May 4, 2021

Exercises on linear ODE with periodic coefficients.

1. Find the characteristic (Floquet) multiplicator for the scalar linear equation with periodic coefficient:

$$
x^{\prime}=\left(a+\sin ^{2} t\right) x
$$

Find also those values of the parameter a that imply that all solutions tend to zero with $t \rightarrow+\infty$.
2. Calculate monodromy matrix and Floquet exponents for the 2-dim system

$$
x^{\prime}(t)=a(t) A x
$$

where $a(t)$ is a scalar periodic function with period T and A is a constant real 2×2 matrix. Discuss conditions implying that all solutions tend to zero or stay bounded with $t \rightarrow+\infty$.
Hint: make a change of time variable $t \rightarrow \tau=\int_{t_{0}}^{t} a(s) d s$.
3. Compute the monodromy matrix for the system with the following periodic matrix $A(t)$ with period 1.

$$
A(t)= \begin{cases}{\left[\begin{array}{cc}
\alpha & 1 \\
0 & \alpha
\end{array}\right]=A_{1},} & 0 \leq t<1 / 2 \\
{\left[\begin{array}{cc}
\alpha & 0 \\
1 & \alpha
\end{array}\right]=A_{2},} & 1 / 2 \leq t<1\end{cases}
$$

Hint: combine explicit formulas for fundamental matrices on subintervals where $A(t)$ is a constant matrix and the Chapmen-Kolmogorov relation.
4. Consider the following linear system of ODE with periodic coefficients:

$$
\frac{d \vec{r}(t)}{d t}=A(t) \vec{r}(t), \text { with matrix } A(t)=\left(a+\sin ^{2}(t)\right)\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] .
$$

Use Floquet theory to find for which real constants a its solutions are bounded. Hint: make a change of the time variable as in Exercise 2 to find a monodromy matrix.
5. Exercise 2.21. p.58. Consider the Hill equation $y^{\prime \prime}+a(t) y=0$; $a(t+p)=a(t)$. with periodic $a(t)$ with period $p=1$ having the form:

$$
a(t)=\left\{\begin{array}{c}
\omega^{2}, \quad m \leq t<m+\tau \\
0, \quad m+\tau \leq t<m+1
\end{array}\right.
$$

Here $\tau \in(0,1), \omega=\pi / \tau$.
The vector form of the Hill equation is:

$$
\begin{aligned}
x^{\prime} & =A(t) x \\
A(t) & =\left[\begin{array}{cc}
0 & 1 \\
-a(t) & 0
\end{array}\right]
\end{aligned}
$$

Consider the transfer matrix solution $\Phi(t, 0)$ and show that its first column $\Phi_{1}(t, 0)$ is periodic with period 2 , and it's second column $\Phi_{2}(t, 0)$ is unbounded with the first element equal to $(-1)^{n} n(1-\tau)$.

Some solutions

1. Find the characteristic multiplicator for the scalar linear equation with periodic coefficient:
(4p)

$$
x^{\prime}=\left(a+\sin ^{2} t\right) x
$$

The characteristic multiplicator is eigenvalue of the monodromy matrix denoted by $\Phi(p, 0)$ in the course book, where p is the period of the right hand side in the equation. One builds a monodromy matrix (it will be a number in our case with one scalar equation) of solutions to initial value problems with initial data $x(0)$ that are standard basis vectors in R^{n} calculated in the time point T - equal to the period of the right hand side.In our case we have just one scalar equation, so the monodromy matrix will be a number. We find the value of the solution to I.V.P. to the given equation with initial data $x(0)=1$ at the time $t=\pi$ that is a period of the right hand side in our case. The equation is linear, so the solution is found with help of a primitive function of the coefficient:

