1 Theoretical questions to examination.

- 1. Give an example of a system of ODEs in \mathbb{R}^2 having some solutions $\varphi(t,\xi)$ that do not have ω or α limit sets.
 - i) The simplest example is a system that has all trajectories tending to infinity with $t\to\infty$
 - ii) An equation with bounded domain an all solutions having $\sup I_{\xi} < \infty$ (here I_{ξ} is the maximal interval for initial point ξ) and therefore tending to it's boundary with $t \to \sup I_{\xi}$.
- 2. Show that the ω limit set Ω_{ξ} for solutions $\varphi(t,\xi)$ having closure of the orbit $O_{+}(\xi)$ compact, must be non-empty.

Hint: use the key property of compact sets that any bounded sequence in a compact set has a convergent subsequece.

3. Show that for Lipschitz right hand side f in the equation x' = f(x) the transfer mappig $\varphi(t,\xi)$ is Lipscitz with respect to both (each of) variables.

Hint. Write the I.V.P. in intergal form and use Grönwall's inequality!

- 4. Sketch a trajectory illustrating the definition of ω limit set.
- 5. Assume that $0 \in G$ and is an asymptotically stable equilibrium point. Show that the domain of attraction \mathcal{A} to 0 is an open set. Exercise 5.14 in L.R.
- 6. Suppose a monodromy matrix M is given for a periodic linear system in \mathbb{R}^2 with period T. Can one calculate exactly values $\varphi(t,\xi)$ of the solution with initial data ξ for $t=T,\,3T,\,5T$?

Hint. Use the expression for the transfer matrix for periodic systems.

- 7. How long time it could take for a solution $\varphi(t,\xi)$ to the equation x'=f(x) with $f:G\to\mathbb{R}^n$ to reach:
 - a) an asymptotically stable equilibrium point
 - b) the boundary ∂G of the domain G in case $\varphi(t,\xi) \to \partial G$ as t tends to $\sup (I_{\xi})$.

.