Exercises for ARCH and GARCH models

Annika Lang and Andreas Petersson

May 25, 2020

We recall the formulas for a finite and infinite geometric sum. Let $r \neq 1$ and $n \in \mathbb{N}$. Then

$$
\sum_{k=0}^{n-1} r^{k}=\frac{1-r^{n}}{1-r}
$$

hence, if $|r|<1$,

$$
\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}
$$

These formulas are useful in some of the following exercises on ARCH and GARCH models. Note that all (G)ARCH processes below are implicitly assumed to be stationary.
Ex. 1 - Let the stochastic process $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be a causal $\operatorname{ARCH}(1)$ process with

$$
X_{t}=\sigma_{t} Z_{t}
$$

where $Z \sim \operatorname{IID} \mathcal{N}(0,1)$,

$$
\sigma_{t}^{2}=\alpha_{0}+\alpha_{1} X_{t-1}^{2}
$$

with $\alpha_{0}>0,0<\alpha_{1}<1$.
a) Is it true that $\operatorname{Cov}\left(X_{t}, f\left(X_{t-h}\right)\right)=0$ for any $t \in \mathbb{Z}, h \in \mathbb{N}$ and any (measurable) function f ?
b) Find the conditional variance of the $\mathrm{ARCH}(1)$-model $\operatorname{Var}\left(X_{t} \mid X_{t-1}\right)=\mathbb{E}\left[\left(X_{t}-\right.\right.$ $\left.\left.\mathbb{E}\left[X_{t}\right]\right)^{2} \mid X_{t-1}\right]$.

Ex. 2 - Let X and Z be as in Exercise 1.
a) Show that

$$
X_{t}^{2}=\alpha_{0} \sum_{j=0}^{n} \alpha_{1}^{j} Z_{t}^{2} Z_{t-1}^{2} \cdots Z_{t-j}^{2}+\alpha_{1}^{n+1} X_{t-n-1}^{2} Z_{t}^{2} Z_{t-1}^{2} \cdots Z_{t-n}^{2}
$$

for all $n \in \mathbb{N}$.
b) One can show that the previous task implies that

$$
X_{t}^{2}=\lim _{n \rightarrow \infty} \alpha_{0} \sum_{j=0}^{n} \alpha_{1}^{j} Z_{t}^{2} Z_{t-1}^{2} \cdots Z_{t-j}^{2}
$$

almost surely. The so called monotone convergence theorem says that if $\left(Y_{n}, n \in \mathbb{N}\right)$ are non-negative increasing random variables such that $\lim _{n \rightarrow \infty} Y_{n}=Y$ almost surely then $\mathbb{E}[Y]=\mathbb{E}\left[\lim _{n \rightarrow \infty} Y_{n}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[Y_{n}\right]$. Use this to find $\mathbb{E}\left[X_{t}^{2}\right]$ in another way than in the lecture notes.
c) (Harder exercise) Use the fact that the fourth moment of the white noise $E\left[Z_{t}^{4}\right]=3$ to evaluate $\mathbb{E}\left[X_{t}^{4}\right]$ using the monotone convergence theorem of the previous exercise. Deduce that $\mathbb{E}\left[X_{t}^{4}\right]<\infty \Longleftrightarrow 3 \alpha_{1}^{2}<1$.

Ex. 3 - Let the stochastic process $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be a causal $\operatorname{ARCH}(1)$ process given by