1. $P(t)=\int_{0}^{t}\left(a+\sin ^{2} s\right) d s=\frac{1}{2} t+a t-\frac{1}{4} \sin 2 t$.
$x(t)=\exp (P(t)) x(0)=\exp \left(\frac{1}{2} t+a t-\frac{1}{4} \sin 2 t\right) x(0)$.
The monodromy "matrix" in our case is the value of the solution $x(t)$ in $t=\pi$ such that $x(0)=1$.
$\Phi(\pi, 0)=x(\pi)=\exp \left(\frac{1}{2} \pi+a \pi\right)=\exp (\pi(1 / 2+a))$.
The characteristic multiplicator is the same number: $\exp (\pi(1 / 2+a))$.
Solutions will tend to zero in the case $a<-1 / 2$, that makes $\exp (\pi(1 / 2+a))<$ 1.
2. Compute the monodromy matrix for the system $x^{\prime}(t)=A(t) x(t)$ with the following periodic matrix $A(t)$ with period 1.

$$
A(t)= \begin{cases}{\left[\begin{array}{ll}
\alpha & 1 \\
0 & \alpha
\end{array}\right]=A_{1},} & 0 \leq t<1 / 2 \\
{\left[\begin{array}{cc}
\alpha & 0 \\
1 & \alpha
\end{array}\right]=A_{2},} & 1 / 2 \leq t<1\end{cases}
$$

Solution:
The monodromy matrix $\Phi(p, 0)=\Phi(1,0)$ is expressed as (using ChapmanKolmogorov)

$$
\begin{aligned}
\Phi(1,0)= & \Phi(1,1 / 2) \Phi(1 / 2,0) \\
= & \exp \left((1-1 / 2) A_{2}\right) \exp \left((1 / 2) A_{1}\right) \\
& \exp \left((1 / 2) A_{2}\right) \exp \left((1 / 2) A_{1}\right)
\end{aligned}
$$

Here $\exp \left(t A_{1}\right)=\exp (\alpha t)\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right], \exp \left(t A_{2}\right)=\exp (\alpha t)\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]$
We derive an explicit expression for $\Phi(1,0) \Phi(1,0)=\exp \left(\frac{1}{2} \alpha+\frac{1}{2} \alpha\right)\left[\begin{array}{cc}1 & 0 \\ 1 / 2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 / 2 \\ 0 & 1\end{array}\right]$ $\begin{aligned}= & \exp (\alpha)\left[\begin{array}{cc}1 & \frac{1}{2} \\ \frac{1}{2} & \frac{5}{4}\end{array}\right], \\ & \operatorname{det}\left[\begin{array}{cc}1 & \frac{1}{2} \\ \frac{1}{2} & \frac{5}{4}\end{array}\right]=1 ; \operatorname{Tr}\left[\begin{array}{cc}1 & \frac{1}{2} \\ \frac{1}{2} & \frac{5}{4}\end{array}\right]=2.25 .\end{aligned}$
characteristic polynomial $p(\lambda)=\lambda^{2}-\frac{9}{4} \lambda+1$
eigenvalues: $\lambda_{1}=\frac{9}{8}-\sqrt{\left(\frac{9}{8}\right)^{2}-1}=\frac{9}{8}-\frac{1}{8} \sqrt{17}>0, \lambda_{2}=\frac{1}{8} \sqrt{17}+\frac{9}{8}>0$ and are simple.

Find conditions on α such that all solutions will be bounded
The condition for boundedness of all solutions is $\exp (\alpha)\left|\lambda_{2}\right| \leq 1$ or $\exp (\alpha) \frac{1}{8}(\sqrt{17}+9) \leq 1$ because λ_{2} is larger in absolute value.

It can be reformulated by taking logarithm of left and right hand sides as $\alpha \leq \ln (8)-\ln (\sqrt{17}+9) \approx-0.49493$.

