Financial Time Series - Estimators for mean and autocovariance functions

Andreas Petersson

TMS088/MSA410 - March 2020

Mathematical Sciences, Chalmers University of Technology \& University of Gothenburg, Sweden

Mean and autocovariance function

Definition

Let X be a stationary time series. The mean $\mu \in \mathbb{R}$ of X is given by

$$
\mu:=\mathbb{E}\left(X_{t}\right)
$$

for any $t \in \mathbb{Z}$. The autocovariance function (ACVF) $\gamma_{X}: \mathbb{Z} \rightarrow \mathbb{R}$ of X is defined by

$$
\gamma_{X}(h):=\operatorname{Cov}\left(X_{t+h}, X_{t}\right)
$$

for $h \in \mathbb{Z}$ and $t \in \mathbb{Z}$.
Write γ instead of γ_{X} if it causes no confusion. Note that γ is symmetric around zero.

Estimators for mean and autocovariance functions

Definition

Let $X=\left(X_{t}, t \in \mathbb{N}\right)$ be a time series. The sample mean \bar{X}_{n} of X is given by

$$
\bar{X}_{n}:=n^{-1} \sum_{t=1}^{n} X_{t} .
$$

The sample autocovariance function $\hat{\gamma}$ is defined by

$$
\hat{\gamma}(h):=n^{-1} \sum_{t=1}^{n-h}\left(X_{t+h}-\bar{X}\right)\left(X_{t}-\bar{X}\right)
$$

for $h=0, \ldots, n-1$. Furthermore the sample autocorrelation function $\hat{\rho}$ is given by

$$
\hat{\rho}(h):=\frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}
$$

for $h=0, \ldots, n-1$.
Extended to $\hat{\gamma}(h):=\hat{\gamma}(|h|)$ for $h<0$.

Convergence of sample mean

Proposition

Let X be a stationary time series with mean μ and autocovariance γ_{X}. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Var}\left(\bar{X}_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{E}\left(\left(\bar{X}_{n}-\mu\right)^{2}\right)=0
$$

if $\sum_{|h|<\infty}\left|\gamma_{X}(|h|)\right|<+\infty$.

Some facts about the sample mean and autocovariance

- Exercise: If X is Gaussian then

$$
n^{1 / 2}\left(\bar{X}_{n}-\mu\right) \sim \mathcal{N}\left(0, \sum_{|h|<n}\left(1-n^{-1}|h|\right) \gamma(h)\right) .
$$

Some facts about the sample mean and autocovariance

- Exercise: If X is Gaussian then

$$
n^{1 / 2}\left(\bar{X}_{n}-\mu\right) \sim \mathcal{N}\left(0, \sum_{|h|<n}\left(1-n^{-1}|h|\right) \gamma(h)\right) .
$$

- Exercise: \bar{X}_{n} is unbiased if X is stationary, $\hat{\gamma}$ is biased (even if the factor n^{-1} is replaced by $\left.(n-h)^{-1}\right)$.

Some facts about the sample mean and autocovariance

- Exercise: If X is Gaussian then

$$
n^{1 / 2}\left(\bar{X}_{n}-\mu\right) \sim \mathcal{N}\left(0, \sum_{|h|<n}\left(1-n^{-1}|h|\right) \gamma(h)\right) .
$$

- Exercise: \bar{X}_{n} is unbiased if X is stationary, $\hat{\gamma}$ is biased (even if the factor n^{-1} is replaced by $\left.(n-h)^{-1}\right)$.
- Box \& Jenkins: $\hat{\gamma}$ is reliable for $n \geq 50, h \leq n / 4$.

Some facts about the sample mean and autocovariance

- Exercise: If X is Gaussian then

$$
n^{1 / 2}\left(\bar{X}_{n}-\mu\right) \sim \mathcal{N}\left(0, \sum_{|h|<n}\left(1-n^{-1}|h|\right) \gamma(h)\right) .
$$

- Exercise: \bar{X}_{n} is unbiased if X is stationary, $\hat{\gamma}$ is biased (even if the factor n^{-1} is replaced by $\left.(n-h)^{-1}\right)$.
- Box \& Jenkins: $\hat{\gamma}$ is reliable for $n \geq 50, h \leq n / 4$.
- The k-dimensional sample covariance matrix:

$$
\hat{\Gamma}_{k}:=\left(\begin{array}{cccc}
\hat{\gamma}(0) & \hat{\gamma}(1) & \cdots & \hat{\gamma}(k-1) \\
\hat{\gamma}(1) & \hat{\gamma}(0) & \cdots & \hat{\gamma}(k-2) \\
\vdots & \vdots & \ddots & \vdots \\
\hat{\gamma}(k-1) & \hat{\gamma}(k-2) & \cdots & \hat{\gamma}(0)
\end{array}\right)
$$

Example: Quarterly earnings of H\&M

Let the set $\left(x_{t}\right)_{t=1}^{42}$ be the quarterly earnings of $\mathrm{H} \& \mathrm{M}$. The sample mean is found to be $\bar{x} \approx 4007$.

