
Main ideas and tools in the course in ODE

1. Integral form of I.V.P. to ODEs

2. Grönwall�s inequality for showing uniqueness and continuity with respect
to data.

3. Generalised eigenspaces of matrices. Basis of generalized eigenvectors.

4. Jordan form of matrices. Matrix functions, in particular exponent and
logarithm.

5. Transfer matrix. Monodromy matrix.

6. Transfer mapping. Phase portrait.

7. Stability and instability of equilibrium points.

8. Linearization and Grobman - Hartman theorem. (i¤ Re(�) 6= 0)

9. Lyapunov functions (for stability, instability, and for �nding positively
invariant sets)

10. ! - limit sets. LaSalle�s invariance principle for hunting ! - limit sets
"living" in V �1f (0):

11. Idea of solving integral equations by iterations (Banach�s contraction prini-
ple)

Examples of typical problems

Example on an application of Jordan matrix

For one particular solution of the system dx(t)
dt = Ax(t) with a real matrix A;

the �rst component has the form x1 = t
2 + t sin (t) :

1. Which smallest size can the real matrix A have? (4p)

Solution.

The term t sin(t) in the solution is a sign that the Jordan form of the
matrix A has a Jordan block corresponding to the eigenvalue �1 = i

that has multiplicity at least 2, for example
�
i 1
0 i

�
or multiplicity 3 :24 i 1 0

0 i 1
0 0 i

35 etc. On the other hand te matrix A is real and therefore it�s
characteristic plolynomial has real coe¢ cients and therefore all complex
eigenvalues must appear as conjugate pairs: the matrix A must have the
eigenvalue �2 = �i havingthe same multiplicity as �1, at least 2 and with
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corresponding Jordan block
�
�i 1
0 �i

�
. The presence of the term t2

in one component of a solution shows that the matrix A must have the
eigenvalue � = 0 with multiplicity at least 3 with correspoding Jordan

block

24 0 1 0
0 0 1
0 0 0

35.
All these observations imply that the real matrix A must have dimensions
at least 7� 7, because the sum of dimensions of sizes of Jordan blocks is
at least 2 + 2 + 3 = 7.�

Example of transition mapping.

1) Solve the initial value problem

_x = t x3; x (1) = �

and �nd maximal intervals for solutions. Give a sketch of the domain for the
transfer mapping '(t; 1; �)=x(t) in the (t; x) plane.
2) Can one conclude which maximal interval have solutions to the similar

equation
_x = t3x

without solving it?
Solution.
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1) It is the equation with separable variables.

dx

dt
= tx3; x (1) = �Z

dx

x3
=

Z
tdt

�1
2x2

=
t2

2
� C

C =
t2

2
+

1

2x2
; C =

1

2
+

1

2�2
=
1 + �2

2�2

�1
2x2

=
t2

2
� 1 + �

2

2�2

�1
2x2

=
�2t2

2�2
� 1 + �

2

2�2
=
�2t2 �

�
1 + �2

�
2�2

x2 =
�2�

1 + �2
�
� �2t2

=
1�

1 + �2
�
=
�
�2
�
� t2

x =

s
1�

1 + �2
�
=
�
�2
�
� t2

;
�
1 + �2

�
=
�
�2
�
� t2 > 0; � > 0

x = �
s

1�
1 + �2

�
=
�
�2
�
� t2

;
�
1 + �2

�
=
�
�2
�
� t2 > 0; � < 0

x � 0; � = 0; equilibrium�
1 + �2

�
=
�
�2
�
> t2; t 2

�
�
q�
1 + �2

�
=
�
�2
�
;
q�
1 + �2

�
=
�
�2
��
OPEN !!!

1. The maximal intervals for these solutions are open in accordance with the
general theory. One solution x � 0 is de�ned on the whole R. We draw
boundaries of the domain for '(t; 1; �).
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The equation _x = t3x is de�ned on R�R and the right hand side satis�es
on any compact time interval [�R;R] , R > 0 the estimate

��t3x�� � R3(1 + jxj)
where the right hand side rises linearly with respect to jxj : It implies that the
maximal existence interval for all solutions to this equation is R.

Estimating Lyapunov functions V and
their derivatives Vf = rV � f along trajectories.

Investigation of positivity of functions V and Vf = rV � f.

