Example 1. Simple strong Lyapunov function.

Exercise 15 Show that (x(¢),y(¢)) = (0,0) is an asymptotically stable solu-

tion of
¢ = —x + 297
= —2ry°.
=4

Example 2. Stability by Linearization
For the following system of equations find all equilibrium points and inves-
tigate their stability and their type by linearization.
2= In(2-1y?)
y' = exp(z)—exp(y)

1. Solution. There are two equilibrium points: z; = (1,1)and 22 = (-1, —1).

0 —2—%—
The Jacobian of the right hand side is: [ _y;” ] Its values in
e’ —e!

0 —2 0 2
z1 and z9 are A; = l ], and A, = [ The eigen-

e —e 1/e —1/e
values to A; are —ie — 1v/e2 —8e,and 1v/e2 —8e — Lle that are conjugate
complex numbers with negative real parts. Therefore we observe stable spi-

ral around the equilibrium point z;. The eigenvalues to A, are , eigenvalues:
% (f%\/8e +1-— %) , é (%\/86 +1-— %), one postive and one negative. There-
fore we x5 is a saddle point and is unstable.

Example 3.

/

2
Consider the following system of ODEs: , Y

y= —z—(1-2%)y

Show the asymptotic stability of the equilibrium point in the origin and find
it’s domain of attraction.

Solution.

We try the test function V(z,y) = 22 + Ay? that leads to cancellation of

mixed terms in the directional derivative V; along trajectories:



Vi(z,y) = VV - f(z) = 222y + (24y (-2 — (1 — 2?)y)) = 4oy — 24zy —
2Ay%(1 — 2?)

Choose A = 2 to cancel indefinite terms.V (z,y) = 2% + 2y

Vi(z,y) = doy — 4oy — 4y*(1 — 2%) = —4y?(1 — 2?) that is not positive for
|z| < 1. Therefore the origin is a stable stationary point.

Checking the behavior of the system on the set of zeroes to Vy(x,y) inside
the stripe |z| < 1 we consider (V;)™" (0) = {(z,y) : y =0, ]z| <1}. On this
set y' = —a and the only invariant set in (V)™ (0) is the origin. The LaSalle
invariance principle implies that the origin is asymptotically stable.

The domain of attraction is the largest set bounded by a level set of V(x,y) =
22 + 2y? inside the stripe |z| < 1. The largest such set will be the interior of
the ellipse 22 + 2y? = C such that is touches the lines z = £1. Taking points
(£1,0) we conclude that 1 = C and the boundary of the region (domain) of
attraction is the ellipse 22 + 2y? = 1 with halfs of axes 1 and /0.5 :




How to find a Lyapunov function?

If the right hand side of the equation is a higher degree polynomial, then
it is often convenient to find a Lyapunov’s function in a systematic way in the
form of polynomial with unknown coefficients and unknown even degrees like
2m.

Consider the system

= =3z2—y

y/ _ 375 _ 2y3

Try a test function V(z,y) = az®™ + by>", a,b > 0.

= a2m(z)®" ' (=32% —y) + b2n(y)>" " (2° — 2%)
=  —6amaz®™ % —2ma(x)*™ty + 2nby*"ta® —dnby*" T2
—_———

good<0 bad—inde finite bad—indefinite  good<0

We choose first powers m and n so that indefinit terms would have same

powers of = and y.

2m—-1 = 5,—=>m =3

2n—-1 = I1j=n=1

Then Vy(z,y) = —18ax® — 625y + 2bz’y — 4nby*.We choose a = 1 and b = 3

to cancel indefinite terms. Then

Viz,y) = 2% + 3y2
Vi(z,y) = —182° —12y* <0, (=,y) # (0,0)

Therefore V is a strong Lyapunov’s function in the whole plane and the equi-
librium is a globally asymptotically stable equilibrium point, because V (z,y) =
2 + 3y — 00 as ||(z, )| — .

]

Example 4. Investigate stability of the equilibrium point in the origin.



= —y—x

We try our simplest choice of the Lyapunov function: V(z,y) = 2% + y? and

arrive to

Vi(z,y) = —22y — 22" + 2yx®

It does not work because the expression Vy(x,y) includes two indefinite terms:
2y and 2yz5 that change sign around the origin. We try a more flexible expres-
sion by looking on particular expressions in the right hand side of the equation:
V(z,y) = 2% + ay?® where 0V/0z = 62° with the same power of z as in the
equation, and the parameter « that can be adjusted later. V is a positive def-
inite function: V(0) = 0 and V(z) > 0 for z # 0.The level sets to V look as
flattened in y - direction ellipses. The curve x® + 3y% = 0.5 is depicted:
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Vi(z,y) = 62°(—y — 2°) + 2ayz® = —62°y + 2az’y — 62°

We get again two indefinite terms, but they are proportional and the choice



« = 3 cancels them:
Vi(z,y) = —62° <0

Therefore the origin is a stable equilibrium point. Vy(z,y) = 0 on the whole
y—axis that in our "general" theory is denoted by fol(O).We check invariant
sets of the system on the set fol(O). We observe that 2’ = —22 (only this fact is
important) and y’ = 0 (it does not matter for Vf_l(()) that is y—axis). Therefore
{0} is the only invariant set on the y - axis. Trajectories starting on the y -
axis go across it in all points except {0}. The LaSalle’s invariance principle
implies that all trajectories approach {0} as ¢ tends to infinity and the origin is
asymptotically stable.

