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Lecture notes on general and periodic linear ODEs
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0.1 Transition matrix function, existence and equations.

The subject of this chapter of lecture notes is general non - autonomous linear systems of ODEs and in
particular systems with periodic coefficients and Floquet theory for them.

The general theory for non - autonomous linear systems (linear systems with variable coefficients) is
very similar to one for systems with constant coefficients. The existence is established through the solution
of the integral form of equations by iterations. Uniqueness is based on a general form of the Gronwall
inequality that is also proven here in a very similar fashion. These results lead to the fundamental result

on the dimension of the space of solutions that is based on the uniqueness result similarly to the proof for



systems with constant coefficients. The essential difference from the case with constant coefficients is that
in the case with variable coefficients one cannot find analytical solutions except some particular cases as
systems with triangular matrices.

We consider the I.V.P. in the differential

v =Alt)x(t), (1) =¢ (1)

or in the integral form
t
xz(t) =¢& +/ A(s)z(s)ds (2)

with matrix valued function A : J — RV*YN (or CV*¥) that is continuous or piecewise continuous on the
interval J.

Here it is important that the initial time T is an arbitrary real number from J, not just zero.

The solution is defined as a continuous function x(t) on an interval I that includes point 7 € I, acting
into RY or CV, and satisfying the integral equation (2). By a version of Calculus main theorem (Newton-
Leibnitz theorem) the solution defined in such a way will satisfy the differential equation (1) in points ¢
where A(t) is continuous.

We remind the following lemma considered in the beginning of the course.

Lemma. The set of solutions Spem to (2) is a linear vector space.

O

It motivates us to search solution in the form z(t) = ®(t, s)¢ where ®(t, s) is a continuous matrix valued
function on J x J and ¢ is an arbitrary initial data at t = s : x(s) = £. It implies also that ®(s,s) = 1.
Substituting the expression z(t) = ®(t, s)¢ into the integral form of the i.V.P.

2(t) =€+ / t A(s)z(s)ds
we arrive to the vector equation
D(t,s)E = &+ / t A(0)®(0, 5)edo =
O(t,s)¢ = (I + /tA(J)CI)(o, 3)d0> £

with arbitrary £ € RY that implies the matrix equation for ®(¢, s):

O(t,s) = I+/ A(o)®(o, s)do (3)

or the same equation in differential form valid outside points of disconituity of A(t):

d
£<D(t, s)=A(t)®(t,s); P(s,s)=1.

We will solve the equation (3) by means of iterational approximations M, (t, s) to ®(¢, s) introduced in the



following way:

¢
M(t,s)=1; My(t,s)=1 +/ A(o)M,(o,s)do, ¥YneN (4)

Lemma 2.1 , p. 24 and Corollary 2.3, p. 26 in L&R

For any closed and bounded interval [a,b] C J the sequence {M,, (¢, s)} converges uniformly on [a, b] x
la, b] to a continuous on [a, b] X [a, b] matrix valued function ®(t, s) that satisfies the integral equation (3).

Point out that outside of points of discontinuity of the matrix A(¢) the function ®(¢,s) satisfies the
differential equation L®(t, s) = A(t)®(t, s).

Proof.

The classical idea of the proof is instead of considering M, (t, s) to consider telescoping series with
elements f,1(t,s) = My1(t,s) — M,(t,s), fi = M; = I, with the partial sum that is equal to M,:

k=1

where fi(t, s) is represented as a repeated integral operator from (4):

Milts) = I M) =1+ [ Al )i
Mits) = I+ / Ao Ma(o, $)dor —
~ Iy / "Aloy) [H / UlA(ag)Ml(ag,s)dag} doy
I+ / " A(oy)Ido, + / " A(o) / " A(02) My (09, 5)doados

t o1
f3 = Mg—MQI/ A(O’l)/ A(O'Q)Ml(O'Q,S)dO'Qd(Tl

Foit(hs) = Myor(t, ) — My(t, s) = / e / " Ao).. / " Ao do...dosdoy

for all (t,s) € J x J, Vn € N. Since the matrix A(t) is piecewise continuous on .J, it’s norm is bounded on
any compact subinterval [a,b] C J:
A < K Vtea,b]

We observe using triangle inequality for integrals several times, and the last estimate, that

t o1 On—1
| fros1(t, )| = | Mnia1(t, s) — M,(t,s)|| < K”/ / / doy,...dosdoy

and after calculating the integral f; f;l f:”’l do,,...doydo, = %(t — 5)™, based essentially on [ s*ds =
gk+1
k1

n n

K K
a1 (t, )| = [1Maa (E, ) = Mu(t, s)[| < — |(t = $)]" < (b —a)"



o K"

The number series »° =

(b — a)™ is convergent to exp(K (b — a)). Therefore by the Weierstrass’
criterion the functional series Y >, f.(f, s) converges uniformly on [a, b] X [a, b] to a limit denoted here by
®(t,s). It implies by construction, that the sequence M, (t, s) converges uniformly on [a,b] X [a,b] to the

limit denoted by ®(¢, s). Going to the limit in the relation defining iterations (4),

¢
M,.q(t,s) = I—I—/ A(o)M,(0,s)do =

t t
O(t,s) = lm M,4(t,s) = I—I—/ A(o) lim M, (o,s)do =1 +/ A(0)®, (o, s)do
we observe that the limit functional matrix ®(¢, s) satisfies the equation (3).H
Since the interval [a,b] € J is arbitrary we may define the function ® : J = J x J — RN¥*N (or CNV*V)
as the (pointwise) limit:
M,(t,s) — ®(t,s), n— oo

for all (t,s) € J x J.

Definition. The matrix ®(¢,7) is called transition matrix function.

Point out that ®(¢,¢) = I. The product x(t) = ®(¢,7)¢ gives by construction the solution to I.V.P. to
the equation x'(t) = A(t)x(t) with initial data z(7) = £. In the case when A(t) is only piecewise continuous,
x(t) will be continuous and satify the corresponding integral equation. It will satify the differential equation

outside discontinuities of A(t).
Example. For an autonomous linear system with constant matrix A the transition matrix function is
O(t, 7) = exp(A(t — 7)).

0.2 Gronwalls inequality. Uniqueness of solutions.

Gronwall ’s lemma. Lemma 2.4., p. 27 in L&R.
(We skip it for now. A simpler version was considered before)
Let I C R, be an interval, let 7 € I, and let g,h : I — [0, 00) be continuous nonnegative functions. If
for some positive constant ¢ > 0,
g(t) < c+ Vel

/T t h(o)g(o)do

t
/ h(o)do ) Vtel
Proof.

The proof uses the idea of integrating factor similar to the simpler case with constant h = || A|| consid-

then

g(t) < cexp (




ered before. Introduce G, H : I — [0,00) by

Gt) = c+ /h(a)g(a)da

/T ' h(o)do

By the hypothesis in the lemma, 0 < g(¢) < G(¢).

