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1 Banach�s contraction principle. Picard-Lindelöf

theorem.

We consider in this chapter the theorem by Picard and Lindelöf about exis-

tence and uniqueness of solutions to the initial value problem to the system

of di¤erential equations in the form

x0(t) = f (t; x(t)) (1)

x(�) = � (2)

Here f : J �G! Rn is a vector valued function continuous with respect
to time variable t and space variable x. J is an interval; G is an open subset

of Rn.
One can reformulate the I.V.P. (1),(2) in the form of the integral equation

x(t) = � +

Z t

�

f (s; x(s)) ds (3)

If f is continuous, then these two formulations are equivalent by the

Newton-Leibnitz theorem.
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If f is only peacewise continuous in time t, then these formulations are

equialent on intervals of continuity of f in time and solutions can be glued

by continuity of the solution in the points were the derivative in time doses

not exist.

Fixed points of operators.

Consider a vector space X with a subset C � X and an operator K :

C ! C:

De�nition
A point x 2 C is called the �xed point of the operator K on the set C

if

K(x) = x (4)

A general idea behind the analysis of many types of non-linear equations is

to reformulate them as a �xed point problem.

Consider the right hand side of the integral equation (3) corresponding

to the I.V.P as an operator

K(x)(t)
def
= � +

Z t

�

f (s; x(s)) ds

acting from the vector space of vector valued continuous functions C(I);

where I � J is a closed interval including � . Point out that t can be smaller
than � (t < �):

The expression kxkC(I) = supt2I kx(t)k de�nes a norm on the space C(I)

because it satis�es the triangle inequality and we know that uniformly con-

vergent sequences of continuous functions on the compact set (I in this case)

converge to continuous functions.

This space is even complete. It means per de�nition that Cauchy se-

quences of functions in C(I) converge uniformly to continuous functions. It

means more explicitely that if the sequence fxng 2 C(I) has the Cauchy
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property:

kxm � xnkC(I) = sup
t2I
kxm(t)� xn(t)kC(I) !

m;n!1
0

then there is a continuous function x 2 C(I) such that xn !
n!1

x uniformly

on I, or what is the same, kxn � xkC(I) !n!1 0:
De�nition.
We call a normed vector space a Banach space if it is complete with

respect to it�s norm.

This notion was introduced by Polish mathematician Stefan Banach who

lead the greatest school in functional analysis at the university of Lwow in

Poland in the �rst half of the 20th century.

Examples.
1) The space C(I) is a Banach space.

2) Elementary examples of Banach spaces are given by Rn supplied with
norms kxkp = (

Pn
i=1 jxij

p)
1=p with p � 1.

3) A slight extension of this example is a set lp, p � 1 of real sequences
fxig1i=1 with �nite norms in the form kxkp = (

P1
i=1 jxij

p)
1=p.

4) One of the most popular classes of Banach spaces is the space of

"integrable functions" f : G ! R where G � Rn, with norms kfkLp =�R
G
jf(z)jp dz

�1=p
"Integrable functions" and the integral here are in the sense of Lebesque,

that is a contemporary notion of integral, studied in the course "Integration

theory" given for master and for PhD students.

Remark.
We point out for convenience that di¤erent norms are used through out

the text. Notation kk means usual euclidean norm in Rn: For a Banach space
X the notation kxkX means the norm in the space X:

The operator K de�ned above, acts from C(I) to itself. It makes that

the I.V.P. above can be considered as a �xed value problem (4) on the whole
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C(I) or on some subset of it.

A classical theorem that guarantees the existence and uniqueness of �xed

points to non-linear operators in Banach and more generally in metric spaces,

is Banach�s contraction principle.

De�nition. Operator K : A ! A; where A � X; and X is a Banach

space, is called contraction on A if there is a constant 0 < � < 1 such that
for any x; y 2 A

kK(x)�K(y)kX � � kx� ykX

Example. An elementary example is a smooth (at least C1) function
K acting from an interval [a; b] to itself and having absolute value of the

derivative
�� d
dt
K(t)

�� < � < 1 for all t 2 [a; b]. By intermediate value theorem
for any x; y 2 [a; b] there is a point c 2 (x; y) such that K(x) � K(y) =
(x� y)K 0(c).Therefore

jK(x)�K(y)j = j(x� y)j jK 0(c)j � � j(x� y)j

It implies that K is a contraction in on the interval [a; b].

