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Mean and autocovariance function

Definition
Let X be a stationary time series. The mean µ ∈ R of X is given by

µ := E(Xt)

for any t ∈ Z. The autocovariance function (ACVF) γX : Z→ R of X
is defined by

γX(h) := Cov(Xt+h, Xt)

for h ∈ Z and t ∈ Z.

Write γ instead of γX if it causes no confusion. Note that γ is symmetric
around zero.
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Estimators for mean and autocovariance functions

Definition
Let X = (Xt, t ∈ N) be a time series. The sample mean X̄n of X is
given by

X̄n := n−1
n∑
t=1

Xt.

The sample autocovariance function γ̂ is defined by

γ̂(h) := n−1
n−h∑
t=1

(Xt+h − X̄)(Xt − X̄)

for h = 0, . . . , n− 1. Furthermore the sample autocorrelation
function ρ̂ is given by

ρ̂(h) := γ̂(h)
γ̂(0)

for h = 0, . . . , n− 1.

Extended to γ̂(h) := γ̂(|h|) for h < 0. 3



Convergence of sample mean

Proposition

Let X be a stationary time series with mean µ and autocovariance γX .
Then

lim
n→∞

Var(X̄n) = lim
n→∞

E
(
(X̄n − µ)2) = 0

if
∑
|h|<∞ |γX(|h|)| < +∞.
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Some facts about the sample mean and autocovariance

• Exercise: If X is Gaussian then

n1/2(X̄n − µ) ∼ N

0,
∑
|h|<n

(1− n−1|h|)γ(h)

 .

• Exercise: X̄n is unbiased if X is stationary, γ̂ is biased (even if the
factor n−1 is replaced by (n− h)−1).

• Box & Jenkins: γ̂ is reliable for n ≥ 50, h ≤ n/4.
• The k-dimensional sample covariance matrix:

Γ̂k :=


γ̂(0) γ̂(1) · · · γ̂(k − 1)
γ̂(1) γ̂(0) · · · γ̂(k − 2)

...
...

. . .
...

γ̂(k − 1) γ̂(k − 2) · · · γ̂(0)
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Example: Quarterly earnings of H&M

Let the set (xt)42
t=1 be the quarterly earnings of H&M. The sample mean

is found to be x̄ ≈ 4007.
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Figure: Quarterly earnings of H&M from January 2006 through April 2016.

The sample autocorrelation function:
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Example: Quarterly earnings of H&M

The sample autocorrelation function:

n=l e n g t h ( data ) ;
mx=mean ( data ) ;
l a g s =10;
gamma=z e r o s ( 1 , l a g s +1) ;
f o r h=0: l a g s

gamma( h+1)=( data (1+h : end )−mx) ∗( data
( 1 : end−h )−mx) ’/ n ;

end
a c f=gamma/gamma ( 1 ) ;
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Example: Quarterly earnings of H&M

The sample autocorrelation function:
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Figure: Sample autocorrelation function for the H&M data.
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Application: Testing for IID

If Y = (Y1, . . . , Yn) ∼ IID(µ, σ2) then ρ̂(h), h = 1, 2, 3, . . . are
approximately iid and N (0, n−1) for large n and small h.

If Y = (Y1, . . . , Yn) ∼ IID(µ, σ2) then the test statistic

λ := n
h∑
i=1

ρ̂(i)2.

is approximately χ2
h distributed.
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Application: Testing for IID

Method (Portmanteau test, Box–Pierce test)

We have

H0 :Y ∼ IID(µ, σ2),
H1 :Y � IID(µ, σ2).

and the test statistic

λ := n

h∑
i=1

ρ̂(i)2.

H0 is rejected at level α ∈ (0, 1) if λ > χ2
1−α,h.
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Application: Testing for IID

Method (Ljung–Box test)

A modification of the Portmanteau test. Use the test statistic

λ := n(n+ 2)
h∑
i=1

ρ̂(i)2

n− i
. (1)

Same rejection regions as in the Portmanteau test.

Apply the Ljung–Box test with h = 4 and α = 0.05 to the quarterly
earnings of H&M ⇒ λ = 38.87� χ2

0.95,4 = 9.49⇒ H0 is rejected.
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Application: Be careful when testing for IID

Let x = (xt)205
t=1 be monthly observations of the Australian Trade

Weighted Index (ATWI), a weighted sum of exchange rates between the
Australian dollar and other currencies from January 1978 to January
1995.
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Figure: Monthly observations of the ATWI.
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Application: Be careful when testing for IID

Log-returns: y = (yt)204
t=1 with yt = log(yt+1)− log(yt)
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Figure: Log-returns of the ATWI.
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Application: Be careful when testing for IID

Sample ACF of log-returns:
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Figure: Sample ACF of log-returns.

Apply Ljung–Box test to y with h = 20 and
α = 0.05⇒ λ = 24.37 < χ2

0.95,20 = 31.41⇒ H0 is not rejected.
9



Application: Be careful when testing for IID

Sample ACF of absolute log-returns:
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Figure: Sample ACF of absolute log-returns.

Apply Ljung–Box test to |y| with h = 20 and
α = 0.05⇒ λ = 84.25� χ2

0.95,20 = 31.41⇒ H0 is rejected.
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