
1 General properties of ! -limit sets. La Salle�s

invariance principle and it�s applications to

asymptotic stability.§5.2.

Example. An elementary introduction to LaSalle�s invariance prin-
ciple.
We like to investigate stability of equilibrium point in the origin for the

system

x01 = x2

x02 = �x1 � x32

Using the simple test function V (x1; x2) = x21 + x
2
2 we observe that it is a

Lyapunov function for the system:

Vf (x1; x2) = rV � f(x1; x2) = 2x1x2 � 2x1x2 � 2x42 = �2x42 � 0

and the origin is a stable equilibrium point. But V is not a strong Lyapunov

function, because Vf (x1; x2) = 0 not only in the origin, but on the whole x1 -

axis where x2 is zero.

On the other hand considering the vector �eld of velocities of this system

on the x1 - axis, we observe that they are crossing the x1 - axis (even are

orthogonal to it in this particular example) in all points except the origin.

It means that all trajectories of the system cross and immediately leave the

x1 - axis that is the line where Vf (x1; x2) = 0 (the Lyapunov function is not

strong). This observation shows that in fact the Lyapunov function V ('(t; �))

is strictly monotone decreasing along trajectories '(t; �) everywhere except

discret time moments, when '(t; �) crosses the x1 - axis.

More explicitely we can express the same e¤ect in polar coordinates r and

�: �
r2
�0
= �2r4 sin4 �
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We can therefore conclude that V ('(t; �)) & 0 as t ! 1 and therefore,

the origin is asymptotically stable equilibrium of this system of equations.

One can also get a more explicit picture of this dynamics by looking on the

equation for the polar angle �:

�
x2
x1

�0
= (tan(�))0 =

�0

cos2(�)

x02x1 � x01x2
x21

=
(�x1 � x32)x1 � (x2)x2

x21

=
(�x21 � x22 � x1x32)

x21
=
�r2 � cos � sin3 � r4

r2 cos2 �

�0 = �1� cos � sin3 � r2 = �1�
�
sin 2� sin2 �

�
r2

2

= �1� sin 2�(1� cos 2�)r
2

4
< 0, r < 2

We see that for r < 2 we have �0 < 0 and the trajectories tend to the origin

going (non-uniformly) as spirals clockwise around the origin.

This example demonstrates the main idea with applications of the LaSalles

invariance principle to asymptotic stability of equilibrium points.
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Proposition. Simple version of applying LaSalle�s invariance prin-
ciple for asymptotic stability of equilibrium points by using "weak"
Lyapunof functions.
( The complete version of LaSalle�s invariance principle is Theorem 5.15.

p. 183 that is considered a bit later)

We �nd a simple "weak" Lyapunov function Vf (z) � 0 for z 2 U in the

domain U � G, 0 2 U: This fact implies stability of the equilibrium. Then
we check what happens on the set V �1f (0) where Vf (z) = 0. If the set V �1f (0)

contains no other orbits except the equilibrium point, this equilibrium point

in the origin must be asymptotically stable.

Any trajectory starting in a set W � U that is positie invariant and com-
pact will have positive orbit with compact closure. The set W can be chosen

in this context as a subset W � U , bounded by a level set of the function V

so that trajectories will not go outside W it because Vf � 0 in U . We need

this property of trajectories in W for applying LaSalle�s invariance principle

describing !- limit sets for positive orbits of solutions to ODEs.

Exercise.
Show that all trajectories of the system

x0 = y

y0 = �x� (1� x2)y

that go through points in the domain
[x; y]T < 1; tend to the origin. Or by

other words, show that the origin is an asymptotically stable equilibrium and

that the circle
[x; y]T < 1 is it�s domain of attraction.

Consider V (x; y) = x2 + y2:

Vf (x; y) = 2xy � 2xy � (1� x2)y2 = �(1� x2)y2 � 0
V �1f (0) = f(x; y) : y = 0g

The only invariant set is the origin f0g, therefore for trajectories starting
in
[x; y]T < 1 the origin is an attractor and it is asymptotically stable with
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[x; y]T < 1 being the region (domain) of attraction.
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More general formulation and a proof of the LaSalle�s invariance principle

use some general properties of transition mappings, and ! - limit sets. We

collect them here and give some comments about their proofs.

We consider I.V.P. and corresponding transition mapping '(t; �) for the

system

x0 = f(x)

x(0) = �

with f : G! Rn, G - open, G � Rn, f is locally Lipschitz; � 2 G.