We consider first the case 7 < t. Then integrals in the expressions for G and H are nonnegative:

G(s) = c+/ h(o)g(o)do;  H(s) —/ h(o)do, Vs e |r,t]
Differentiation and the Newton - Leibnitz theorem imply

G'(s) = h(s)g(s) < h(s)G(s) = H'(s)G(s), Vse]|r,t]
G'(s)— H'(s)G(s) < 0, Vselr,t

Multiplying the inequality by exp(—H (s)) and observing that
(G'(s) — H'(s)G(s)) exp(—H(s)) = (G(s) exp(—H(s)))

we arrive to

(G(s)exp(—H(s))) <0, Vs € [r,1]
Integrating the last inequality from 7 to ¢ we arrive to

(G(t)exp(=H (1)) < (G(7) exp(=H(7))) = ¢

Therefore we arrive to the Gronwalls inequality:

(G(t)) < cexp(H(t)) = cexp ( / t h(a)da)

The case when t < 7 is considered similarly by observing that for ¢t < 7

G(t) = c+/ h(c)(o)do;  H(t) :/ h(o)do, Ys € [t, 7]
Do it as an exercise!
Uniqueness of solutions to I.V.P.

Theorem 2.5, p. 28 L&R

Let (7,€) € J x RN(J x CV). The function x(t) = ®(¢,7)¢ is a unique solution to the LV.P. (1).If y :
J, — RY or (CV) is a another solution to (1) ' = A(t)z(t), then y(t) = z(t) for all ¢ € J,,.

Proof.



The fact that z(t) = ®(¢,7)¢ is a solution to I.V:P. follows by construction and from the properties of
the transition matrix function. Only uniqueness must be proved. Consider function e(t) = z(¢) — y(¢) on

the interval J, C J. By linearity it satisfies the equation

e(t) = /tA<J)€(O>dJ, vVt e J,

Applying the triangle inequality for integrals we conslude that

le(®)] < / 1A@)| le(o)] do, vt € J,

Point out that on an arbitrary bounded closed (compact!) interval [a,b] C J, the piecewise continuous

A(o) matrix valued function has a bounded norm ||A(0)|| < K.Therefore for any 7,t¢ € [a, b]

t
[l < lle(r)l] +/ K |le(o) do, VYt 7 € [a,0]
and by the simple variant of Grénwall ’s inequality

le@)]l < lle(r)ll exp(K (¢ — 7))

that we proved before, |le(t)|| = 0 for all ¢ € [a,b] and therefore y(t) = z(t) for all t € J,,.

0.3 Solution space.

We have considered a particular variant of the following theorem in the case of linear systems of ODEs
with constant coefficients. The formulation and the proof we suggested are based only on the fact that the
set of solutions S;, is a linear vector space and on the property of the uniquness of solutions. We repeat
this argument here again with some corollaries about the structure of the transition matrix ®(¢, 7).
Proposition 2.7 (1), p.30, L&R.
Let by, ...,by be a basis in RY (or CV) and let 7 € J.

Let ®(¢,7) be a transition matrix to the equation

with A(t) being a matrix valued function A : J — R¥*N (or CV*V) | piecewise continuous on the interval
J.

Then functions y; : J — RY (or CV) defined as solutions

y;(t) = (¢, 7)b;

with j = 1,..., N to, the equation above form a basis of the solution space S;, of the equation.



In particular Sy, is N -dimensional and for every solution z(t) : J — RY (or C") there exist scalars

Y1, ---Yn such that
N
w(t) = vu5(t)
j=1

forallt € J.

Proof

We can just repeat here the proof that we gave earlier. Point out that it is more general than one given
in the course book.

Suppose that at some time ¢ solutions y;(¢) are linearly dependent. It means that there are constants

{a; };Vzl not all zero such that
N
> ajy(t) =0
j=1

at this time. On the other hand there is a solution that satisfies this condition. It is zero solution x,(t) = 0
for all ¢.

But then these two solutions must coinside because solutions are unique!!! Namely Z?f:l a;y;(t) =0
for all times including ¢ = 7.Therefore Zjvzl a;y; (1) = Zj\[:l a;b; = 0 because b; are initial conditions at
t = 7 for y;. It is a contradiction because vectors b; , j = 1,..., N are linearly independent. Therefore y;(t)

with 7 = 1,..., N are linearly independent for all ¢ in J. B

Example.

Calculate the transition matrix function ®(t, s) for the system of equations

T =tx
xh =11 +txs

Here the matrix A(t) is triangular.
The system of ODE above has triangular matrix and can be solved recursively starting from the first
equation.

The fundamental matrix ®(¢, 7) satifies the same equation, namely

d
ZO(tT) = ADD(t,7)

o(r,7) = 1



®(t,7) has columns 7 (t,7) and 7o(Z, 7) that at the time ¢ = 7 have initial values [1,0]” and [0, 17,
10
01
We need to find two solutions 7 (¢,7) and mo(¢, 7) that at the time ¢ = 7 have initial values [1,0]” and

because ®(7,7) = = [
0,1]7 to the equation

We will use a general solution to the scalar linear equation @’ = p(t)x+g(t) with initial data x(7) = o

calculated using the primitive function P(¢, 7) f p(s)ds of p(t):

z(t) = exp {P(¢,7)} zo + / exp {P(t, s)} g(s)ds

A derivation of this formula using the integrating factor idea follows.

/

r = p(t)x + g(t), Ty = x<7_)

B = [ plo)is

exp {—P(t, )} 2 = exp{—P(t,7)}p(t)z + exp {—B(t, 7)} g(t)
exp {—P(t, 1)} — p(t) exp{~P(t,T)} x = exp{—P(t,7)}g()
exp {—P(t, )} o' + (exp {~P(t, 1)}z = exp{—P(t,7)} g(t)
B} = e (B0} o)
[ fep (=B myae) ds = [ exn (~P(s.7)} gls)ds

exp{—P(t,7)} x(t) —exp{—P(7,7)} 20 = / exp {—P(s,7)} g(s)ds

exp {~P(t,7)} 2(t) — exp {0} zg = / exp {~P(s,7)} g(s)ds

z(t) = exp{P(t,7)}xo+ /Tt exp {P(t,7)} exp {—P(s,7)} g(s)ds
x(t) = exp{P(t,7)}xo+ /: exp {P(t,7) — P(s,7)} g(s)ds
P(t,7) — P(s,7) — / () / Cp(2)ds = / Cp(2)de + / " p2)dz —
[ o = i)
o) = e (B}t [ e (Bt ols)ds

(1) = xo



In the equation

/
Ty =tx

the coefficient p(t) = t, therefore P(t,7) = [Tsds = (1s?) {i = 1 (t* — 7%) and the solution

( t? — 7'2)):101(7').

x1(t) = exp(

DN | —

The second equation

xh =tmry+ 11

is similar but inhomogeneous:

xo(t) = exp(P(t, 7))x2(7) +/ exp(P(t, s))z1(s)ds.