Choosing a Lyapunov�s function: it must be positive de�nite: V (0) = 0;
V (x) > 0, x 6= 0.
Example: V (x; y) = x2 + xy + 2y2 Level sets of such a test function will

be ellipces with the axis rotated with respect to the coordinate system. The
inequality jxyj � 1

2

�
x2 + y2

�
helps to decide if the test function is positie

de�nite.

This property is a condition in the stabiliuty theorem by Lyapunov, and it
implies i particular that it�s level sets are closed curves.
This property lets to use some of these level sets as boundaries for 1) positive

invariant sets and 2) regions (or domains) of attraction for asymptotycally stable
equilibrium points.
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We like to have Vf = rV � f(x) negative de�nite Vf (x) < 0 or at least
rV � f(x) � 0 for x 6= 0. Here f is the right hand side ("velocity" ) in the
di¤erential equation of interest: x0 = f(x): It makes d

dt (x(t)) = rV � f(x)�
showing ow the test function changes along trajectories.
Check the set V �1f (0) where V (x) = 0: Why?
The La Salle�s invariance principle states that all ! - limit sets of trajectories

inside the domain where rV � f(x) � 0 is valid, belong to the set V �1f (0) and
they belong even a smaller part of it that is the maximal invariant subset of
V �1f (0):
How to apply La Salle�s invariance principle ?
i) The set V �1f (0) is easy to identify, as a set of zeroes to Vf (in plane in

most of our examples).
ii) The maximal invariant set inside V �1f (0) (in the plane it will be a set of

curves) it is easy to check invariant sets just looking on velocities (f(x; y)) on
the set V �1f (0) and checking if they go along curves forming V �1f (0) or they go
across.
Example.

Consider the following system of ODE:
�
x0 = �x� 2y + xy2
y0 = 3x� 3y + y3 .

Show asymptotic stability of the equilibrium point in the origin and �nd the
region of attraction for that.
Hint: applying Lyapunovs theorem, use the elementary inequality

jxyj � 1

2

�
x2 + y2

�
to estimate inde�nite terms with xy:
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A more general Young inequality can be useful for polynomials of higher
degree in f :

jabj � ap

p
+
bq

q
;

1

p
+
1

q
= 1; p; q > 1

Solution. Choose a test function V (x; y) = 1
2

�
x2 + y2

�
Vf = rV �f = x(�x�2y+xy2)+y

�
3x� 3y + y3

�
= xy�x2�3y2+y4+x2y2

= �x2
�
1� y2

�
�y2

�
3� y2

�
+ xy
indefinite_term!

� �x2
�
1� y2

�
�y2

�
3� y2

�
+

0:5x2 + 0:5y2

We apply the inequality 2xy �
�
x2 + y2

�
to the last term and collecting

terms with x2 and y2 arrive to the estimate
Vf � �x2

�
0:5� y2

�
� y2

�
2:5� y2

�
It implies that Vf < 0 for (x; y) 6= (0; 0) and jyj < 1=

p
2.Therefore the Lya-

punof function V is "strong" and therefore the origin is asymptotically stable.
The region of attraction is bounded by the largest levle set of V - a circle

having the center in the origin that �ts to the domain jyj < 1=
p
2, namely the

circle:
�
x2 + y2

�
< 1=2.

The second idea for choosing Lyapunov functions is choice of V of
polynomilas with arbitrary even powers and arbitrary coe¢ cients.
Another more clever choice of a test function as

V (x; y) = axm + byn

in particular V (x; y) = 3x2 + 2y2 works in this particular case:
Vf = 6x(�x�2y+xy2)+4y(3x�3y+y3) = 4y4�12y2�6x2+6x2y2 = �4y2�

3� y2
�
� 6x2

�
1� y2

�
< 0

for jyj < 1, therefore the ellipse 3x2+2y2 < 2 that �ts into the stripe jyj < 1
in the plane is a region of attraction for the asymptotically stable equilibrium
in the origin.
One can also observe the asymptotic stability of the origin here by lineariza-

tion with variational matrix

A =

�
�1 �2
3 �3

�
, with characteristic polynomial: �2 + 4� + 9 = 0, and

calculating eigenvalues: �i
p
5 � 2; i

p
5 � 2 with Re� < 0. But linearization

gives no information about the domain of attraction.