1.1 Main theorem on the properties of limit sets.

The next theorem on the properties of ! - limit sets collects properties of ! -

limit sets valid for systems of any dimension, in contrast with the Poincare -

Bendixson theorem and it�s generalization, that gives a description of ! - limit

sets only for systems in plane, or on 2-dimensional manifolds.

Example. The Lorentz equation. Trajectory - blue, ! - limit set

(�) - red

5



x0 = ��(x� y)
y0 = rx� y � xz
z0 = xy � bz

A trajectory for � = 10; r = 28, b = 8=7:

Main theorem about properties of ! - limit sets. Theorem 4.38,
p.143
We keep the same limitations and notations for the autonomous system as

above.

Let � 2 G: Let the closure of the postive semi-orbit O+(�) be compact and
contained in G,

Then R+ � I� and the ! - limit set 
(�) � G is
1) non-empty
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2) compact (bounded and closed)

3) connected

4) invariant (both positively and negatively) under the local �ow '(t; �)

generated by the ODE: namely for any ! - limit point � 2 
(�); the maximal
interval I� = R for initial data in �, and '(t; �) 2 
(�) for all t 2 R.
5) '(t; �) approaches 
(�) as t!1:

lim
t!1

dist('(t; �); 
(�)) = 0

Remark
The most interesting statement in the theorem is statement 4). It means

that ! - limit sets consist of orbits of solutions to the system. Taking a starting

point � on the ! - limit set 
(�) we get a trajectory '(t; �) that stays within

this set 
(�) in�nitely long both in the future and in the past.

Remark
A simple tool to satisfy conditions in this theorem is to �nd a compact

positively invariant set for the system, such that it contains the point �. It

can be done using one of two methods discussed earlier.

Proofs of statements in the Theorem 4.38, are based on the following
mathematical tools:

1. general properties of compact sets for 1) ,2),

2. simple contradiction arguments and the de�nition of limit sets for 3)

3. and the transition property of the transition mapping '(t; �), together

with continuity of '(t; �) for 4)

4. a contradiction argument togehter with the de�nition of ! - limit sets

for 5).

We will only give a proof to 4) here supposing that 1), 2), and 3) are

proven.

Proof to 4)

7



Let � be an ! - limit point for �: � 2 
(�). By the de�nition there is a
sequence of times ftng, tn !1 such that '(tn; �)! �.

Consider the trajectory '(t; �) starting at �.

Denote by I� corresponding maximal interval and consider an arbitrary
t 2 I�, belonging to the maximal interval I�.
We like to show that '(t; �) 2 
(�);namely that a trajectory starting in an

! - limit set 
(�) stays within this ! - limit set forever in the future and in

the past.

For n large enough t+ tn
def
= sn 2 R+ - belongs to the maximal interval I�

of the solution '(t; �) for n large enough because tn !1 and R+ � I�.
We are going to apply the group transition property for ' (similar to the

Chapmen-Kolmogorov relation for linear systems) for the time interval: t+tn =

sn

' (sn; �) = ' (t+ tn; �) = ' (t; '(tn; �))

It is possible to apply because of the following argument.

The domain D of '(:; :) is open, (t; �) 2 D; therefore there is a ball B
around (t; �) such that (t; '(tn; �)) 2 B � D for n large enough because

'(tn; �)! �.

Therefore t 2 I'(tn;�).
By continuity of ' it follows:

' (sn; �) = ' (t+ tn; �) = '

�
t;

lim=�

'(tn; �)

�
! '(t; �); n!1

It means that '(t; �) is an ! - limit point for ' (t; �) for any t 2 I�.
Moreoer, since 
(�) is a compact subset in G, we obtain that I� = R by

the Corollary 4.10 about the extension of an orbit that has compact closure

in G:

�
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LaSalle�s invariance principle

We formulate now LaSalle�s invariance principle that generalizes ideas that

we discussed in the introductory example and gives a handy instrument for

localizing ! - limit sets of non-linear systems in arbitrary dimension.