Substituting P(t,7) = 1 (#? — 72) we conclude that exp( (2 — 72))za(7) + [ exp( (12 — 72))x1(7)ds

1 1 1
xo(t) = exp(§ G +/ exp( 5 2))eXp(§ (s> = 7°))a1(7)ds
1 1
= exp(§ (t*—7° +/ exp( 5 7)1 (7)ds
And
1 1
xo(t) = exp(§ (t* = 7°))za(7) + exp(§ (= 7)) (t — 7)1 (7).
The fundamental matrix solution ®(¢,7) has columns that are solutions to 2’ = A(t)z with initial data -

0
that are columns in the unit matrix: 0 and _E

Taking z1(7) = 1 and (1) = 0 we get 21 (t) = exp(5 (t* — 72)) with z5(t) = exp(3 (2 — 72))(t — 7)
Taking z1(7) = 0 and z5(7) = 1 we get x1(t) = 0 with z5(t) = exp(5 (* — 72)) and the fundamental

matrix solution in the form

DN | —

O(t,7) = exp(= (£* — 7)) [ ! 0 ]

t—7 1

0.4 Group properties of transition matrix. Chapman - Kolmogorov rela-

tions.

remeber that in the case with autonomous systems the transition matrix ®(¢,7) = exp ((t — 7)A).



Therefore in this case

O(t,7) = exp{(t—71)A} =exp{(t —0o)A}exp{(oc —T1)A}
= exp{(t—0)A+ (6 —1)A} = O(t,0)P(0,7)
o(t,7) = P(t,0)P(0,7)

The transition matrix ®(¢, 7) defines a transition mapping (¢, 7, ), that maps initial data £ at time
7 into the state ¢(t,7,&) = x(t) = ®(¢, 7)€ of the system at time ¢.

Let us consider two consequtive solutions x(t) = ®(¢, 7)€ and y(t) = ®(t,0) (P(0,7)&) of the equation
' = A(t)x(t), that continue each other in the time point ¢ = o where the second solution y(¢) attains the
initial state taken in the point where the first solution x(¢) arrives at time t = o.

Together with the uniquness of solutions, this consideration leads to the group property of the transition
mapping and the transition matrix. The group property means that moving the system governed by the
equation z'(t) = A(t)x(t) from time 7 to time ¢ is the same as to move it first from time 7 to time o (blue

curve) and then to move it without break from time o to time ¢ (red curve)

q)(tv 7)5 = (I)(ta U) [(I)(o'7 7—)5]

Point out that these two "movements" do not need to go both in the positive direction in time as it is
in the picture. One of these movements (or both) can go backward in time. Another observation is that
the linearity of the system was not essential for this reasoning, only the uniqueness of solutions. We will
use a similar argument later for non-linear systems.

We have proven (almost) the following theorem.

Corollary 2.6, p.29, L&R (Chapman - Kolmogorov relations)

10



Forallt,o, T € J

O(t,7) = P(t,0)P(0,7), (5)
O(t,t) = I,

O(1,0)P(t,7) = P(r,7)=1
o(r,t) = (B(t,7))" (6)

Proof.

The first statement has been proven already. The second follows from the integral equation for the
transition matrix. The third one follows from the first two. We apply the first statement ®(¢,7) ®(7,t) =
®(t,t) = I therefore ®(7,t) is the right inverse of ®(¢,7). The same argument for this expression with ¢
and 7 changed their roles leads to that ®(7,¢) is the left inverse of ®(¢,7).1

0.5 Fundamental matrix solution.

Introducing the transition matrix function ®(¢,7) for non-autonomous system of equations was similar to
considering exp(A (t — 7)) for autonomous linear systems. We have got a solution to an arbitrary I.V.P.
by multiplying arbitrary initial data z(7) = £ with the the transition matrix function: z(t) = ®(¢, 7)&.

On the other hand we could construct a general solution to an autonomous linear system just by taking
a linear combination of N linearly independent solutions to the system, because the dimension of the
solution space is equal to V.

The situation is exactly the same for non-autonomous linear systems with the difference that we in
general cannot find a basis for the space of solutions analytically. It is possible only in some particular
cases, for example for a triangular matrix A(t).

Definition.

The functon t — W(¢) € R™*"is called the fundamental matrix solution for the system 2’ = A(t)z,
x € R™ if it’s columns Wy (t), k = 1,..., N are linearly independent solutions to the system (and therefore
build a basis to the solution space): W (t) = A(t)Ug(t)

It follows from the definition of the matrix product that

with an arbitrary constant vector C' € RV.

The fundamental matrix solution W(¢) is an invertible matrix for all ¢ because it’s columns are linearly
independent for all ¢.

There is a simple connection between an arbitrary fundamental matrix solution W(¢) and the transition

matrix O(t, 7).

11



Proposition 2.8 , p. 33

O(t,7) = V()T }(7)

Proof.
The product X (¢,7) = U(¢t)¥~!(7) satisfies the equation

X'(t,7)=A@t)X(t,7)

in all points t € J where A(t) is continuous, because each column in ¥(¢) does it. On the other hand
U(7)¥~1(7) = I. Therefore X (t,7) = ¥(¢)¥!(7) satisfies the integral equation

X(t,7)=1+ /tA<O')X(O',T)dO'

in all points ¢ € J because each column in ¥(¢) does it. The same equations are satisfied by ®(¢,7). By
the uniqueness of solutions to linear systems of ODEs ®(¢,7) = X (t,7) = U(t)¥ (7).

This proposition shows an alternative way to calculate the transition matrix solution, because sometimes
it is easier to find some basis for the space of solutions and to put it into a matrix ¥(¢) instead of solving

the matrix equation for ®(¢, 7).

0.6 Abel - Liouville’s formula.

Lemma about the derivative of a determinant of a matrix valued function.
Let B : J — RY*Y be differentiable. Then the derivative of it’s determinant satisfies the following

formula

(det(B(1))' =) _ det (Un(B))

where matrices Uy (B) have the same columns bi(t) as the matrix B(t) = [bi(t), ..., by (t)] except the k -th

column exchanged by the column of derivatives of the k-th column in B(t).

Un(B) = {bl(t),..., {%bk(t)] ,...,bN<t>1

A similar relation can be written for rows instead of columns.

An elementary proof can be carried out using the definition of derivative as a limit of a finite differ-
ence and repeated application of the addition formula for determinants. Prove it as an exercise on
properties of determinants!

Consider a homogeneous linear system of ODEs 2'(t) = A(t)z(t) and N solutions y;(t), y2(t),...,yn(t)

12



to it. Consider the matrix Y (¢) having these solutions as it’s columns:

Y (t) = [yi(t), ya(t), ..., yn (t)]

Definition.

The determinant
w(t) = det Y(t) = det [y1(t), y2(t), ..., yn (t)]

is called Wronskian associated with solutions y; (), y2(t), ..., yn (%).

Proposition 2.7 part (2) - Abel - Liouville’s formula
Wronskian w(t) associated with solutions y;(t), y2(t),...,yn(t) to the system a'(t) = A(t)z(t) satisfies
the following relations:
w(t) = w(r)det ®(t, 7)

In points ¢t where A(t) is continuous it satisfies the differential equation
w'(t) = tr(A(t))w(?)

and therefore with initial value for w(7) at time 7 :

for all t € J.OO

Proof.
We use here that y,(t) = ®(¢, 7)yr(7) and therefore Y (t) = ®(¢, 7)Y (7). It implies that

w(t) =detY(t) = det (®(¢t, 7)Y (7)) = det Y(7) det (¢, 7) = w(r) det (¢, 7)

giving the first statement of the Proposition.

