Financial Time Series – (P)ACF for ARMA processes

Andreas Petersson TMS088/MSA410 – April 2020

Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden

ARMA processes

- $\bullet \ \phi(B)X_t = \theta(B)Z_t$
- $Z \sim WN(0, \sigma^2)$
- $\phi(z) := 1 \sum_{i=1}^{p} \phi_i z^i$
- $\theta(z) := 1 + \sum_{j=1}^{q} \theta_j z^j$

ARMA processes

- $\phi(B)X_t = \theta(B)Z_t$
- $Z \sim WN(0, \sigma^2)$
- $\phi(z) := 1 \sum_{i=1}^{p} \phi_i z^i$
- $\theta(z) := 1 + \sum_{j=1}^q \theta_j z^j$
- Assume for the next two slides: X is causal, i.e., for $(\psi_j, j \in \mathbb{N}_0)$

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$$

• For all $j \in \mathbb{N}_0$, where $\theta_0 := 1$, $\theta_j := 0$ for j > q, and $\psi_j := 0$ for j < 0:

$$\psi_j - \sum_{k=1}^p \phi_k \psi_{j-k} = \theta_j \tag{1}$$

Calculate ACVF of ARMA process

Method

Multiply the white noise expansions of X_{t+h} and X_t to get

$$\gamma(h) = \mathbb{E}(X_{t+h}X_t) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|h|}.$$

Calculate ACVF of ARMA process

Method

Multiply each side of the equations

$$X_t - \sum_{j=1}^p \phi_j X_{t-j} = Z_t + \sum_{j=1}^q \theta_j Z_{t-j}$$

by X_{t-k} for $k \in \mathbb{N}_0$ and take expectations on each side.

Calculate ACVF of ARMA process

Method

Multiply each side of the equations

$$X_t - \sum_{j=1}^{p} \phi_j X_{t-j} = Z_t + \sum_{j=1}^{q} \theta_j Z_{t-j}$$

by X_{t-k} for $k \in \mathbb{N}_0$ and take expectations on each side. We obtain

$$\gamma(k) - \sum_{j=1}^{p} \phi_j \gamma(k-j) = \sigma^2 \sum_{j=0}^{q-k} \theta_{k+j} \psi_j$$
 (2)

for $0 \le k \le q$ and

$$\gamma(k) - \sum_{j=1}^{p} \phi_j \gamma(k-j) = 0 \tag{3}$$

for k>q, where $\psi_j:=0$ for j<0, $\theta_0:=1$, and $\theta_j:=0$ for $j\notin\{0,\dots,q\}.$

Definition

For $X \sim ARMA(p,q)$. The partial autocorrelation function α (PACF):

$$\alpha(0) := 1,$$

$$\alpha(h) := \phi_{hh}$$

for $h \ge 1$, where ϕ_{hh} is the last component of

$$\phi_h = ((\gamma(i-j))_{i,j=1}^h)^{-1} (\gamma(1), \gamma(2), \dots, \gamma(h))'.$$

5

Definition

For $X \sim ARMA(p,q)$. The partial autocorrelation function α (PACF):

$$\alpha(0) := 1,$$

$$\alpha(h) := \phi_{hh}$$

for $h \ge 1$, where ϕ_{hh} is the last component of

$$\phi_h = ((\gamma(i-j))_{i,j=1}^h)^{-1} (\gamma(1), \gamma(2), \dots, \gamma(h))'.$$

For (x_1, \ldots, x_n) , the sample PACF $\hat{\alpha}$ is given by

$$\hat{\alpha}(0) := 1,$$

$$\hat{\alpha}(h) := \hat{\phi}_{hh}$$

for $h \geq 1$, where $\hat{\phi}_{hh}$ is the last component of

$$\hat{\phi}_h = ((\hat{\gamma}(i-j))_{i,j=1}^h)^{-1} (\hat{\gamma}(1), \hat{\gamma}(2), \dots, \hat{\gamma}(h))'.$$

5

• It can be shown that:

$$\alpha(1) = \mathsf{Cor}(X_{t+1}, X_t) = \rho(1)$$

and for $h\geq 2$

$$\alpha(h) = \mathsf{Cor}(X_{t+h} - b^l_{t+h}(X^h), X_t - b^l_t(X^h))$$

where $X^h := (X_{t+1}, \dots, X_{t+h-1}).$

• It can be shown that:

$$\alpha(1) = \mathsf{Cor}(X_{t+1}, X_t) = \rho(1)$$

and for $h \geq 2$

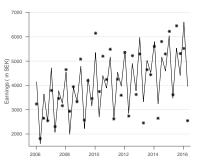
$$\alpha(h) = \text{Cor}(X_{t+h} - b_{t+h}^{l}(X^{h}), X_{t} - b_{t}^{l}(X^{h}))$$

where
$$X^h := (X_{t+1}, \dots, X_{t+h-1}).$$

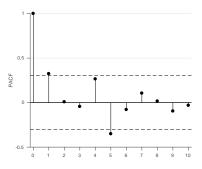
- \bullet Exercise: The PACF of a causal ${\rm AR}(p)$ process is zero for lags greater than p
- For causal AR(p) and large n: $(\hat{\alpha}(h))_{h=p+1}^{\infty} \sim IID \mathcal{N}(0, n^{-1})$ approximately

6

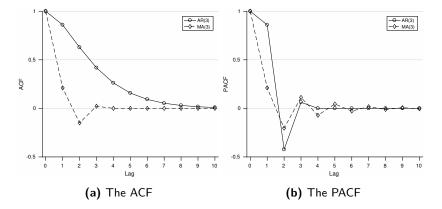
Let the set $(x_t)_{t=1}^{42}$ be the quarterly earnings of H&M.



(a) The H&M data with trend and seasonality



(b) Sample PACF for the *detrended* and *deseasonlized* H&M data.



Causal AR(3):

$$X_t - \frac{5}{4}X_{t-1} + \frac{1}{2}X_{t-2} - \frac{1}{16}X_{t-3} = Z_t,$$

and invertible MA(3):

$$X_t = Z_t + \frac{5}{4}Z_{t-1} - \frac{1}{2}Z_{t-2} + \frac{1}{16}Z_{t-3}.$$