Figure: Quarterly earnings of H\&M from January 2006 through April 2016.

Example: Quarterly earnings of H\&M

The sample autocorrelation function:

```
n=length(data);
mx=mean(data);
lags=10;
gamma=zeros(1,lags +1);
for h=0:lags
    gamma(h+1)=(data(1+h: end )-mx)*(data
    (1:end-h)-mx)'/n;
end
a cf=gamma/gamma(1);
```


Example: Quarterly earnings of H\&M

The sample autocorrelation function:

Figure: Sample autocorrelation function for the H\&M data.

Application: Testing for IID

If $Y=\left(Y_{1}, \ldots, Y_{n}\right) \sim \operatorname{IID}\left(\mu, \sigma^{2}\right)$ then $\hat{\rho}(h), h=1,2,3, \ldots$ are approximately iid and $\mathcal{N}\left(0, n^{-1}\right)$ for large n and small h.

Application: Testing for IID

If $Y=\left(Y_{1}, \ldots, Y_{n}\right) \sim \operatorname{IID}\left(\mu, \sigma^{2}\right)$ then $\hat{\rho}(h), h=1,2,3, \ldots$ are approximately iid and $\mathcal{N}\left(0, n^{-1}\right)$ for large n and small h. If $Y=\left(Y_{1}, \ldots, Y_{n}\right) \sim \operatorname{IID}\left(\mu, \sigma^{2}\right)$ then the test statistic

$$
\lambda:=n \sum_{i=1}^{h} \hat{\rho}(i)^{2}
$$

is approximately χ_{h}^{2} distributed.

Application: Testing for IID

If $Y=\left(Y_{1}, \ldots, Y_{n}\right) \sim \operatorname{IID}\left(\mu, \sigma^{2}\right)$ then $\hat{\rho}(h), h=1,2,3, \ldots$ are approximately iid and $\mathcal{N}\left(0, n^{-1}\right)$ for large n and small h. If $Y=\left(Y_{1}, \ldots, Y_{n}\right) \sim \operatorname{IID}\left(\mu, \sigma^{2}\right)$ then the test statistic

$$
\lambda:=n \sum_{i=1}^{h} \hat{\rho}(i)^{2}
$$

is approximately χ_{h}^{2} distributed.

Application: Testing for IID

Method (Portmanteau test, Box-Pierce test)

We have

$$
\begin{aligned}
& H_{0}: Y \sim \operatorname{IID}\left(\mu, \sigma^{2}\right), \\
& H_{1}: Y \nsim \operatorname{IID}\left(\mu, \sigma^{2}\right) .
\end{aligned}
$$

and the test statistic

$$
\lambda:=n \sum_{i=1}^{h} \hat{\rho}(i)^{2} .
$$

H_{0} is rejected at level $\alpha \in(0,1)$ if $\lambda>\chi_{1-\alpha, h}^{2}$.

Application: Testing for IID

Method (Ljung-Box test)

A modification of the Portmanteau test. Use the test statistic

$$
\begin{equation*}
\lambda:=n(n+2) \sum_{i=1}^{h} \frac{\hat{\rho}(i)^{2}}{n-i} . \tag{1}
\end{equation*}
$$

Same rejection regions as in the Portmanteau test.
Apply the Ljung-Box test with $h=4$ and $\alpha=0.05$ to the quarterly earnings of $\mathrm{H} \& \mathrm{M} \Rightarrow \lambda=38.87>\chi_{0.95,4}^{2}=9.49 \Rightarrow H_{0}$ is rejected.

Application: Be careful when testing for IID

Let $x=\left(x_{t}\right)_{t=1}^{205}$ be monthly observations of the Australian Trade Weighted Index (ATWI), a weighted sum of exchange rates between the Australian dollar and other currencies from January 1978 to January 1995.

Figure: Monthly observations of the ATWI.

Application: Be careful when testing for IID

$$
\text { Log-returns: } y=\left(y_{t}\right)_{t=1}^{204} \text { with } y_{t}=\log \left(y_{t+1}\right)-\log \left(y_{t}\right)
$$

Figure: Log-returns of the ATWI.

Application: Be careful when testing for IID

Sample ACF of log-returns:

Figure: Sample ACF of log-returns.

Apply Ljung-Box test to y with $h=20$ and $\alpha=0.05 \Rightarrow \lambda=24.37<\chi_{0.95,20}^{2}=31.41 \Rightarrow H_{0}$ is not rejected.

Application: Be careful when testing for IID

Sample ACF of absolute log-returns:

Figure: Sample ACF of absolute log-returns.

Apply Ljung-Box test to $|y|$ with $h=20$ and $\alpha=0.05 \Rightarrow \lambda=84.25>\chi_{0.95,20}^{2}=31.41 \Rightarrow H_{0}$ is rejected.