All solutions will tend to zero if and only if the strict inequality is valid $\alpha<\ln (8)-\ln (\sqrt{ } 17+9) \approx-0.49493$
4. Consider the following linear system of ODE with periodic coefficients: $\frac{d \vec{r}(t)}{d t}=A(t) \vec{r}(t)$, with matrix $A(t)=\left(a+\sin ^{2}(t)\right)\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$.
Use Floquet theory to find for which real constants a its solutions are bounded.

Hint: make a change of the time variable to find a monodromy matrix. (4p)

Solution. The period of the coefficients is $p=\pi$.
Consider the equation in the form

$$
\frac{1}{\left(a+\sin ^{2}(t)\right)} \frac{d \vec{r}(t)}{d t}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \vec{r}
$$

Introduce a new time variable $\tau(t)=\int_{0}^{t}\left(a+\sin ^{2}(s)\right) d s$. The change of variables in time differentiation will be

$$
\begin{gathered}
\frac{d}{d t}=\frac{d \tau(t)}{d t} \frac{d}{d \tau}=\frac{d\left(\int_{0}^{t}\left(a+\sin ^{2}(s)\right) d s\right)}{d t} \frac{d}{d \tau}=\left(a+\sin ^{2}(t)\right) \frac{d}{d \tau} \\
\tau(t)=\int_{0}^{t} a+\sin ^{2}(s) d s=a t+\frac{1}{2} t-\frac{1}{4} \sin 2 t
\end{gathered}
$$

Therefore

$$
\frac{1}{\left(a+\sin ^{2}(t)\right)} \frac{d \vec{r}(t)}{d t}=\frac{d \vec{r}(\tau)}{d \tau}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \vec{r}=B \vec{r}
$$

and we have got a linear system of ODEs with constant coefficients in terms of the τ variable and can solve it exactly. Its transfer matrix is $\exp (\tau B)$ and

$$
\vec{r}(\tau)=\exp (\tau B) r(0)
$$

with $\exp (0 \cdot B)=I$.
The transfer matrix for the original system is

$$
\Phi(t, 0)=\exp (\tau(t) B)
$$

with

$$
\tau(t)=a t+\frac{1}{2} t-\frac{1}{4} \sin 2 t
$$

and we observe that $\exp (B \tau(0))=I$. The monodromy matrix of the original system will be $\Phi(\pi, 0)$ because the period of the coefficients is $p=\pi$.

$$
\Phi(\pi, 0)=\exp (\tau(\pi) B)
$$

The characteristic polynomial for the matrix $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=\lambda^{2}-3 \lambda+1$
Eigenvalues of the matrix B are $\lambda_{1}=\frac{3}{2}-\frac{1}{2} \sqrt{5}$ and $\lambda_{2}=\frac{1}{2} \sqrt{5}+\frac{3}{2}-$ both positive. Floquet multipliers are $\exp \left(\lambda_{1} \tau(\pi)\right)$ and $\exp \left(\lambda_{2} \tau(\pi)\right)$ and are semisimple. Floquet exponents are evidently $\frac{1}{\pi}\left(\lambda_{1} \tau(\pi)\right)$ and $\frac{1}{\pi}\left(\lambda_{2} \tau(\pi)\right)$.

We must have $\tau(\pi) \leq 0$ to have the both Floquet exponents non-positive and correspondingly to have Floquet multipliers not larger than 1.

It will imply by the Floquet theorem that solutions to the given system of ODE will be bounded because $\lambda_{1} \tau(\pi)$ and $\lambda_{2} \tau(\pi)$ are different (not multiple). Checking the values of the integral $\tau(\pi)=\int_{0}^{\pi}\left(a+\sin ^{2}(s)\right) d s=a \pi+\frac{1}{2} \pi-$ $\frac{1}{4} \sin 2 \pi$ we observe that to have $\tau(2 \pi) \leq 0, a$ must satisfy the inequality $a \leq-1 / 2$. The same idea would in fact work for any function instead of $\left(a+\sin ^{2}(s)\right)$ in the definition of $A(t)$. See Exercise 2.