We denote by ¢, (t) columns in ®(¢,7), so that ®(¢,7) = [p1(t), ps(t), ..., on(t)].Then we apply the
Lemma about the derivative of a determinant of a matrix valued function to the case B(t) =
®(t,7). A direct substitution implies that

aa(detCID t,7) Zdet (Up(® Zdet ({ ..,%m(t)),...,(pN(t)D

where the k-th column in Uy (®(t,7)) is 2 (¢,(t)) and other columns are columns ¢,(t), j # k, j =1,..N
from ®(t, 7).
9 (p(t)) = A(t)py(t), because ¢ (t) are solutions to the system 2/(t) = A(t)z(t). We assume here

that 7 is not a point of discontiuity for A(¢). It leads to the more explicit expression:

13



g (det (¢, 7) Zdet (Up(® Zdet 01 (1), s A (0i(D)) 5 oy on (D))

Setting t = 7, into the last formula for we arrive to

9
= (det @(t,7))

= Z det (e, ..., A(T)eg, ..., en])

because ®(7,7) = I = [eq, ..., €, ..., en]. Observe that A(7)e;, = [A(T)],, - is the k-th column in A(7).Matrices
under the determinant sign in the last formula are diagonal with all elements equal to one, except the k -

th kolumn equal to [A(7)], . See the expression for this matrix in the case of N =5, k = 4.

[1 0 0 Ay 0]
01 0 Ay 0
001 Ay O
000 Ay 0
00 0 Ag 1 |

Applying the standard expansion formula along the first column of the determinant we conclude that
the determinants in the right hand side of the formula for 2 (det ®(t,7))| ,_. are equal to the product of

diagonal elements:
det ([e1, ..., A(T)eg, ..., en]) = A(T) g

For example for N =5, k = 3.

10 A3z 00
0 1 A3 0 O
det ey, ..., [A(T)],,...,en] = det | 0 0 Asz 0 0|, k=3
0 0 A3 1 0
0 0 As3 0 1

= 1><1XA33X1X1:A33

Therefore

o
= (det &(t,7))

N
= det([er, ..., [A()] ZAM ) = trA(r)
t=1 k=1

Therefore we derived the differential equation for wronskian for arbitrary:

w' (1) = w(r)trA(r)

14



The argument given here applies to any 7 € J that is not a point of discontinuity for A(t). The expression

wt) = wir)en (| t (A )
w(t) = detY(#)

follows by integration of the differential equation for w(t) using the method of integrating factor applied to a
scalar first order linear equation. In the case when A(...) has finite number of discontinuities at the interval

(7,t) the formula follows by applying the same argument consequently on each interal of continuity.l

Interesting observations with application of Abel - Liouville’s formula.
The geometric meaning of determinant det(C) of the matrix C' = [¢y, ...cn| with columns ¢y, ...cy is

volume of the parallelepiped V' build on vectors ¢y, ...cy :
|det(C)| = vol (V)

One can define V' formally as V' = {x cRY: 2= ngvzl agcr, ag €[0,1],k =1, ,n} .
It implies that the Abel - Liouvilles formula gives an exact description of how for example the volume
of a unique cube build on standard basis vectors ey, ...,ex given at the initial time 7 is changing by the

"flow" described by the transition matrix function ®(t, 7).

Lecture 11
Summary of Lecture 10
on non-autonomous linear systems

1. Transition matrix function ®(¢,7) representing a solution to a non-autonomous system z'(t) =
At)x(t), (1) = £ = x(t) = (¢, 7)E.

2. This matrix defines a linear transition mapping ¢(t, 7, ), that maps initial data £ at time 7 into
the state p(t,7,£) = z(t) = ®(t, 7)€ of the system at time ¢.

3. Space S;, of solutions to z'(t) = A(t)z(t).

4. Uniqueness of solutions to I.V.P (by Gronwall’s inequality)

5. Construction of the basis to the solution space Sy,.

6. Fundamental matrix solution W(t,7) and it’s connection with transition matrix function ®(t, 7).
Using fundamental matrix solution for constructing general solution.

7. Chapman-Kolmogorov relations: ®(t,7) = ®(t,0)®(o, 7)

8. Wronskian w(t) = det [y1(t), y2(t), ..., yn(t)] of a set of solutions [y (t), y2(t), ..., yn(t)] and the Abel-

Liouville’s formulas:

w'(t) = tr(A(t))w(t)t
wt) = w(r)exp ( / tr(A(s)ds)>

8. Geometric meaning of Abel- Liouville’s formulas.
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0.7 Non-homogeneous linear systems and Duhamel’s formula in the general

case.

We consider the I.V.P. for non-homogeneous linear system
2'(t) = A)x(t) +b(t), z(r)=¢&, (1,6) e JxRY(JxC")

We suppose here that A : J — R¥*Y (or CV*¥) is continuous or piecewise continuous and denote
by ®(¢,7) the transition matrix function generated by A(t). We rewrite the I.V.P. for the system also in

integral form t
o) =€+ [ (Al@)a(o) + blo)) do.

that allows to consider continuous solutions in the case when A is only peacewise continuous. In this case
solutions satisfy the differential form of the problem in between of discontinuties of A.

Theorem 2.15, p. 41 L&R

Let (7,€) € J x RY.The function

x(t) = ®(t, 7)€ +/ O(t,0)b(o)do,

is a unique solution to the I.V.P. above.
Proof. A simpler proof can be given for points ¢ outside the discontinuties of A. Then the result for
an arbitrary time interval follows by repeated argument for each subinterval [7,¢] where A is continuous.
Apply the Chapman-Kolmogorov relation to the transition matrix under the integral: ®(¢,0) =

O (t,0)P(0,0) and calculate derivative of the integral in the expression for the solution.

% ( / td)(t,a)b(a)da)

_ % ( / t@(t,O)@(O,a)b(a)da) _ % (CD(t,O) / t(I)(O,a)b(a)da)

i
_ (%@(t,@)) /TtCID(O,a)b(a)da + <<I>(t,0)% </:<I>(O,a)b(a)da)>
—AD(t,0) / " 9(0,0)b(0)do + B(t,0)0(0, (1)

Observe that by Chapman -Kolmogorov relation ®(¢,0)®(0,t) = ®(¢,¢t) = I, and ®(¢,0)®(0,0) =

®(t,0). It implies simplifications in the last formula and finally

% < / t@(t,a)b(a)da) iy < / td)(t,a)b(a)da) +b(0)

Therefore f: ®(t,0)b(o)do is the solution to the inhomogeneous equation with initial condition zero.