Application of Poincare - Bendixson theorem

The generalized Poincare-Bendixson�s theorem gives a complete
description of possible types of ! - limit sets in the plane R2:
Theorem (generalized Poincare-Bendixson)
Let M be an open subset of R2 and f : M ! R2 and f 2 C1. Fix � 2 M

and suppose that 
(�) 6= ;, compact, connected and contains only �nitely many
equilibrium points.
Then one of the following cases holds:
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(i) 
(�) is an equilibrium point
(ii) 
(�) is a periodic orbit
(iii) 
(�) consists of �nitely many �xed points fxjgand non-closed orbits 

such that ! and � - limit points of  belong to fxjg.

1. Consider the following system of ODEs.
�
x0 = y
y0 = �x� y

�
ln
�
x2 + 4y2

�� :

Show that this system has a non-trivial periodic solution. (4p)

Point out that the origin is outside the domain of the equation.

Solution.

Consider the test function E(x; y) = 1
2

�
x2 + y2

�
d
dtE(u(t); v(t)) = rE�f(x; y) =

�
x
y

� �
y
�x� y

�
ln
�
x2 + 4y2

�� � = �y2 �ln �x2 + 4y2��� � 0 0 < x2 + 4y2 < 1
� 0 x2 + 4y2 > 1

The boundary curve x2 + 4y2 = 1
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is the ellipse with halv axes 1 and 1=2 i the x - direction with center in
the origin.

Therefore any circle with the center in the origin inside this ellipse is never
entered by a trajectory.

Similarly any circle with the center in the origin autside this ellipse is
never left by a trajectory.

Such two circles build an annulus that is a positively invariant set for this
system of ODEs.

For example an annulus 1=4 � x2 + y2 � 1 satis�es this conditions.
This annulus contains no equilibrium points, because the origin is the
only equilibrium point. Therefore by Poincare - Bendixson theorem this
annulus must contain at least one periodic orbit.�
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Poincare - Bendixson theorem and
testing the absence of equilibrium points in a positive

invariant set.

We try to �nd an ring shaped domain that is positively invariant and need
to check three conditions:
i) The outer boundary of the ring (using a level set of a test function, or a

polygon shaped domain testing velosities on each segment of it�s boundary)
ii) The inner boundary of the ring (using a level set of a test function, or

linearization for identifying a repeller inside a large postively invariant set by
applying the Grobman - Hartman theorem)
iii) Check that no equilibrium points exist inside of the ring (is missed often

by students)
Example. Show that the following system of ODEs has a periodic solution.�

x0 = x� 2y � x
�
2x2 + y2

�
y0 = 4x+ y � y

�
2x2 + y2

� (4p)

Solution. Consider the following test function: V (x; y) = 2x2 + y2. Denot-
ing the right hand side in the equation by vectorfunction F (x; y) we conclude
that
Vf = rV � f = 4x2 � 8xy � 4x2

�
2x2 + y2

�
+ 8xy + 2y2 � 2y2(2x2 + y) =

2
�
1� (2x2 + y2)

�
(2x2 + y2):

It implies that the elliptic shaped ring: R =
�
(x; y) : 0:5 � (2x2 + y) � 2

	
is a positive invariant compact set for the ODE, because velocity vectors are
directed inside of this ring both on it�s outer and inner boundaries ( rV �F < 0
for (2x2 + y) = 2 and rV � F > 0 for (2x2 + y) = 0:5.

The origin is the only equilibrium point of the system. It is not so easy
to see from the system of equations itself. But one can see it easier by
cheching �rst zeroes of Vf (x; y) that is a scalar function and evidently must be
zero in all equilibrium points..
We observe that V (x; y) = 2x2 + y2 is positive de�nite and rV � f(x; y) = 0

only if (x; y) = (0; 0) or if (2x2+y2) = 1:But it is easy to see from the expression
for the right hand side for the ODE that in the last case (x; y) cannot be
equilibrium point because the right hand side becomes linear with nondegenerate
matrix and is zero only in the origin (x; y) = (0; 0). The equation for equilibrium
points on the level set (2x2 + y2) = 1 is the following:�

0 = x� 2y � x = �2y
0 = 4x+ y � y = 4x

By the Poincare-Bendixson theorem the positively invariant set R not in-
cluding any equilibrium point must include at least one orbit of a periodic
solution.�

Problem on ! - limit sets(January 2020)

Consider the following system of ODEs.
�
x0 = y
y0 = x� x3 � ay

�
y2 � x2 + 1

2x
4
�
; a > 0

:
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1. Find all systems equilibrium points. Show using the test function H =
1
2

�
y2 � x2 + 1

2x
4
�
and La Salle�s invariance principle, that the level set

H(x; y) = 0 includes ! - limit sets of this system for all points in the
plane except a �nite number. Sketch these ! - limit sets. (4p)

Solution.