Example: K(x) = 0:5 (x� 0:25x3) + 0:2 on [�1; 1]
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Another example could be a Lipschitz function with Lipschitz constant L

strictly smaller then one: L < 1.

Banach�s contraction principle.

Theorem
Banach�s contraction principle.
Let A be a non-empty closed subset of a Banach space X and K : A! A

be a contraction operator with contraction constant � < 1 (strictly smaller

than 1!)

Then there is a unique �xed point x to K in A such that Kx = x:

More over, if Kn(x0)
def
= K(K(:::K(x0)):::) is the operator K applied to

itself n times then for arbitrary initial approximation x0 2 A, successive

approximations Kn(x0) satisfy the estimate

kKn(x0)� xkX �
�n

1� � kK(x0)� xkX
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Proof is based on showing that the sequence of approximations fxng1n=0
de�ned by the equations

x1 = K(x0)

:::

xn+1 = K(xn)

with an arbitrary initial approximation x0 2 A, converge to some x 2 A
that is the unique �xed point of K in A.

It follows by induction that

kxn+1 � xnkX = kK(xn)�K(xn�1)kX � � kxn � xn�1kX
� � kK(xn�1)�K(xn�2)kX � �

2 kxn�1 � xn�2kX
:::

� �n kx1 � x0kX

We will show that fxng1n=0 is a Chauchy sequence using telescoping se-
quences. Let m > n:

kxm � xnkX = kxm � xm�1 + xm�1 � xm�2 + :::+ xn+1 � xnkX
triangle_inequality

� kxm � xm�1k+ kxm�1 � xm�2k+ :::+ kxn+1 � xnk �
�

�
�n + �n�1 + :::+ �m�1

�
kx1 � x0kX

= �n
�
1 + � + :::�m�n�1

�
kx1 � x0kX

� �n
= 1
1���

1 + � + :::�m�n�1 + :::
�
kx1 � x0kX

� �n
�

1

1� �

�
kx1 � x0kX ! 0; n!1; � < 1

The Banach spaceX is complete therefore the limit limn!1 xn = x exists.

The set A is closed, therefore x 2 A.
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Claim: x is a �xed point to K.
It is a non-trivial step in many approximation methods to show that an

existing limit of approximations is a solution to the non-linear equation of

interest. Here the convergence is strong, that makes the proof of the clime

straightforward.

We see it by tending to the limit in the expression for xn:

xn+1 = K(xn)

lim
n!1

xn+1 = lim
n!1

K(xn) = K(lim
n1
xn)

x = K(x)

and using the continuity of K.

The last question we must answer is the uniqueness of the �xed point to

K in A.

Suppose that there is another �xed point ex to K in A. Consider the

norm of the di¤erence x� ex:
kx� exkX = kK(x)�K(ex)kX � � kx� exkX , � < 1

It is possible only if x� ex = 0.
Finally we prove the estimate of the error in the approximations.
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kxm � xnkX � �n
�

1

1� �

�
kx1 � x0kX

lim
m!1

kxm � xnkX � �n
�

1

1� �

�
kx1 � x0kX

norm_is_a_continuous_function


 lim
m!1

xm � xn




X

� �n
�

1

1� �

�
kx1 � x0kX

kx� xnkX � �n
�

1

1� �

�
kx1 � x0kX

�
Elementary exercises on Banach�s contraction principle.
Show using Banach�s contraction principle that the polynomial K(x) =

x2 � 0:4 has a �xed point K(x) = x.

Solution consists of two steps.

i) Find a setB � R whereK(x) has the contraction property: jK(x)�K(y)j �
� jx� yj, � < 1, for x; y 2 B
ii) Find a subset A � B that the functionK maps into itself: K : A! A.

i) K 0(x) = 2x < 1 =) x 2 [�0:5 + �; 0:5� �]
ii) The set [�0:5 + �; 0:5� �] satis�es the requirement.
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Picard-Lindelöf theorem.

Picard-Lindelöf theorem.
Here f : J �G! Rn is a vector valued function continuous in J �G: J

is an interval; G is an open subset of Rn. Let in addition suppose that f is
Lipschitz continuous with respect to the second argument with the Lipschitz

constant L > 0:

kf(t; x)� f(t; y)k � L kx� yk ;8x; y 2 G
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(We could suppose a weaker condition that this Lispchitz property is only

local, but will not do it because it would make the proof just slightly longer

without changing main ideas).