Adding the solution ®(t, 7)¢ to the homogeneous equation, satisfying the initial condition ®(7,7)¢ = £ we
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conclude that z(t) = ®(¢, 7)£+ f: ®(t,0)b(0)do, is a solution to the I.V.P. above. The uniqueness follows if
we consider difference between two solutions z(t) and y(t) with the same initial condition: z(¢) = x(t)—y(t)
that evidently satisfies the homogeneous equation z'(t) = A(t)z(t) and the zero initial condition z(7) = 0.
The known result for homogeneous linear systems based on Grénwall’s inequality implies that z(¢) = 0 on
J.

Another proof based on the integral formulation of the problem and on the explicit checking using
Fubini theorem that x(t) expressed as in the formulation of the theorem satisfies it, is given in the book

on the page 41.

1 Systems with periodic coefficients: Floquet theory

We consider here linear homogeneous systems of ODE’s with J = R and a continuous or piecewise contin-

uous matrix A : R — RY*N (or CV*V), with period p > 0:
2(t) = Alt)z(t), Alt+p)=A({), VieR

Let ® be a transition matrix generated by a periodic A(t).
Shifting invariance property.(formula 2.31, p. 45 in L.R.)
We are going to prove an important shifting invariance property of this transition matrix function,
namely that
O(t+p,7+p) =0t 7) (8)

Structure of the transition matrix for a time interval including a finite number of periods.
(formula 2.32, p. 45 in L.R.)
(Motivation to introducing the monodromy matrix)

Another property specifying further how the periodicity of the system influences properties of solutions.

Ot +p,7) = 2(t,0) [®(p, 0)] 2(0,7) (9)

O(t+np,7)=d(t,0)[P(p,0)]" ®(0,7) (10)

for any (t,7) € R x R.
Definition of the Monodromy matrix
The transition matrix ®(p,0) for a periodic linear system with period p is called the monodromy

matrix (this standard notion is not used in the course book)
Proofs

Proof of the shifting invariance property.

This first property becomes untuitively clear after followig arguments:

17



The matrix ®(¢, 7) satisfies the equation

0
a@(t T) = A(t)®(t, 7)

= 1.
The matrix ®(t + p, 7 + p) satisfies the equation

with initial condition , ®(¢,7)],_.

B O(t+p,7+p) = Al +p)®(t +p, 7+ D)

with initial condition , ®(t 4+ p, 7 + p) =1.

|tT

that A(t) = A(t + p). Substituting it in the second equation we get the equation

g O(t+p,7+p)=Al)2(t +p,7+Dp)

with the same initial condition, ®(7 4+ p, 7 + p) = I on the interval t € [1,t).

It implies that ®(t, 7) and ®(t+p, 7+p) satisfy in fact the same equation with the same initial conditions
®(t +p,7+p)|,_, = I . The uniquness of solutions implies that they must be equal: ®(t + p,7+p) =
O(t, 7).

A prove using the integral form of the equation is presented in the course book.H

[ -

Proof of the structure formula for the transition matrix for a periodic system

The proof is based on a combination of the shifting property with the Chapman-Kolmogorov relations.

Ot +p,7+p) (1 +p,7) "L Bt 7)D(7, 7 — p)

Ch.~Kol. _and_Shit d(t,0)®(p, 7)

(I)(t +p, 7_) Ch.f:Kol‘

N D1, 7)0(r,0)0(0,7 — p)

Kl (8, 0)D(p, 0)®(0, 7)

The second equality for the shift np in n periods p in time is derived by the repetition of the last

argument and induction
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Ot +np,7) N Bt + np, 7+ np)®(r + np, 7) " B(t, 7)B (7, T — np)
M B¢, 1) (7,0)0(0, 7 — np) =" B(t,0)D(np, 7)

LN (,0)0(np, 0)B(0,7)

Ch.—Kol n_times shifting for each

®(np, np—p)...®(kp, kp—p)...®(2p, p)®(p, 0)
[®(p,0)]" that follows from the Chapman-Kolmogorov relation and from the fact that ®(¢,0) satisfies the
same equation on each interval [kp, (k + 1) p|, (shift invariance property) because A(t) = A(t + p) is a

and from the observation that ®(np, 0)

periodic matrix with period p. It implies the desired formula:
O(t +np, ) = 2(t,0) [2(p,0)]" (0, 7)

|

Example illustrating ideas of Floquet theory on a scalar linear equation.

Consider the following scalar linear equation with periodic coefficient A(t) = (sin(4t) — 0.1) with period
p = 0.57:
CCZZ—Q; = (sin(4t) — 0.1) z,

We will find the monodromy matrix for this simple equation and demonstrate all objects related to the
Floquet theorem that follows.

The exact general solution is:
x(t) = C'exp (—0.25 cos (4t) — 0.1¢)

with arbitrary constant C', can be found by the method with integrating factor.

—0.25cos (4t) — 0.1t is the primitive function of the coefficient (sin(4¢) —0.1) in front of z in the
equation.

To find the solution equal to 1 at £ = 0 that is the transition "matrix" in the scalar case, we calculate
the expression exp (—0.25 cos (4.0t)) e **|,_, = 0.7788 and choose C' = =iz in the expression for the
general solution x(t).

The transition "matrix" is:

o(t,0) = exp (—0.25 cos (4.0t)) e

1
0.7788

The period of the coefficient in the system is p = 0.57 and the monodromy matrix is ®(p,0) =
®(0.57,0):

®(p,0) = gz exp (—0.25cos (4.0t)) e 01| _ = 0.85464

The eigenvalue p of the (1x1) "monodromy matrix" ®(p,0) coinsides with it’s value: © = 0.85464 < 1

and is strictly less than 1.
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Consider the logarithm G = In (®(p,0)) of the monodromy matrix ®(p,0):

_ _ _ —0.1¢ _
G=In(®(p,0)) = 111(0.7788 exp (—0.25cos (4.0t)) e %) . 0.15708
G _ —0.
F:;:$:—0.1<0
Therefore the eigenvalue A = —0.1 of the "matrix"
1 1
F=-G=-In(®(p,0
6= (®(p,0))

is negative.

The transition matrix to the linear homogeneous "system"

Yy (1) = Fy(t)
exp(Ft) = exp(tg) = exp(—0.1¢t).

Compare black and orange graphs for exp(t%) and for ®(t,0) = 5=z5 exp (—0.25 cos (4.0t)) e %1 . Observe
that exp(t%) and ®(¢,0) coinside in points t = pn = (0.57)n, n = 1,2,3...

Introduce a "corrector" multiplicator O(¢) introduced so that

®(t,0) = O(t) exp (t%)

Observe that

1
= —0.2 4.
O(t) G 77ag P (—0.25 cos (4.0t))

is a p = 0.57 - periodic function equal to 1 in all points ¢t = pn = (0.57)n, n = 1,2,3...(red graf).

157

1.257

11

0.75T

05T

0257
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We are going to observe soon that a similar representation of the transition matrix ®(¢,0) is possible
for the transition matrix ®(¢,0) of an arbitrary periodic linear systems of ODEs.

The main idea of the Floquet theory.