The system has three equilibrium points, all on the x�axis: (�1; 0), (0; 0),
(1; 0). The level set H(x; y) = 1

2

�
y2 � x2 + 1

2x
4
�
= 0 has the shape of 1

with the center in the origin. One can see it by expressing y in terms of
x:

y = � jxj
r
1� 1

2
x2

The 1 �gure is symmetric with respect to x - axis and cuts it in points
�
p
2. The formula above implies that H(x; y) > 0 outside of the1 �gure,

and H(x; y) < 0 inside of the 1 �gure.
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We calculate how the H function changes along trajectories.

Hf (x; y) =
d

dt
H(x(t); y(t)) =

�
�x+ x3

y

�
�
�
y
x� x3 � ay

�
y2 � x2 + 1

2x
4
� � =

�xy + x3y + xy � x3y| {z }
=0

� ay2
�
y2 � x2 + 1

2
x4
�

| {z }
H(x;y)

We point out that d
dtH(x(t); y(t)) = 0 on the level set H(x; y) = 0 (the1

�gure) and on the x - axis. It means that trajectories are tangential to the
level setH(x; y) = 0. Therefore1 - �gure is an invariant set for the system
and consists of three orbits: the equilibrium in the origin (that is a saddle
point, easily seen by linerization) and two closed branches of the 1 �gure

correspoding to x > 0 and x < 0 in the expression y = � jxj
q
1� 1

2x
2.

Hf (x; y) =
d
dtH(x(t); y(t)) < 0 outside of the 1 �gure and not on the x -

axis where d
dtH(x(t); y(t)) = 0:
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Hf (x; y) =
d
dtH(x(t); y(t)) > 0 inside of the 1 �gure and not on the x -

axis where d
dtH(x(t); y(t)) = 0:

By La Salle�s invariance principle all trajectories are attracted to the
largest invariat set inside the set H�1

f (0);were Hf (x; y) = 0: This set
consists of the union of the 1 �gure and the x - axis. There are no in-
variant sets on the x - axis except three equilibrium points (�1; 0), (0; 0),
(1; 0).

It implies that for all points in the plain except equilibrium points, and
points on the1 �gure, H(x(t); y(t)) tends to zero along trajectories. The
! - limit sets for these points consist of one of the branches of the1 �gure
(for points inside it) or of the whole 1 �gure - for points outside it. The
origin is the ! - limit set for all points on the1 �gure. Equilibrium points
are ! - limit sets of themselfs

Problem on stability of equilibrium points
and on domains of attraction.

Consider the following system of ODEs.
�
x0 = 1� xy
y0 = x� y3

Find all equilibrium points and investigate their stability. Find domains of
attraction for possible asymptotically stable equilibrium points. (4p)
Solution.
Equilibrium points are (1; 1) and (�1;�1) can be found by substitution.

x = y3, 1 = xy = y4.

Jacoby matrix of the right hand side is J(x; y) =
�
�y �x
1 �3y2

�
; J(1; 1) =�

�1 �1
1 �3

�
; J(�1;�1) =

�
1 1
1 �3

�
. det (J(1; 1)) = 4, tr(J(1; 1)) = �4.

Therefore the equilibrium point (1; 1) is asymptotically stable.
det (J(�1;�1)) = �4. Therefore the linearized around (�1;�1) system has

a saddle point and the equilibrium point (�1;�1) is unstable.
We shift the origin of the coordinate system into the point (1; 1) by intro-

ducing new variables u = x� 1; v = y � 1 and x = u+ 1, y = v + 1.�
u0 = �u� v � uv
v0 = u� 3v � 3v2 � v3

Consider a test function E(u; v) = 1
2

�
u2 + v2

�
d

dt
E(u(t); v(t)) =

�
u
v

�
�
�
�u� v � uv
u� 3v � 3v2 � v3

�
=

= �u2 � uv � u2v + uv � 3v2 � 3v3 � v4 =
= �u2 (1� v)� 3v2(1 + v + v2)| {z }

>0

< 0

if v < 1; (u; v) 6= (0; 0)
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The largest circle in (u; v) plane satisfying the condition v � 1 has radius
1. Therefore the circle of radius 1 around the equilibrium point (1; 1) is the do-
main of attraction for the asymptotically stable equilibrium (1; 1) of the original
system of ODEs.�
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