Financial Time Series – Estimators for mean and autocovariance functions

Andreas Petersson

TMS088/MSA410 - March 2020

Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden

Mean and autocovariance function

Definition

Let X be a *stationary* time series. The *mean* $\mu \in \mathbb{R}$ of X is given by

 $\mu := \mathbb{E}(X_t)$

for any $t \in \mathbb{Z}$. The *autocovariance function (ACVF)* $\gamma_X : \mathbb{Z} \to \mathbb{R}$ of X is defined by

$$\gamma_X(h) := \mathsf{Cov}(X_{t+h}, X_t)$$

for $h \in \mathbb{Z}$ and $t \in \mathbb{Z}$.

Write γ instead of γ_X if it causes no confusion. Note that γ is symmetric around zero.

Estimators for mean and autocovariance functions

Definition

Let $X=(X_t,t\in\mathbb{N})$ be a time series. The sample mean \bar{X}_n of X is given by

$$\bar{X}_n := n^{-1} \sum_{t=1}^n X_t.$$

The sample autocovariance function $\hat{\gamma}$ is defined by

$$\hat{\gamma}(h) := n^{-1} \sum_{t=1}^{n-h} (X_{t+h} - \bar{X}) (X_t - \bar{X})$$

for h = 0, ..., n - 1. Furthermore the sample autocorrelation function $\hat{\rho}$ is given by

$$\hat{\rho}(h) := \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$$

for h = 0, ..., n - 1.

Extended to $\hat{\gamma}(h) := \hat{\gamma}(|h|)$ for h < 0.

Convergence of sample mean

Proposition

Let X be a stationary time series with mean μ and autocovariance $\gamma_X.$ Then

$$\lim_{n \to \infty} \operatorname{Var}(\bar{X}_n) = \lim_{n \to \infty} \mathbb{E}\left((\bar{X}_n - \mu)^2\right) = 0$$

if $\sum_{|h| < \infty} |\gamma_X(|h|)| < +\infty.$

• Exercise: If X is Gaussian then

$$n^{1/2}(\bar{X}_n - \mu) \sim \mathcal{N}\left(0, \sum_{|h| < n} (1 - n^{-1}|h|)\gamma(h)\right).$$

• Exercise: If X is Gaussian then

$$n^{1/2}(\bar{X}_n - \mu) \sim \mathcal{N}\left(0, \sum_{|h| < n} (1 - n^{-1}|h|)\gamma(h)\right).$$

• Exercise: \bar{X}_n is unbiased if X is stationary, $\hat{\gamma}$ is biased (even if the factor n^{-1} is replaced by $(n-h)^{-1}$).

• Exercise: If X is Gaussian then

$$n^{1/2}(\bar{X}_n - \mu) \sim \mathcal{N}\left(0, \sum_{|h| < n} (1 - n^{-1}|h|)\gamma(h)\right).$$

- Exercise: \bar{X}_n is unbiased if X is stationary, $\hat{\gamma}$ is biased (even if the factor n^{-1} is replaced by $(n-h)^{-1}$).
- Box & Jenkins: $\hat{\gamma}$ is reliable for $n \ge 50$, $h \le n/4$.

• Exercise: If X is Gaussian then

$$n^{1/2}(\bar{X}_n - \mu) \sim \mathcal{N}\left(0, \sum_{|h| < n} (1 - n^{-1}|h|)\gamma(h)\right).$$

- Exercise: \bar{X}_n is unbiased if X is stationary, $\hat{\gamma}$ is biased (even if the factor n^{-1} is replaced by $(n-h)^{-1}$).
- Box & Jenkins: $\hat{\gamma}$ is reliable for $n \ge 50$, $h \le n/4$.
- The k-dimensional sample covariance matrix:

$$\hat{\Gamma}_k := \begin{pmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) & \cdots & \hat{\gamma}(k-1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) & \cdots & \hat{\gamma}(k-2) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\gamma}(k-1) & \hat{\gamma}(k-2) & \cdots & \hat{\gamma}(0) \end{pmatrix}$$

Example: Quarterly earnings of H&M

Let the set $(x_t)_{t=1}^{42}$ be the quarterly earnings of H&M. The sample mean is found to be $\bar{x} \approx 4007$.