The test function V(z) — oo as ||z|| — oco. It implies that the whole plain is

a region or domain of attraction for the equilibrium point in the origin.

How to find a strong Lyapunov’s function?

Example 4.

It is theoretically possible to find a strong Lyapunov function for the same
system as in the Example 3.

Looking on the previous week Lyapunovs function xz® + 3y we see that it’s
"weekness" followed from the fact that both level sets of V' and velocities of the
system were orthogonal to the y - axis. It implied that Vy(z) = 0 on the y -
axis. To go around this problem a strong Lyapunov function must have level
sets that deviate slightly from the normal to the y - axis. Adding a relatively
small indefinite term 2y to the function 2 4 3y? we get this effect. A level set
corresponding % + zy3 + 3y? = 0.7 of this new Lyapunovs function looks as a
slightly rotated version of level sets for the previous (weak) Lyapunovs function.

Why like that ? Take a simpler example with an ellipse curve z2 + 2y? = 1
and another that is 22 + zy +2y? = 1
0.5

2
form x7 Ax = Q(x) with x = [, y]T is positive definite if and only if det A > 0

A quadratic

This quadratic form is positive definite: the matrix is [

and all submatrices A; from the upper left corner have positive determinants:
det A; > 0.

Level sets of the positive definite quadratic form with mixed tems like 22 +
xy + 2y? are ellipses with symmetry axes (that are orthogonal eigenvectors to

A) and are rotated with respect to coordinate axes:



We try to introduce the test function V(z,y) = 2% + 2¢® + 3y? with an
indefinite mixed term zy® added, that would similarly with the ellipses, give
slightly rotated level sets so that trajectories would cross them strictly inside

on the y - axis:

01T

-017
-0.27
-0.37
-04T

We claim that the test function V(x,y) = 2% + 2y + 3y? is positive definite
and is a strong Lyapunovs function namely that Vy(z,y) < 0 for (z,y) # (0,0).
Because of the geometry of the vector field f of our equation z' = f(2)
velocities on the y axis cross such level sets strictly towards inside, implying the

desired strict inequality V(2z) < 0, z # 0 on the y axis. We need to check that



V(z,y) = 25 + zy> + 3y? is positive definite (it is not trivial) and to show that
Vi(z) <0, 2 # 0 for all z € R? (it requires some non-trivial analysis).

A very useful inequality in analysis is
Young’s inequality
Lemma. If a,b > 0, then

al b4
ab< — + —
p q

for every pair of numbers p, ¢ € (1, 00) satisfying the conjugacy relation.

The simplest example of Young’s inequality:

1
h< = 2 2

av < 5 (a +y )

We show that the test function V (z,y) = 2% + 2y + 332 is positive definite

in a domain around the origin.

Now, let V' = 2% + 2y* + 3y, Applying Young’s inequality with a = |»

N

b=ly]>, p=06, and g = 6/5, we see that
‘ s |zl® By 1 5 .
eyl = Jallyl? < L 4 U 200y 32
if [yl <1, so
5 13 .
V %1?6 + Eyz

if ly| < 1. Also,

We calculate Vy = V for the system from the Example 3:
¥ = —y—2a

y/:xs



v

—62® 4+ 30 + 3wy = —62° — P (y + 23) + 325y°
= —628 — 233 + 32542 — o,

Applyving Young’s inequality to the two mixed terms in this orbital derivative,

we have
z®  Bly*F 3 5 5
] = Pl < 2 T < By B
if [y| <1, and
3|x|® S 0 3 9 3
3;1“.612:3.1"612§3 ﬂ—|—M :—;r8+—-18§—.r.8+‘—z4
d Y 4 4 | T2 T = T
if |y| < 1/2. Thus,
o2 2l
8 64

if |y| < 1/2, so. in a neighborhood of 0, V is positive definite and V' is
negative definite, which implies that 0 is asymptotically stable.

Example 5.