The monodromy matrix ®(p,0) is a particular transition matrix that maps initial data £ at time 7 = 0
to the state of the system x(p) after one period p. A particular property of this matrix in the case of

periodic systems is that similar mapping to the state x(t) at the time ¢t = np equal to n periods p is just

®(n- p,0) = [®(p,0)]"

This property is similar to properties of autonomous linear systems where ®(t,0) = exp(At) and there-

fore
®(n - p,0) = exp(A(n - p)) = lexp(A(p))]" = [@(p, 0)]" (11)
that follows from the factorisation property of the exponent of two commuting matrices:
exp(A + B) = exp(A) exp(B)

In the case of periodic systems this factorisation applies only for shifts in time that are integer numbers
of periods. But it is still a remarkable property. The behaviour of solutions is described by a repeated

multiplication by a constant matrix in certain time points: p, 2p, 3p, ...:

z(np) = [®(p,0)]" ¢, n=0,1,2,..

The first idea of the Floquet theory is to represent x(np) at times ¢t = np similarly as for autonomous
systems, namely with the help of an exponent of some (unknown at the moment) constant matrix F' times

the time argument: ¢ = np.
z(np) = [@(p,0)]" £ = exp(np F){ = [exp(p F)]" ¢
It means that the matrix F' in such representation must satisfy the relation
®(p,0) = exp(pF).
Therefore the matrix pF' must be something like the logarithm of the monodromy matrix:
pF =log(®(p,0))
Definition. A matrix G € CV*¥ is called a logarithm of the matrix H € CV*V if

H = exp(G)
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We write in this case G = log(H).

We are going to prove soon that for any non-singular matrix H there is a logarithml log(H) in this
sense. Point out that the monodromy matrix ®( p, 0) is always non-singular, because columns in a transition
matrix ®(¢,0) are always linearly independent (check yourself: why?)

The logarithm of a matrix is not uniquely defined in the same way as it is not unique for complex and
real numbers z:

In(z) = In(|z|) + ¢ arg(z) (12)

because the argument arg(z) of a complex number is defined only up to 27k, k = +1,£2, ...

One can choose a unique branch for the logarithm function, called the principle logarithm or Log (2)
by choosing the argument in the last formula (12) for example only in the interval (—m, 7]

We will suspend the discussion of matrix logarithm now and will consider first an application of it to
the analysis of solutions to periodic linear systems of ODEs.

The main idea in the Floquet theory is the "approximation" of the transition matrix ®(¢,0) for a
periodic linear system with matrix A(t) = A(p + t) by the transition matrix exp (¢ F') for an autonomous

system

with the constant matrix F = [%G} where

G = log(®(p,0)) (13)

exp(G) = @(p,0) (14)
exp(pF) = ®(p,0) (15)
exp((np)I") = [®(p,0)]" = &(np,0) (16)

®(p,0) is_considered as_a_transition matrix for an autonomous_system.

These two transition matrices coinside in points ¢t = 0, p, 2p, 3p, ...

®(np,0) = [®(p,0)]" = exp ((np) [F]) (17)

The "deviation" of ®(¢,0) from exp (¢ F') in intermediate points within one period can be expressed by a
factor O(t) so that

®(t,0) = O(t)exp (tF)
O() = &(t,0)exp(—tF)

The matrix function ©(¢) must be equal to the unit matrix / in the points ¢t = 0, p, 2p, ... because in these
points these two transition functions coinside by construction and exp (—tF') is inversion of ®(¢,0), see
(17).

The exact formulation of the properties of such factorization is given in the following Theorem by

Floquet.
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Lecture 12
Summary of Lecture 11
on periodic systems and Floquet theorem

1. Shifting property of transition matrix for periodic systems:
O(t+p,7+p) =d(t,7)
2. Structure formula for transition matrix of periodic systems

O(t +p,7) = P(¢,0) [P(p,0)] (0, 7) (18)

O(t+np,7) = (t,0) [®(p, 0)]" 2(0,7) (19)

3. Picture of the transition mapping (¢, 7,&) = ®(t, 7)€ generated by the transition matrix ®(¢,7) to
a differential equation 2'(t) = A(t)x(t), with periodic coefficients A(t + p) = A(t)
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Theorem 2.30 , p. 53. Floquet theorem
Consider a periodic system x'(t) = A(t)z(t), with period p: A(t) = A(t + p)
Let G € CV*¥ be a logarithm of the monodromy matrix ®( p,0).

G = log(®(p,0))

There exists a periodic with period p piecewise continuously differentiable function O(t) : R — CN*V

with ©(0) = I and ©(t) non-singular (invertible, all eigenvalues are non-zero) for all ¢, such that
t
®(t,0) = O(t) exp (—G) , VteR (20)
p

Proof.

We remind the main property (9) of the monodromy matrix for 7 = 0:

O(t+p,0) = @(t+p,p)®(p,0) = 2(t,0)2(p,0)
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where we applied first the Chapman Kolmogorov relation (5) and then the shift invariance (8) of the
transition matrix function ®(¢,7) for a periodic linear system.

We denote iG by F for convenience, so that G = pF, and define the matrix function ©(t) after the
desired relation (20)

O(t) = d(t,0) exp (—%G) — &(t,0) exp (—tF)

The matrix function O(¢) is well defined in such a way. The problem is to show that it has desired
properties: p - periodicity and satisfies initial conditions.
We remind that ©(0) = I and even O(np)= I for all n = 0,1, 2,3, ...because

®(np,0) = [®(p,0)]" = exp ((np) F)

®(t,0) is piecewise contiuously differentiable or contiuously differentiable depending on if A(t) is piece-
wise continuous or continuous. Therefore O(t) has the same property because exp (—%G) is continously
differentiable. O(t) is also invertible for all ¢ as a product of two invertible matrices ®(¢,0) and exp (—tF).
We check now that ©(t) is p - periodic, namely that ©(t + p) = O(t) for all ¢ € R.

Ot +p) “ ®(t+p,0) exp (~(t +p)F)
(exp(G))~*
——
= ®(t+p,0)exp (—pF)exp (—tF) = ®(t + p,0)exp (—G) exp (—tF)
(®(p,0) "' =2(0,p)

= ®(t+p,0) (exp(G))™" exp(—tF)

We remind that exp(G) = exp(log(®(p,0)) = ®(p,0), therefore, by Chapman-Kolmogorov relations
exp (—G) = (exp (G)) ™" = &(p,0)~! = &(0,p). Therefore, using the main relation for the monodromy
matrix (?7) ®(t + p,0) = &(¢,0)®(p,0) together with the relation exp (—G) = ®(0,p), we arrive to

®(p,p)=I
def

—N—
O +p) = (£,0)2(p,0)2(0,p) exp (—tF) = ©(¢,0) (1) exp (—~tF) = O(1),

where we also used that ®(p,0)®(0,p) = I in the last step. Therefore O(t) is periodic with period p.H
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1.1 Logarithm of a matrix. Existence and calculation.

We will formulate a theorem and give a proof to it (simpler than in the book) about the existence of a
matrix logarithm.

Definition

The matrix G is a logarithm of matrix H or G = log(H) if exp(G) = exp(log(H)) = H.