Then for any (� ; �) 2 J �G the initial value problem

x0 = f(x; t)

x(�) = �

has a unique solution on some time interval including � . �
Remark. This local solution can always be extended to a unique maxi-

mal solution. We considered maximal extensions earlier in the course.

Proof to the Picard-Lindelöf theorem.
The proof is based on using the integral form of the I.V.P.

x(t) = � +

Z t

�

f (s; x(s)) ds

and applying Banach�s contraction principle to it. We use the Banach space

of continuous functions x : I ! Rnon some compact interval I � J .
The application of Banach�s principle here consists of two steps.

� The �rst one is to �nd a time interval I1 and a closed subset A � C(I1)
such that the operator K de�ned by

K(x)(t) = � +

Z t

�

f (s; x(s)) ds

maps A to itself: K : A! A:

� The second one is to �nd a time interval I2 such that the contraction
property for the operator would be valid on a subset of C(I2): Finally we

will choose the smallest of I1 and I2 for both properties to be valid and will

conclude the result.

We consider here �rst the case with t on some interval [� ; � + Tfirst] 2 J
; Tfirst > 0 and try to �nd a solution on this time interval (actually on some
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shorter time interval [� ; � +T ] with T < Tfirst ). Considering a time interval

backword direction in time is similar

We choose �rst a closed ball B(�; �) = fx : kx� �k � �g such that it
belongs to G: B(�; �) 2 G.
Our intension is to �nd solution in the set of continuous functions x :

[� ; � + T ] ! Rn such that x(t) = '(t; � ; �) 2 B(�; �) for all t 2 [� ; � + T ] and
therefore supt2[�;�+T ] kx(t)� �k � �. It is a closed ball

A = kx� �kC([�;�+T ]) � �

in the in�nitely dimensional space C([� ; � + T ]).

Our goal in the proof is to �nd such an interval [� ; �+T ] that this set A in

C([� ; �+T ]) and the operatorK satisfy conditions in the Banach contraction

principle.

The function f(t; x) is continuous on the compact set V = [� ; � +Tfirst]�
B(�; �) in Rn+1 and therefore

M = sup
(t;x)2V

kf(t; x)k <1

Point out that here we still operate on large initial time interal [� ; � +

Tfirst]:

The constant M controls how large is velocity f(t; x) inside the set V =

[� ; � + Tfirst]� B(�; �)(yellow in the picture). Correspondingly M controls

how fast the (blue) trajectory x(t) can go away from the initial point �:

According to the integral equation for x

x(t) = � +

Z t

�

f (s; x(s)) ds

and the estimate for f above, x must be inside the "angle" bounded by the

cone kx� �k =M(t� �).
We give here two pictures illustrating the proof, a one dimensional picture:
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and a two-dimensional picture:

We are going to estimate kK(x)(t)� �k and choose the length T of the
time interval [� ; � + T ] in such a way that for any x(t) 2 B(�; �) for t 2
[� ; � + T ], it follows that K(x(t)) does not escape the ball B(�; �) around �

in G.

kK(x(t))� �k � �

for t 2 [� ; � + T ].
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It would imply after taking the supremum over t 2 [� ; � + T ] that

sup
t2[�;�+T ]

kK(x)(t)� �k = kK(x)� �kC([�;�+T ]) � �

for kx� �kC([�;�+T ]) � �.
We start with proving the �rst inequality:

kK (x) (t)� �k =




Z t

�

f (s; x(s)) ds





 � Z t

�

kf (s; x(s))k ds � TM

Point out that it is just the eulidean norm k:::k calculated for each time
point t here!

We observe that choosing T < �=M we get that kK (x) (t)� �k � � for
t 2 [� ; � + T ]. Taking supremum of the left hand side over t 2 [� ; � + T ] we
arrive to

kK(x)� �kC([�;�+T ]) � �

It means In turn that for

T < �=M

the operator K maps the closed ball A in C([� ; � + T ]) de�ned by the in-

equality kx� �kC([�;�+T ]) � �, into itself:

K : A! A

Nowwe check conditions (again choosing the length T of the time interval)

such that the operator K would be contraction on the set A with once again

suitably adjusted time interval T .