Consider the Lienard equation: z” + 2’ + g(z) = 0, and investigate stability
of the equilibrium in the origin. The second order equation can be rewritten as
a system 2’ = f(2):

!/

x = Yy

y = —g(@) -y
where g satisfies the following hypothesis: g is continuously differentialble for
|z| < k for some k > 0, zg(z) > 0, x # 0.

Solution.

Physically this equation is a Newton equation for a non-linear spring. For



example if g(z) = sin(z) it describes a pendulum with friction where air resis-
tance is proportional to velocity.

A Lyapunov function is naturally to choose as a total energy of the system:

Vi) =+ [ g

Indeed it is positive definite in the region Q = {(z,y) : || <k } because
g(s)s > 0 in Q according to given conditions. The directional derivative of V
along f is

Vi(@,y) = y(=g(x) —y) + g(z)y = — (y)°

V is a Lyapunov’s function, but not strong because Vy(z,y) = 0 on the
whole x - axis. Therefore fol (0) is the whole z - axis. Checking values of f on
fol (0) we observe that trajectories of the system are orthogonal to fol (0) in
all points on Vf_1 (0) except the origin. It implies that {0} is the only invariant
set on Vf_1 (0) that attracts all trajectorie starting in a small neighborhood of
the origin. Therefore the origin is asymptotically stable.

Our next problem is to find a possibly large domain or region of attraction
for the equilibrium point.If we find a closed level set for V in €, it will be a
boundary for a domain of attraction. It will might not be the largest possible
and depends on a clever choice of Lyapunov’s function V.

We cannot solve this problem for a general expression V(z,y) = (‘7’2)2 +

fox g(s)ds.

Conclusion

The lesson from the last example is that if you have got an expression for
Vi(z,y) like
3
Vi(z,y) = —a® + Jay —y* <0

where ypou cannot directly state if it is always negative or not, apply the
Young’s inequality

to estimate |z| |y| in terms of 2% and y?.

Example 6.

Find all equilibriums, investigate their stability properties and find possible

regions of attraction.



Choose a particular g(x) = z + 2% in the previous example.

/

=y
—(z+a?) —y

/

Y

Observe that the system has two equilibrium points: (—1,0) and (0, 0)

0 1
Linearization gives Jacoby matrix A(z,y) = l _ nE A(-1,0) =
1-922 —
0 1 0 1 o .
) ) Observe that det ) ) =0—-1= -1 < 0 it implies by the

Grobman - Hartman theorem, that (—1,0) is a saddle point.

0 1 0 1 0 1

A(0,0) = , det =1>0, trace =
-1 -1 -1 -1 -1 -1

-1<0,

(traceA(0,0))* /4 = 1/4 < 1 = det A(0,0). It imples that the origin is
an asymptotically stable focus for the linearized system and is asymptotically

stable for the original system.

IS

g(@) =z + a2

We can find an explicit expression for the Lyapunov’s function V(z,y) =
2
% + fomg(s)ds.

)’
2

(@)° | (@)
Vv =4+
(@y) = F5-+ 5+
. S o, . 2 2 3
This function is positive definite on the set 2 = {(y) > —(x)" — % (x) }
The level set $y® + $x? + $2® = L is depicted by the red line.The level set
%y2 + %mQ + %x3 = 0 is depicted by the blue line. We will investigate them

analytically a bit later.
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Vi(z,y) =VV(z,y)- f=2y+ ()’ y— () —zy— ()% y = — (y)* <0 valid
in the whole plane R2.

We check which invariant sets are contained in Vf_l(O) on {2 that is a part
of z - axis {(x,0) : ® > —3/2} that is a thick black line on the picture above.

Notice that fol(O) on  contains two equilibrium points (—1,0) and (0,0)
and they both are invariant sets. We like to find a largest domain 2 ; C Q
bounded by a part of a level set of V' such that € ; does not include the point
(—1,0). Then © ; contains only one invariant set that is the origin (0,0). This
set 1 is the domain of attraction for the asymptotically stable equilibrium in
(0,0).

Such largest level set of V must go through the second equilibrium point
(—1,0) and it’s value there is V(z,y) = V(—1,0) = 1/6. The domain of at-
traction Q* is the egg - shaped domain bounded by the closed curve (y)2 =

11



1/3 — ((x)2 +2 (:c)‘s) or as a union of two explicit branches:

y= # 13- (@ + 3 @)

It is a part of the red level set on the picture. To see that this curve is closed

we consider derivative of the function
4 (1/3 - ((m)2 +2 (:c)3)) — 22— 242 = (~2)x (¢ +1). It implies that

the functions has a maximum in z = 0, and minimum at z = —1. V(x) has zero
in z = —1 and another zero in x = 1/2:

13- (@) + 3 (@)°) Lzm =1/3-((1/2) + 2(1/2)°) = 1/3-((1/4) + § (1/4)) =
1/3-1/3=0,

]

One can try to find an even larger region of attraction Q** for the equilibrium
point in the origin. It cannot include the equilibrium in (—1,0) because it is
unstable (a saddle point). We can extend ; to a rectangle [—1, 0] x [0,v/3/3]in
the second quadrant by checking signs of 2’ and y’ on it’s left and upper sides.
Actual region of attraction is even a bit larger as one can see on the phase

portrait

12
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Example 7. Exercise 5.13 from L.R.
Investigate stability of the equilibrium point in the origin and find a possible

domain of attraction for the following system.