Figure: Quarterly earnings of H&M from January 2006 through April 2016.

The sample autocorrelation function:

```
 \begin{array}{l} n = l e n g t h (data); \\ mx = mean (data); \\ l a g s = 10; \\ gamma = z e ros (1, l a g s + 1); \\ for h = 0: l a g s \\ gamma(h+1) = (data(1+h:end)-mx)*(data \\ (1:end-h)-mx)'/n; \\ end \\ a c f = gamma/gamma(1); \end{array}
```

Example: Quarterly earnings of H&M

The sample autocorrelation function:

Figure: Sample autocorrelation function for the H&M data.

If $Y = (Y_1, \ldots, Y_n) \sim \text{IID}(\mu, \sigma^2)$ then $\hat{\rho}(h)$, $h = 1, 2, 3, \ldots$ are approximately iid and $\mathcal{N}(0, n^{-1})$ for large n and small h.

If $Y = (Y_1, \ldots, Y_n) \sim \text{IID}(\mu, \sigma^2)$ then $\hat{\rho}(h)$, $h = 1, 2, 3, \ldots$ are approximately iid and $\mathcal{N}(0, n^{-1})$ for large n and small h. If $Y = (Y_1, \ldots, Y_n) \sim \text{IID}(\mu, \sigma^2)$ then the test statistic

$$\lambda := n \sum_{i=1}^{h} \hat{\rho}(i)^2.$$

is approximately χ^2_h distributed.

If $Y = (Y_1, \ldots, Y_n) \sim \text{IID}(\mu, \sigma^2)$ then $\hat{\rho}(h)$, $h = 1, 2, 3, \ldots$ are approximately iid and $\mathcal{N}(0, n^{-1})$ for large n and small h. If $Y = (Y_1, \ldots, Y_n) \sim \text{IID}(\mu, \sigma^2)$ then the test statistic

$$\lambda := n \sum_{i=1}^{h} \hat{\rho}(i)^2.$$

is approximately χ^2_h distributed.

Method (Portmanteau test, Box–Pierce test)

We have

$$H_0: Y \sim \text{IID}(\mu, \sigma^2),$$

$$H_1: Y \nsim \text{IID}(\mu, \sigma^2).$$

and the test statistic

$$\lambda := n \sum_{i=1}^{h} \hat{\rho}(i)^2.$$

 H_0 is rejected at level $\alpha \in (0,1)$ if $\lambda > \chi^2_{1-\alpha,h}$.

Method (Ljung-Box test)

A modification of the Portmanteau test. Use the test statistic

$$\lambda := n(n+2) \sum_{i=1}^{h} \frac{\hat{\rho}(i)^2}{n-i}.$$
 (1)

Same rejection regions as in the Portmanteau test.

Apply the Ljung–Box test with h = 4 and $\alpha = 0.05$ to the quarterly earnings of H&M $\Rightarrow \lambda = 38.87 \gg \chi^2_{0.95.4} = 9.49 \Rightarrow H_0$ is rejected.

Let $x = (x_t)_{t=1}^{205}$ be monthly observations of the Australian Trade Weighted Index (ATWI), a weighted sum of exchange rates between the Australian dollar and other currencies from January 1978 to January 1995.

Figure: Monthly observations of the ATWI.

Log-returns:
$$y = (y_t)_{t=1}^{204}$$
 with $y_t = \log(y_{t+1}) - \log(y_t)$

Figure: Log-returns of the ATWI.

Sample ACF of log-returns:

Figure: Sample ACF of log-returns.

Apply Ljung–Box test to y with h = 20 and $\alpha = 0.05 \Rightarrow \lambda = 24.37 < \chi^2_{0.95,20} = 31.41 \Rightarrow H_0$ is not rejected.

Sample ACF of absolute log-returns:

Figure: Sample ACF of absolute log-returns.

Apply Ljung–Box test to |y| with h = 20 and $\alpha = 0.05 \Rightarrow \lambda = 84.25 \gg \chi^2_{0.95,20} = 31.41 \Rightarrow H_0$ is rejected.