Consider �rst the di¤erence kK (x) (t)�K (y) (t)k, for arbitrary t 2
[� ; � + T ]:

We apply the triangle inequality, the Lipschitz property of the function
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f , and estimate the integral by the length of the interval times maximum of

the function under it.

kK (x) (t)�K (y) (t)k =





Z t

�

f (s; x(s))� f (s; y(s)) ds




 triangle inequality

�

�
Z t

�

kf (s; x(s))� f (s; y(s))k ds

Lipschitz property
� L

Z t

�

kx(s)� y(s)k ds �
sup

� LT sup
s2[�;�+T ]

kx(s)� y(s)k = LT kx� ykC([�;�+T ])

Calculating supremum over t 2 [� ; � + T ] of the left hand side we arrive
to the inequality

kK (x)�K (y)kC([�;�+T ]) � LT kx� ykC([�;�+T ])

It implies that choosing the length of the time interval

T < 1=L

we get the contraction property.

kK (x)�K (y)kC([�;�+T ]) � � kx� ykC([�;�+T ]) ; 0 < � < 1

Now choosing the time interval T < min(1=L, �=M) we conclude that the

operator K maps the closed ball A in C([� ; � + T ]) de�ned by

A =
n
x 2 C([� ; � + T ]), kx� �kC([�;�+T ]) � �

o
into itself: K : A! A and thatK is a contraction onA: kK (x)�K (y)kC([�;�+T ]) �
� kx� ykC([�;�+T ]), � < 1, for any x; y 2 A:
By the Banach contraction principle K has for T < min(1=L, �=M) a
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unique �xed point x in A that is the solution to the integral equation (3)

corresponding to the I.V.P. and also to the original initial value problem.�
Example. Banach�s contraction principle applied to a non-linear

integral operator.
(exam 2019 june)
Consider the following (nonlinear!) operator

K(x)(t) =

Z 2

0

B(t; s) [x(s)]2 ds+ g(t);

Fixed point problem to solve:

x = K(x)

acting on the Banach space C([0; 2]) of continuous functions with norm

kxkC([0;2]) = kxkC = sup
t2[0;2]

jx(t)j. Here B(t; s) and g(t) are continuous func-

tions and jB(t; s)j < 0:5 for all t; s 2 [0; 2] :
Estimate the norm kK(x)�K(y)kC([0;2]) for the operator K(x)(t):
Find requirements on the function g(t) such that Banach�s contraction

principle implies that K(x)(t) has a �xed point.

Solution.
Banach�s contraction principle. Let B be a nonempty closed subset of a

Banach spaceX and let the non-linear operatorK : B ! B be a contraction:

kK(x)�K(y)kX � � kx� ykX ; � < 1

Then K has a �xed point x = K(x) such that

kKn(x0)� xkX �
�n

1� �

for any x0 2 B. Here Kn(x0) = (K(K(:::K(x0):::)) is the n -fold super-

position of the operator K with itself.
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We like to have the estimate kK(x)�K(y)kC([0;2]) � � kx� ykC([0;2]) for
x; y in some closed subset B of C([0; 2]).

jK(x)(t)�K(y)(t)j �
����Z 2

0

jB(t; s)j
��[x(s)]2 � [y(s)]2�� ds����

=

����Z 2

0

jB(t; s)j � jx(s)� y(s)j � jx(s) + y(s)j ds
����
taking sup

t;s2[0;2]

�

�
Z 2

0

ds

 
sup

t;s2[0;2]
jB(t; s)j

! 
sup
s2[0;2]

jx(s)� y(s)j
! 

sup
s2[0;2]

jx(s)j+ sup
s2[0;2]

jy(s)j
!
=

= 2 � 0:5 kx� ykC([0;2])
�
kxkC([0;2]) + kykC([0;2])

�
=

= kx� ykC([0;2])
�
kxkC([0;2]) + kykC([0;2])

�
We take supremum over t 2 [0; 2] of the left hand side and get

kK(x)�K(y)kC([0;2]) � kx� ykC([0;2])
�
kxkC([0;2]) + kykC([0;2])

�
We can choose a ball B � C([0; 2]) such that for any x, y 2 B it follows

kxkC + kykC � � < 1; for example B can be taken as a set of continuous

functions with kxkC([0;2]) � �=2. On this set K will be a contraction because

kK(x)�K(y)kC � � kx� ykC ; � < 1:

To apply Banach�s principle we need also that K maps B into itsel·f,

namely that kK(x)kC([0;2]) � �=2 for kxkC([0;2]) � �=2.
It gives a requirement on function g(t).