¥y = —xo(1+ x172)

xh = 2x1
We try choose the Lyapunov function V' as
V(zy1,22) = 222 + 22

We could try first a function V (z1,z2) = az} + 23, check Vy and then decide

which value a suites best.

13



Vi(z1,22) = VV . f(z1,22) = —2az122(1 + z122) + 222221

= Adzix9 — 201172 — 2am%x§ = —Qaﬁmz <0
for a = 2
We conclude that the equilibriom 0 is stable. Vy (z1,29) = —2ax323 = 0 on
both coordinate axes. We check which invariant sets are contained in Vfl (0).
If 1 = 0, then 2} = —x9, a4, = 0. Therefore only {0} is an invariant set on
the x9 axis.

If x5 = 0, then 2} = 0, x, = 2x1. Therefore only {0} is an invariant set on
the z; axis.

Trajectories ¢(t,&) starting inside ellipses V(z1,22) = 222 + 23 = C >0
are contained inside these ellipses because VV - f(z) < 0. It implies that their
positive orbits O, (£) are bounded and have compact closure in R?.

It implies according to the LaSalle’s theorem that all these solutions ¢(t, &)
approach the maximal invariant set in Vf_1 (0) that in our particular case con-
sists of just one point (0,0). Therefore the equilibrium point in the origin is
asymptotically stable. It is also globally stable because the Lyapunov function
V(z) tends to infinity as ||z|| — oo, making that arbitrary large elliptic discs

from the family 2z + 23 < C are regions of attraction.
|

Example 8. This example demonstrates how to use Young inequal-

ity for estimating Vy(z,y)

/

¥ = —x—2y+zy?

/

Consider the following system of ODE:
y = 3v-3y+y°

1. Show asymptotic stability of the equilibrium point in the origin and find

the region of attraction for that.

Hint: applying Lyapunovs theorem, use the elementary Young’s inequal-

ity 2zy < (x2 + yz) to estimate indefinite terms with xy. (4p)
Solution. Choose a test function V(z,y) = % (.’E2 + y2)
Vi =a(—z -2y +zy®) +y 3z — 3y + ¢°) = ay — 2% — 3y + y* + 2%y

14



We apply the inequality |z| |y| < 3 (2% 4 y?) to the last term and collecting
terms with =2 and y? arrive to the estimate

Vi < =22 (0.5 —y?) —y? (25— 3?)

It implies that Vy(z,y) < 0 for (z,y) # (0,0) and |y| < 1/v/2.Therefore

the Lyapunov function is strong and the origin is asymptotically stable.
The attracting region is bounded by the largest level set of V' - a circle
having the center in the origin that fits to the domain |y| < 1/v/2, namely
(22 +y?) < 1/2.

Another more clever choice of a test function is V(x,y) = 322 + 2y°.

Vi =6x(—z — 2y +a2y?) + 4y(3z — 3y + v°) = dy* — 12y% — 62% + 62%y* =
—4y? (3 —y?) — 622 (1 —9%) <0

for |y| < 1, therefore the ellipse 322 + 2y* < 2 is a domain of attraction
for the asymptotically stable equilibrium in the origin.

One can also observe the asymptotic stability of the origin by linearization
with variational matrix

-1
3
calculating eigenvalues: —iv/5 — 2,iv/5 — 2 with ReA < 0. But the

linearization gives no information about the region of attraction.ll

A:

-2
5 ] , with characteristic polynomial: M4+ 404+9 =0, and

Example 9 on instability

Consider the following system of ODEs. Prove the instability of the equilib-

rium point in the origin, of the following system

o = o + y3

4p

foo o (4p

using the test function V (z,5) = z* —y* and Lyapunov’s instability theorem.
Solution.

x5+ 3

Denoting f(z,y) = 5

.T3—y

, consider how V(x,y) = z* — y*changes
x5 + o3
3

3 — P . —4y3 |
242 + y3da® — 234yP + yPdyd = 2543 + yPayd = 4(2® + ¢8) > 0.
Point out that the function V(x,y) = 2* — y* is positive along the line

along trajectories of the system. f(z,y)-VV(z,y) =

y = x/2, x > 0 arbitrarily close to the origin. It implies according to the

instability theorem, that the origin is an unstable equilibrium.H
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