:
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exp(At) = [	1(t);	2(t);	3(t)]

264 C1;1 C1;2 C1;3

C2;1 C2;2 C2;3

C3;1 C3;2 C3;3

375

exp(At) =

264 e�t et (cos t� sin t) et (cos t+ sin t)

e�t et cos t et sin t

�e�t et sin t �et cos t

375
264 �1 1 �1
1 0 1

1 �1 0

375 =
=

264 e
t (cos t+ sin t)� e�t + et (cos t� sin t) �et (cos t+ sin t) + e�t �e�t + et (cos t� sin t)

(cos t) et + (sin t) et � e�t � (sin t) et + e�t (cos t) et � e�t

� (cos t) et + (sin t) et + e�t (cos t) et � e�t (sin t) et + e�t

375

and �nally for t = 1 we get exp(A)

exp(A) = e

264 (cos 1 + sin 1)� e
�2 + (cos 1� sin 1) � (cos 1 + sin 1) + e�2 �e�2 + (cos 1� sin 1)

(cos 1) + (sin 1)� e�2 � (sin 1) + e�2 (cos 1)� e�2

� (cos 1) + (sin 1) + e�2 (cos 1)� e�2 (sin 1) + e�2

375
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