Consider a nonsingular matrix H and it’s a canonical Jordan form J:
H=TJT
where T is invertible matrix. Then if there is Q@ € CNY*¥ such that exp(Q) = J it means that

Q = log(J), J = exp(Q)

then according to the properties of the exponent of similar matrices, and the definition of the matrix

logarithm

H = TJT'=Texp(Q)T = Texp(log(J))T ' =

= exp (T'log(J)T") o exp(log(H))

and
log(H) = T log(J)T™*

where we used te relation for exponent for similar matrices: that if A = TBT ! then exp(A) = T exp(B)T .
It means that to calculate the logarithm of an arbitrary matrix H it is enough to calculate the logarithm

of it’s Jordan canonical form. For H = T JT !
log(H) = Tlog(J)T ™"

Definition.
We say that G is a principal logarithm G = Log(H) of the matrix H if G is a matrix logarithm of H

and

o(H) = {exp(\): Xeoa(G)}
o(G) = {Log(u): pe€o(H)}

where Log(u) is the scalar principal logarithm:
z =8 arg(Log (2)) = Im(Log (2)) € (—m, 7.

This definition implies the explicit one to one correspondence between eigenvalues to H and eigenvalues
to G. Essentially the second relation is non-trivial.

Theorem.Proposition 2.29, p. 53.
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If H € CN*¥ is invertible, then there exists a principle logarithm Log (H).

Proof.

We have established above that it is enough to investigate existence of logarithm for the similar canonical
Jordan form J of the matrix H. So without loss of generality we may assume that H is a canonical Jordan
form J. Exponent of a Jordan matrix consists of exponents of it’s blocks. Therefore it is enough to
establish the existence of logarithm for each Jordan block J; in J, j = 1,...,s where s is the number of

distinct eigenvectors to H and J; has size n; X n;

[\ 1 0 0 ]
00 A 1 .. 0 0
FA Do
o 10
0 A1
| 0 0 A |
Jy =i (I+ £A; ) where
0 1o -
01
N; = :
’ 0
01
From the classical Maclaurin series for log(1 + z) = > (_11);)“ xP valid for |z| < 1, and for exp we get
p=1

exp(log(l+2z))=1+=z

We will try to calculate log(J;) = log (x\j] (I + /\i/\/}>> = log();)I + log (I + /\L./\/j>
Point out that we use the condition that A; # 0!!!
We formally write the Maclaurin series for log(/ + %/\/'j) :

n;—1
1 : (—1)1’“(1 )p

og (1++A;) =S S (L

Og< Aj ]) = p A

and observe that the Maclaurin series for log(1 + %/\/}) is a finite sum because all larger powers of N in

the series cancel. We have therefore that

1 1
exp (log (I+ )\_M)> =1+ )\—/\f]
j j
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and
exp (log(A;)I) exp (log (I - %A/})) =
j

exp <log()\j)f+log ([ + %J/\/})) = ) (I+ )\%./\fj) =J;

We define -
def (1)t P
G = log(M)I + ; ) /\—ij

Now we check that this expression G; is actually a matrix logarithm G; = log (J;) for the Jordan block J;
by just checking that is satisfies the definition of the matrix logarithm. Point out that the diagonal matrix
log(A;)I commutes with any matrix. Therefore applying formula exp(log(1l + z)) = 1 + x for series for

exp(x) and log(1 + z) to similar converging series of commuting matrices we arrive to the desired relation.

exp(G;) = exp <log()\j)f~|— JZ (_1p)p+1 ()\ij\f])p>

J

v (E ()

p=1

= exp (log(A\;)]) exp (log (I + A%NJ)> = (\I) (I + )\%N]) = Jj

In the Jordan canonical form J eigenvalues stand on diagonal and are easy to control. All calculations
that we have carried out are correct because \; # 0. We can choose logarithms log();) in these calculations
as principle values of logarithm Log(\;). In this case the logarithm of J; will be principal logarith, because
there will be one to one correspondence between eigenvalues \; to J; and eigenvalues Log ()\;) to Log (.J;)
that are diagonal elements in corresponding matrices. They will have the same algebraic multiplicity and
the same geometric multiplicity 1 (one linearly independent eigenvector for each Jordan block)

Therefore the existense of the principal logarithm is established also for J and for H, that is a matrix
similar to J. The same correspondence as above is valid for the eigenvalues to H and to Log(H) because
eigenvalues to similar matrices H and J are the same. The number of linearly independent eigenvectors

corresponding to each distinct eigenvalue (geometric multiplicity) will be also the same.ll
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1.2 Floquet multiplicators and exponents and bounds of solutions to peri-

odic systems. equations.

Definition.

Eigenvalues of the monodromy matrix ®(p,0) are called Floquet’s multipliers or characteristic
mutipliers.

A Floquet multiplier is called semisimple if it is semisimple as an eigenvalue to the monodromy matrix
o (p,0).

Definition.

Eigenvalues of the logarithm of the monodromy matrix are called Floquet’s exponents or charac-

teristic exponents.

Theorem 2.31, p.54 on boundedness and zero limits of solutions to periodic linear systems.

1) Every solution to a periodic linear system of ODEs is bounded on R, if and only if the abosolute
value of each Floquet multiplier is not greater than 1 and any Floquet multiplier with absolute value 1 is
semisimple.

2) Every solution to a periodic linear system of ODEs tends to zero at ¢ — oo if and only if the
absolute value of each Floquet multiplier is strictly less than 1.

Proof. (required at the exam)

By the Floquet theorem any solution x(t) to system

() = A(t)z(t), A(t+p)=A(),VteR (21)
satisfying initial conditions
x(r) = ¢
is represented as
@(t,0) y(t)
——— —
w(t) = @(t,7)¢ = O(t) exp(tF) (0, 7)€ = O(t)exp(tF)¢
= O()y)

where
monodromy_matrix

F=log( ®(p.0) ). ¢=(0.7¢

O(t) is a p - periodic continuous or piecewise continuous matrix valued function. ©(t) is invertible for
all £.

We define y(t) = exp(tF')( as a solution to the I.V:P. for an autonomous linear equation:

y(t)=Fy, y(0)=¢ (22)

y(t) = ©71(t)z(t), and z(t) = O(t)y(t). The mapping O(t) determines a one to one correspondence
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between solutions z(t) to the periodic system (21) and solutions y(t) to the autonomous system (22).The
periodicity and continuity properties of ©(t) and ©~!(¢) imply that there is a constant M > 0 such that
1©()]| < M and ||©7(t)|| < M for all ¢t € R. It implies that

le@I < Mly@®)]  and |ly@®)]| < M [lz@)]

Therefore

1)||z(t)|| is bounded on R, if and only if corresponding ||y(¢)|| = |lexp(tF)(|| is bounded on R,.
2) ||z(t)|] — 0 when ¢t — oo if and only if corresponding ||y(t)|| — 0 when ¢ — 0.

Since Log (®(p,0)) = G = pF, and ®(p,0) = exp(pF) it follows that

o (®(p,0)) = {exp(A\p): Ae€o(F)}
o(F) = {}?Logm we o(@(p, o>>}

and that algebraic and geometric multiplicities of each A € o(F) coinside with those of exp(p)\) €
o (®(p,0)).