Theorem 5.12, p.180 (proof required at the exam)
Assume that f is locally Lipschitz f : G ! Rn as before and let '(t; �)

denote the �ow generated by the corresponding system

x0 = f(x)

Let U � G be non-empty and open. Let V : U ! R be continuously

di¤erentiable and such that Vf (z) = rV � f(z) � 0. for all z 2 U . Let � 2 U
be such that the closure of the semi-orbit O+(�) is compact and is contained

in U ,

i) then R+ � I� (maximal existence interval for �) and
ii) as t ! 1, '(t; �) approaches the largest invariant set contained in

V �1f (0) that is the set where Vf (z) = 0.

Proof.
This proof given in the solution of Exercise 5.9, on p. 312.

Set x(t) = '(t; �). By continuity of V and compactness of the closure

cl(O+(�)), V is bounded on O+(�) and therefore the function V (x(t)) of time

t is bounded.

� Since
d

dt
(V (x(t))) = Vf (x(t)) � 0

for all t 2 R+; V (x(t)) is non-increasing. We conclude that the limit limt!1 V (x(t))

of the non-increasing function V (x(t)) must exist and is �nite. We denote it

by �:

lim
t!1

V (x(t)) = �

� Take an arbitrary point z 2 
(�) in the ! - limit set 
(�). Then
by the de�nition of ! - limit sets, there is a sequence ftng in R+ such that
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limn!1 tn =1 and

x(tn) = '(tn; �) �! z; n!1

We apply V to the left and right hand side in this limit calulation.

For any continuous function F and any convergent sequence fgngit is valid
that

F ( lim
n!1

gn) = lim
n!1

(F (gn))

� By the continuity of V it follows that V (z) = limn!1 V (x(tn)) and

limn!1 V (x(tn)) = limt!1 V (x(t)) : Therefore

V (z) = lim
n!1

V (x(tn)) = lim
t!1

V (x(t)) = �:

This key point in the proof (!!!) implies that for ALL z in the ! - limit set


(�) the test function V has the same value:

V (z) = �; 8z 2 
(�) (1)

� By the invariance of 
(�) with respect to '(t; :);(!!!) if z 2 
(�), then
'(t; z) 2 
(�) for all t 2 R.
(it is why the theorem is called the invariance principle!!!)
Therefore V ('(t; z)) = � for all t 2 R is a constant function of time t

(!!!).
A constant function must have zero derivative:

d

dt
V ('(t; z)) = Vf ('(t; z)) = 0

for all t 2 R+. Since '(0; z) = z and z is an arbitrary point in 
(�) it follows
that
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Vf (z) =
d

dt
V ('(t; z))

����
t=0

= 0; 8z 2 
(�) (2)

z = '(0; z) (3)

and therefore 
(�) � V �1f (0) ;where V �1f (0) is the set of x where Vf (x) = 0:

� The statement of the theorem follows now from the Main theorem about
!- limit sets (Theorem 4.38); that states: 
(�) is an invariant set under the

action of '(t; :); and '(t; �) apporaches 
(�) as t ! 1: It makes that '(t; �)
must apporache the maximal invariant set inside V �1f (0) that is easy to �nd

by checking values f on the set V �1f (0).

(The maximal invariant set contains invariant set 
(�): Finding 
(�) itself

might be di¢ cult).

Comment. It can be tempting to simplify the proof by concluding (1)
from the fact that (rV )(z) = 0 from all z 2 
(�) which would imply (2).
However this conclusion is not valid, because the set 
(�) is not open and

therefore V (z) = �; 8z 2 
(�) does not imply Vf (z) = 0; 8 2 
(�).
The invalidity of this conclusion is illustrated by the following simple ex-

ample: V (z) = kzk, 
(�) =
�
z 2 RN : kzk = 1

	
; then V (z) = 1 for all z 2


(�), but(rV ) (z) = 2z 6= 0 for all z 2 
(�):

The following theorem follows rather directly from LaSalle�s invariance

principle and gives a practical criterium for asympototically stable equilibrium

points using "weak" Lyapunov�s functions.

Theorem 5.15. p. 183.
Let U be an open domain U � G, such that 0 2 U and a continuously

di¤erentiable function V : U ! Rn such that

V (0) = 0; V (z) > 0;8z 2 Un f0g ; Vf (z) � 0;8z 2 Un f0g

and f0g is the only invariant set contained in V �1f (0). Then 0 is an asymptot-

ically stable equilibrium.�
Proof follows from LaSalle�s invariance principle and is a simple exercise.