K(x)(t) =

Z 2

0

B(t; s) [x(s)]2 ds+ g(t);

kK(x)kC([0;2]) � 2� 0:5� kxk2C([0;2]) + kgkC([0;2]) � (�=2)
2 + kgkC([0;2]) � �=2
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Conclusion is that kgkC([0;2]) = supt2[0;2] jg(t)j � �=2�(�=2)
2 = �=2 (1� �=2)

implies that K : B ! B, where

B =
n
x(t) 2 C([0; 2]) : kx(t)kC([0;2]) � �=2

o
Therefore K has a unique �xed point in the ball B in C([0; 2]). �
Example. (exam. 2018 january)

1. Consider the following initial value problem: y0 = sin(y)t2; y(1) = 2.

a) Reduce the initial value problem to an integral equation and give a

general description of iterations approximating the solution as in the

proof to the existence and uniqueness theorem by Picard and Lindelöf.

(2p)

b) Find a time interval such that these approximations converge to the

solution of the initial value problem. (2p)

Solution.

We introduce an integral equation equivalent to the ODE y0 = f(t; y)

by the integration of the right and left hand sides in the equation:

y(t) = y(1) +

Z t

1

f(s; y(s))ds:

Taking y0(t) = y(1) we de�ne Picard iterations by the recurrense rela-

tion

yn+1(t) = y(1) +

Z t

1

f(s; yn(s))ds:

yn+1 = K(yn)

For the particular equation it looks as

yn+1(t) = y(1) +

Z t

1

sin(yn(s))s
2ds = K(yn; t):
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Fixed point problem:

y = K(y)

The Banach contraction principle gives existence and uniqueness of

solutions by showing that the operator K is a contraction on some

closed set B of a Banach space X, such that K maps B into itself.

A hidden question here is that we must �nd this Banach space X and

this set B where these conditions are satis�ed.

One proves the existence and uniqueness theorem by showing that at

some time interval the integral operatorK(y; t) = y(1)+
R t
1
sin(y(s))s2ds

in the right hand side is a contraction in C([1; T ]):

kK(w)�K(u)kC([1;T ]
def
= sup

t2[1;T ]
jK(w; t)�K(u; t)j < � sup

t2[1;T ]
jw(t)� u(t)j = � kw � ukC([1;T ]

� < 1, in some ball kw � y(1)kC([1;T ] = supt2[1;T ] jw(t)� y(1)j � R in

the space C([1; T ]) of continuous functions on [1; T ], and maps this ball

into itself:

sup
t2[1;T ]

jK(w; t)� y(1)j � R

and applying the Banach contraction theorem to K(y; t).

We estimate �rst kK(w)�K(u)kC([1;T ] = supt2[1;T ] jK(w; t)�K(u; t)j
for continuous functions u and w such that supt2[1;T ] jw(t)� y(1)j � R
and

kw � y(1)kC([1;T ] = supt2[1;T ] ju(t)� y(1)j � R: Point out that supt2[1;T ] jw(t)j �
y(1) +R: We will �nd T such that the contraction property is valid:

kK(w)�K(u)kC([1;T ] = sup
t2[1;T ]

����Z t

1

sin(w(s))s2ds�
Z t

1

sin(u(s))s2ds

���� � � sup
t2[1;T ]

jw(t)� u(t)j ; � < 1

We carry out elementary estimates using the triangle inequality and in-

termediate value theorem for sin.
���R t1 sin(w(s))s2ds� R t1 sin(u(s))s2ds��� �
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R t
1
j(sin(w(s))� sin(u(s))j s2ds =R t

1
j(w(s)� u(s)) cos(�(s))j s2ds � (T � 1)T 2 � 1 � sup

t2[1;T ]
jw(s)� u(s)j

kK(w)�K(u)kC([1;T ] � (T � 1)T 2 kw(s)� u(s)kC([1;T ]

The argument �(s) above is a number between w(s) and u(s) that exists

according the intermediate value theorem. It was also used above that

jcos(�)j � 1. Therefore to have the contraction property we need to

have (T � 1)T 2 < 1.