The following connections between the properties of Floquet multipliers and propertis of corresponding
eigenvalues to the matrix F' = %Log(CI)( p,0)) are direct consequences of the Euler formula for the complex

exponent and properties of complex logarithm:

) = In(jz]) + iArg(2)

exp(z) = exp(Rez)(cos(argz) + isin(arg z))
|
|
|

lexp(z)] = exp(Rez) <1<= Rez<0
lexp(z)] = exp(Rez) <1<= Rez<0
lexp(z)] = exp(Rez)=1<= Rez=0

a) The Floquet multiplier y € o(®(p,0)),has|u| < 1 if and only if ReLog(u) < 0 that is if the
corresponding eigenvalue A = %Log(p) to F' has Re Log(u) < 0.

b) The Floquet multiplier 1 € o(®(p,0)),has || < 1 if and only if ReLog(x) < 0 that is if the
corresponding eigenvalue A = %Log(u) to F' has Re Log(u) < 0.

c) The Floquet multiplier p € o(®(p,0)), with |u| = 1 is semisimple if and only if the corresponding
eigenvalue A = %Log(ﬂ) to F having Re Log(u) = 0 is semisimple.

Known relations between properties of solutions to an autonomous system and the spectrum of corre-
sponding matrix applied to the system y/'(f) = F'y and to the spectrum o(F') of the matrix F' together
with statements 1),2), a),b),c) in the present proof imply the statement of the theorem.H
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Proposition 2.20. p. 45. On periodic solutions to periodic linear systems

The system z/(t) = A(t)z(t) with p - periodic A(t) = A(t + p) has a non-zero p - periodic solution if
and only if the monodromy matrix ®(p,0) has an eigenvalue A = 1. A more general statement is also valid.

The system has a non-zero n p - periodic solution for n € N if and only if the monodromy matrix ®(p, 0)
has an eigenvalue A such that \" = 1.0J

Proof. Consider an eigenvector v corresponding to the eigenvalue A\. Then v # 0, ®(p,0)v = Av and
[@(p,0)]"v=Nv=1-v=0

We will show that the solution to the system, with initial data x(0) = v has period np. This solution
is given by the transition matrix: z(¢) = ®(¢,0)v. Using this representation and applying the factorisation

property of transition matrices for periodic systems we arrive to
z(t +np) = ®(t +np,0)v = &(¢,0) [®(p,0)]" v =O(¢,0)v =2(t), VteR

It shows that x(t) is periodic with period n p.
Supposing that there is a periodic solution z(¢ + np) = z(t) and repeating the same calculation back-
wards we arrive to that z(0) = v is an eigenvector corresponding to an eigenvalue A such that A" = 1.

Carry out this backward argument as an exercise!

Lecture 13
Examples and exercises
on periodic and general linear systems of ODEs.

1. Monodromy matrix: ®(p,0), where p is a period of coefficients in the matrix A(t) = A(t + p).

2. If all eigenvalues A to ®(p,0) have |A| < 1, then all solutions to z’(t) = A(t)z(t) tend to zero with
t — oo.

3. If all eigenvalues A to ®(p,0) have |A\| < 1, and eigenvalues with |A\| = 1 are semisimple, then all
solutions to z'(t) = A(t)z(t) are bounded.

Comment conditions in 2. ,3. are also necessary !
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Corollary 2.33, p. 59
We consider a periodic linear system z/(t) = A(t)z(t), A(t + p) = A(t).
If f(f tr(A(s)ds has a positive real part, then the equation has at least one solution z(t) that is un-

bounded, or expressing it more explicitly, the upper limit of it’s norm is infinite: limsup,_, ||z(t)| = oc.

O
Proof.

We remind that the transition matrix ®(¢, 7) satifies the initial value problem:

—d(t,7) = A@)P(¢,7)
O(r,7) = 1

Arbitrary solution to the initial problem 2/(t) = A(t)x(t), (1) = £ will be expressed as
x(t) = ®(t, 7)¢
According to Abel - Liouville’s formula and considerations before

det(w(t,0)) = det(w(0,0)) exp ( /0 t tr(A(s)ds)

It implies for ®(¢,0)

|det(®(¢,0) )] = det(CI)(?)fO))exp (/0 tr(A(s)ds)

exp ( /0 t tr(A(s)ds) exp (Re ( /0 t tr(A(s>d8)>‘

Therefore, for t = p we get that if Re ([ tr(A(s)ds) > 0 then

o (Re [Marasyas) | > 1

On the other hand det(®(p,0)) is a product of eigenvalues i, to the monodromy matrix ®(p,0) with

|det(@(p, 0))] =

multiplicities my,

It follows from the structure of the similar Jordan matrix

®(p,0) = T HIT
det(T) ' det(T) det(J) = det(J)

Q.
@
-+
B
=
(=)
=
I

[det(®(p, 0)] = [ lme™ > 1
k=1

31



To have this product greater than 1 we must have at least one eigenvalue p,, with ‘ ,up{ >1. According
to one of Floquet theorems, all solutions to a periodic system of ODEs are bounded if and only if all
eigenvalues to the monodromy matrix have absolute value |A\| < 1 and those with |A| = 1 are semisimple.
Therefore existence of an eigenvalue with |A| > 1 implies existence of a solution z(¢) that is not bounded
and therefore limsup,_,  ||z(t)|| = co. B

For example we can choose the initial condition z(0) = v, with v, being the eigenvector to ®(p,0)

corresponding to the eigenvalue ‘,up| > 1.Then the solution

z(t) = ®(t,0)v,
Let t, = np
CI)(np7 O)Up = [@(p) 0)]nvp = (Np)nvp

with |p,| > 1. Therefore z(t,) = (/Lp)nvp, and
ot = 1| oyl = o0

and lim sup,_, . [|z(t)]| = occ.

O

We give also a geometric interpretation of this result. Consider a unite cube build on standard base
vectors eq,...,ey at time ¢ = 0. Consider how the volume Vol(t) of this cube changes under the action
of the linear transformation by the transition matrix ®(¢,0) of our periodic system. Point out that I =
le1, ..., en] It implies that the figure of interest is the parallelepiped build on columns of the transition

matrix ®(¢,0). One of the main properties of periodic system is that ®(np, 0) = [®(p,0)]". Therefore

Vol(np) = |det([®(p, 0)]" )| = |det([®(p, 0)] )|" = [exp (Re ( / ““(A(S)CZS))T

If Re ([ tr(A(s)ds) > 0 then exp (Re ([ tr(A(s)ds)) > 1. It implies that

lim Vol(np) = oo

Therefore along the sequence of times{t =np, n =1,2,3,...} we obsere that Vol(np) is unbounded.
It implies also that

lim sup || Vol(#)|| = oo
t—o0

The fact that lim, .., Vol(np) = oo implies that the diameter D(n p) of the parallelepiped build on
columns of ®(n p,0) calculated at these discrete time points, is also unbounded lim,, ., D(np) = co. It in

turn means that there should be a solution that has the property lim,, ... ||z(np)| = co0.0J
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