5. Exercise 2.21. p.58.

Consider the Hill equation $y^{\prime \prime}+a(t) y=0 ; a(t+p)=a(t)$. with periodic $a(t)$ with period $p=1$. The vector form with $x_{1}(t)=y(t), x_{2}(t)=y^{\prime}(t)$ of the equation is:

$$
\begin{aligned}
x^{\prime} & =A(t) x \\
A(t) & =\left[\begin{array}{cc}
0 & 1 \\
-a(t) & 0
\end{array}\right]
\end{aligned}
$$

We choose $a(t)$ as a piecewise constat periodic function:

$$
a(t)=\left\{\begin{array}{c}
\omega^{2}, \quad m \leq t<m+\tau \\
0, \quad m+\tau \leq t<m+1
\end{array}\right.
$$

Here $\tau \in(0,1), \omega=\pi / \tau$.
Consider the transfer matrix solution $\Phi(t, 0)$ and show that its first column $\Phi_{1}(t, 0)$ is periodic with period 2, and it's second column $\Phi_{2}(t, 0)$ is unbounded with the it's element equal to $(-1)^{n} n(1-\tau)$.

Solution. The monodromy matrix has the followinf structure:

$$
\Phi(1,0)=\Phi(1, \tau) \Phi(\tau, 0)=\exp \left((1-\tau) A_{2}\right) \exp \left(\tau A_{1}\right)
$$

where according to the definition of $A(t)$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right]=A(t), t \in(0, \tau) \\
& A_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=A(t), \quad t \in(\tau, 1)
\end{aligned}
$$

Eigenvectors to A_{1} are: $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left\{\left[\begin{array}{c}-\frac{i}{\omega} \\ 1\end{array}\right]\right\} \leftrightarrow i \omega$,
$\left\{\left[\begin{array}{l}\frac{i}{\omega} \\ 1\end{array}\right]\right\} \leftrightarrow-i \omega$.
Check the first of eigenvectors:

$$
\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=i \omega\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

$$
\begin{gathered}
v_{2}=i \omega v_{1} \\
-\omega^{2} v_{1}=i \omega v_{2} \\
x_{*}(t)=\left(\left[\begin{array}{c}
-\frac{i}{\omega} \\
1
\end{array}\right] \exp (i \omega t)\right)=\left[\begin{array}{c}
-\frac{i}{\omega} \\
1
\end{array}\right](\cos (\omega t)+i \sin (\omega t))=\left[\begin{array}{c}
-\frac{i}{\omega}(\cos t \omega+i \sin t \omega) \\
\cos t \omega+i \sin t \omega
\end{array}\right] \\
; \operatorname{Re} x_{*}(t)=\left[\begin{array}{c}
\frac{1}{\omega}(\sin t \omega) \\
\cos t \omega
\end{array}\right] ; \quad \operatorname{Im} x_{*}(t)=\left[\begin{array}{c}
-\frac{1}{\omega} \cos t \omega \\
\sin t \omega
\end{array}\right]
\end{gathered}
$$

We like to build using these two linearly independent solutions, one solution with initial data $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and one solution with initial data $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. It is easy to see that the following solutions satisfy these initial conditions and can be collected into the transfer matrix:

$$
\begin{aligned}
& \Phi(t, 0)=\left[-\omega \operatorname{Im} x_{*}(t), \operatorname{Re} x_{*}(t)\right]=\left[\begin{array}{cc}
\cos t \omega & \frac{1}{\omega}(\sin t \omega) \\
-\omega \sin t \omega & \cos t \omega
\end{array}\right] \\
& \Phi(\tau, 0)=\left[\begin{array}{cc}
\cos \tau \omega & \frac{1}{\omega}(\sin \tau \omega) \\
-\omega \sin \tau \omega & \cos \tau \omega
\end{array}\right]
\end{aligned}
$$

We will calculate $\Phi(t, \tau)$ for $t \in(\tau, 1]$.

$$
A_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

A_{2} is a Joirdan block with eigenalue $\lambda=0$.
Then $\Phi(t, \tau)=\exp \left((t-\tau)\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{cc}1 & t-\tau \\ 0 & 1\end{array}\right]$ according to formulas for a Jordan block.