11



Theorem 5.22, p. 188. On global asymtotic stability

Assume that G = Rn. Let the hypothesis of the Theorem 5.15 hold with

U = G = Rn.
Namely for a continuously di¤erential function V : Rn ! R such that

V (0) = 0, V (z) > 0 for all z 2 Unf0g, Vf (z) � 0 for all z 2 Unf0g; the origin
f0g is the only invariant set contained in V �1f (0):

If in addition the Lyapunov function V is radially unbounded:

V (z)!1, kzk ! 1

then the origin 0 is a globally stable equilibrium that means that all solu-

tions k'(t; �)k ! 0, as t!1.
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Examples of using La Salle�s principle. Investigate stability of
equilibrium points in the origin.
Example.

Consider the following system of ODEs:

(
x0 = 2y

y0 = �x� (1� x2)y
:

Show the asymptotic stability of the equilibrium point in the origin and

�nd it�s domain of attraction. (4p)
Solution.
We try the test function V (x; y) = x2 + 2y2 that leads to cancellation of

mixed terms in the directional derivative Vf along trajectories. One can start

with trying a more general test function x2 + ay2 with an arbitrary constant

a > 0 and choose a so that inde�nite terms in Vf would cancel.

Vf (x; y) = 4xy � 4xy � 4y2(1 � x2) = �4y2(1 � x2) that is not positive
for jxj � 1. Therefore the origin is a stable stationary point. Checking the

behavior of the system on the set of zeroes to Vf (x; y) inside the stripe jxj < 1
we consider (Vf )

�1 (0) = f(x; y) : y = 0; jxj < 1g. On this set y0 = �x and
the only invariant set in (Vf )

�1 (0) is the origin. LaSalle�s invariance principle

implies that the origin is asymptotically stable.

The domain of attraction is the largest set bounded by a level set of

V (x; y) = x2 + 2y2 inside the stripe jxj � 1 where te monotonicity of the

Lyapunov function V along trajectories is valid. The largest such set is the

interior of the ellipse x2+2y2 = C such that is touches the lines x = �1. Tak-
ing points (�1; 0) we conclude that 1 = C. and the boundary of the domain
of attraction is the ellipse x2 + 2y2 = 1 with halfs of axes 1 and

p
0:5 :

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.625

0.5

0.375

0.25

0.125
0

-0.125

-0.25

-0.375

-0.5

-0.625

x

y

x

y

The next theorem gives a simple criterion for having the whole space as
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the domain of attraction for an asymptotically stable equilibrium point.

Example. Investigate stability of the equilibrium point in the origin.

x0 = �y � x3

y0 = x5

We try our simplest choice of the Lyapunov function: V (x; y) = x2 + y2 and

arrive to

Vf (x; y) = �2xy � 2x4 + 2yx5

It does not work because the expression Vf (x; y) includes two inde�nite terms:

2xy and 2yx5 that change sign around the origin. We try a more �exible

expression by looking on particular expressions in the right hand side of the

equation: V (x; y) = x6 + �y2 where @V=@x = 6x5 with the same power of x

as in the equation, and the parameter � that can be adjusted later. V is a

positive de�nite function: V (0) = 0 and V (z) > 0 for z 6= 0.The level sets

to V look as �attened in y - direction ellipses. The curve x6 + 3y2 = 0:5 is

depicted:

0.80.60.40.20-0.2-0.4-0.6-0.8

0.4
0.35
0.3

0.25
0.2

0.15
0.1

0.050

-0.05
-0.1

-0.15
-0.2

-0.25
-0.3

-0.35
-0.4

x

y

x

y
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Vf (x; y) = 6x
5(�y � x3) + 2�yx5 = �6x5y + 2�x5y � 6x8

We get again two inde�nite terms, but they are proportional and the choice

� = 3 cancels them:

Vf (x; y) = �6x8 � 0

Therefore the origin is a stable equilibrium point. Vf (x; y) = 0 on the whole

y�axis that in our "general" theory is denoted by V �1f (0).We check invariant

sets of the system on the set V �1f (0): We observe that x0 = �x3 (only this
fact is important) and y0 = 0 (it does not matter for V �1f (0) that is y�axis).
Therefore f0g is the only invariant set on the y - axis. Trajectories starting
on the y - axis go across it in all points except f0g. The LaSalle�s invariance
principle implies that all trajectories approach f0g as t tends to in�nity and
the origin is asymptotically stable.

The test function V (z) !1 as kzk ! 1. It implies that the whole plain
is a region or domain of attraction for the equilibrium point in the origin.�
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