For a function w with kw(s)kC([1;T ] = supt2[1;T ] jw(t)� y(1)j � R we

like to have that jK(w; t)� y(1)j � R meaning that K maps this ball

in C([1; T ]) into itself. For this particualr case it is not necessary

because he equation is de�ned in the whole /R and the contraction

property is bvalid in the whole C([1; T ]) : But this checking might be

necessary if the contraction property is valid only locally, not in thew

whole C([1; T ]):

The following estimate leads to another bound for T : sup
t2[1;T ]

jK(w; t)� y(1)j �

sup
t2[1;T ]

���R t1 sin(w(s))s2ds��� � (T � 1)T 2 � R:
Therefore the time interval must satisfy estimates (T � 1)T 2 < 1 and
(T � 1)T 2 < R to have convergence of Picard iterations in the ball

supt2[1;T ] jw(t)� y(0)j � R. Taking R = 1 we get an optimal estimate
(T � 1)T 2 < 1 that is satis�ed for example for T = 1:4:

� = 0:4(1:4)(1:4) = 0:784

Introduction to bifurcations.

Considering di¤erential equations where the right hand side includes a

parameter:

x0 = f(t; x; �)
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we can observe qualitative changes in the phase portrait of the system at

certain values of the parameter � = �0:

Examples of bifurcations.

Pitchforc bifurcation
The equation

x0 = �x� x3

has one stable equilibrium point x = 0 for � � 0, that becomes unstable and
splits into two stable equilibrium points at � = 0.

f(x) = �x� x3; � < 0
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f(x) = x� x3; � > 0
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Transcritical bifurcation.
The equation

x0 = �x� x2

has two �xed points for � 6= 0 which collide and exchange stability at � = 0.
f(x) = x� x2; � = 1
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f(x) = �x� x2, � = �1
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Saddle point bifurcation.
The equation

x0 = �+ x2

has one stable and one unstable equilibrium point for � < 0 which collide at

� = 0 and vanish when � > 0.

Hopf bifurcation
One impressive example is the so called Hopf bifurcation where an as-

ymptotically stable equilibrium becomes unstable equilibrium surrounded by

a unique limit cycle, a periodic solution attracting sorrounding trajectories.

The theorem blow gives a possibility to show the existence of a unique
periodic solution surrounding an equilibrium that is a repeller.

Theorem on Hopf bifurcation. Let the system of di¤erential equations
in plane:

x01 = f1(x1; x2; �)

x02 = f2(x1; x2; �)

have an equilibrium point in the origin for all real values of the parameter �:

Suppose that for the linearized system of equation around the origin eigen-

values are purely imaginary for � = �0. Suppose also that for real part part
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of eigenvalues Re(�1(�)) = Re(�2(�)) the condition

d

d�
fRe(�1(�))gj�=�0 > 0

and that the origin is asymptotically stable for � = �0.

Then

i) � = �0 is a bifurcation point for the system

ii) there is an interval (�1; �0) such that the origin is a stable spiral(focus)

iii) there is an interval (�0; �2) such that the origin is an unstable spi-

ral(focus), surrounded by a limit cycle (periodic orbit) with size increasing

with increasing of �:

Example. Show that the following system undergoes Hopf bifurcation

at � = 0.

x01 = �x1 � 2x2 � 2x1(x21 + x22)2

x02 = 2x1 + �x2 � x2(x21 + x22)2

Linearized equations are the following:

x01 = �x1 � 2x2
x02 = 2x1 � �x2

with matrix

"
� �2
2 �

#
with eigenvalues �1;2(�) = ��2i. Therefore �1;2(0) =

�2i are purely imaginary.
Re�(�) = �. and d

d�
Re�(�) = 1 > 0:

The system has a strong Lyapunov function V (x1; x2) = x21+x
2
2 for � = 0:

Vf (x1; x2) = �2
�
2x21 + x

2
2

�
(x21 + x

2
2)
2 < 0; (x1; x2) 6= (0; 0)

that makes the origin asymptotically stable for � = 0. Then according to

24



the Hopf theorem the system undergoues a bifurcation at � = 0 and at some

small � > 0 it has instable spiral in the origin, surrounded by a periodic

orbit. If it is di¢ cult to �nd a strong Lyapunov function, one can apply

LaSalle�s invariance principle.

Exercise.
Show that the equation x00+(x2��)x0+2x+x3 = 0 has a Hopf bifurcation

at � = 0.

Bifurcations will not be at the exam!!!
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