Then $\Phi(1, \tau)=\left[\begin{array}{cc}1 & 1-\tau \\ 0 & 1\end{array}\right]$;
The monodromy matrix is calculated as:

$$
\begin{aligned}
\Phi(1,0) & =\Phi(1, \tau) \Phi(\tau, 0)=\left[\begin{array}{cc}
1 & 1-\tau \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \tau \omega & \frac{1}{\omega}(\sin \tau \omega) \\
-\omega \sin \tau \omega & \cos \tau \omega
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \tau \omega-\omega(\sin \tau \omega)(1-\tau) & \frac{1}{\omega} \sin \tau \omega+(\cos \tau \omega)(1-\tau) \\
-\omega \sin \tau \omega & \cos \tau \omega
\end{array}\right]
\end{aligned}
$$

If $\omega=\pi / \tau$, then the monodromy matrix is

$$
\begin{aligned}
\Phi(1,0) & =\left[\begin{array}{cc}
\cos \pi-\omega(\sin \pi)(1-\tau) & \frac{1}{\omega} \sin \pi+(\cos \pi)(1-\tau) \\
-\omega \sin \pi & \cos \pi
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & -(1-\tau) \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Eigenvalues of this triangular monodromy matrix are both equal to $\lambda_{1,2}=$ -1 .

Checking the matrix $\Phi(1,0)-(-1) I=\left[\begin{array}{cc}0 & -(1-\tau) \\ 0 & 0\end{array}\right]$ we find only one linearly independent eigenvector to $\Phi(1,0)$ is $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

1) Therefore there must exist unbounded solutions because the multiple $\lambda_{1,2}=-1$ is not semisimple. (!!!!)
2) Therefore $\left(\lambda_{1,2}\right)^{2}=1$. It implies by a Corollary preious time that the solution with initial data equal to the corresponding eigenvector e_{1} has the period $2 p=2$ that is double period of the system. In this particular case the period of coefficients is $p=1$.

$$
\begin{aligned}
A_{1} v & =\lambda v, \quad v-\text { an eigenvector } \\
x_{*}(t) & =\exp (t \lambda) v \quad \text { is a solution to } \\
x^{\prime} & =A_{1} x
\end{aligned}
$$

This solution is the first column in $\Phi(t, 0)$, because the corresponding eigenvector $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ - is the initial condition for the first column in $\Phi(t, 0)$.

In time points $t=p n=n$ the second column in $\Phi(t, 0)$ is equal to the second column in $\Phi(1,0)^{n}$-that is the n - th power of the monodromy matrix that coinsides with $\Phi(t, 0)$ for t equal to integer number of periods.

$$
\begin{aligned}
& \Phi(1,0)^{2}=\left[\begin{array}{cc}
-1 & -(1-\tau) \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & -(1-\tau) \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \tau+2 \\
0 & 1
\end{array}\right] \\
& \Phi(1,0)^{3}=\left[\begin{array}{cc}
-1 & -(1-\tau) \\
0 & -1
\end{array}\right]^{3}=\left[\begin{array}{cc}
-1 & 3 \tau-3 \\
0 & -1
\end{array}\right] \\
& \Phi(1,0)^{4}=\left[\begin{array}{cc}
-1 & -(1-\tau) \\
0 & -1
\end{array}\right]^{4}=\left[\begin{array}{cc}
1 & -4 \tau+4 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

We observe that $\Phi(1,0)^{n}=\left[\begin{array}{cc}1 & (-1)^{n} n(1-\tau) \\ 0 & (-1)^{n}\end{array}\right]$ and the exercise is finished.