$$
X_{t}=\sigma_{t} Z_{t}
$$

and

$$
\sigma_{t}^{2}=\frac{1}{2}+\frac{1}{4} X_{t-1}^{2}
$$

for $t \in \mathbb{Z}$, where $Z \sim \operatorname{IID} \mathcal{N}(0,1)$ (with 4 th moment equal to 3).
a) Show that $X^{2}:=\left(X_{t}^{2}, t \in \mathbb{Z}\right)$ is weakly stationary by doing the following:
(i) Show that $\mathbb{E}\left(X_{t}^{2}\right)=\mathbb{E}\left(\sigma_{t}^{2}\right)$.
(ii) Use the previous result and the fact that $\mathbb{E}\left(X_{t}^{2}\right)$ does not depend on t to compute $\mathbb{E}\left(X_{t}^{2}\right)$ explicitly.
(iii) Assume that $\mathbb{E}\left(X_{t}^{4}\right)$ is constant for all $t \in \mathbb{Z}$ (this follows from Exercise 2 and also the fact that X is strictly stationary). Compute $\mathbb{E}\left(X_{t}^{4}\right)$.
(iv) Use the previous result to show that $\operatorname{Cov}\left(X_{t}^{2}, X_{t+h}^{2}\right)$ does not depend on t for $h>0$.
(v) Conclude that you have shown stationarity and write down the autocovariance function.
b) Show that $\tilde{Z}:=\left(\tilde{Z}_{t}, t \in \mathbb{N}\right)$ with $\tilde{Z}_{t}:=X_{t}^{2}-\sigma_{t}^{2}$ is white noise with mean zero and variance 40/39.
c) Show that $\left(X_{t}^{2}, t \in \mathbb{Z}\right)$ is a causal $\mathrm{AR}(1)$ process with mean $2 / 3$. (Hint: Use the result of the previous task.)

Ex. 4 - Let the stochastic process $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be a causal $\operatorname{ARCH}(p)$ process with $\mathbb{E}\left[Z_{t}^{4}\right]<$ ∞ and $\mathbb{E}\left[X_{t}^{4}\right]<\infty$ constant for all $t \in \mathbb{Z}$.
a) Show that $Y_{t}=X_{t}^{2} / \alpha_{0}$ satisifies the equations

$$
Y_{t}=Z_{t}^{2}\left(1+\sum_{i=1}^{p} \alpha_{i} Y_{t-i}\right) .
$$

b) Show that Y_{t} satisifies the $\operatorname{AR}(\mathrm{p})$ equations

$$
\phi(B) Y_{t}=1+\tilde{Z}_{t}
$$

for some white noise $\tilde{Z}:=\left(\tilde{Z}_{t}, t \in \mathbb{N}\right)$, where $\phi_{i}=\alpha_{i}$ for $i=1, \ldots, p$. Hint: Consider the solution to Exercise 3. Can you do something similar here?

Ex. 5 - Let the stochastic process $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be a $\operatorname{GARCH}(p, q)$ process with $\sum_{i=1}^{p} \alpha_{i}+$ $\sum_{j=1}^{q} \beta_{j}<1, \mathbb{E}\left[Z_{t}^{4}\right]<\infty$ and $\mathbb{E}\left[X_{t}^{4}\right]<\infty$ constant for all $t \in \mathbb{Z}$.
a) Let $\tilde{Z}_{t}=X_{t}^{2}-\sigma_{t}^{2}$. Show that $\left(\tilde{Z}_{t}, t \in \mathbb{Z}\right)$ is mean zero white noise.
b) Show that $\left(X_{t}^{2}, t \in \mathbb{Z}\right)$ satisfies the $\operatorname{ARMA}(m, q)$-equation

$$
\phi(B) X_{t}^{2}=\alpha_{0}+\theta(B) \tilde{Z}_{t}
$$

where $m=\max (p, q)$ and the ARMA coefficients satisfies $\phi_{i}=\alpha_{i}+\beta_{i}$ for $i=1, \ldots, m$ and $\theta_{i}=-\beta_{i}$ for $i=1 \ldots q$ where $\beta_{i}=0$ for $i>q$ and $\alpha_{i}=0$ for $i>p$.

Ex. 6 - Let the stochastic process $X=\left(X_{t}, t \in \mathbb{Z}\right)$ be a causal $\operatorname{GARCH}(1,1)$ process with $\mathbb{E}\left[Z_{t}^{4}\right]<\infty$ and $\mathbb{E}\left[X_{t}^{4}\right]<\infty$ constant for all $t \in \mathbb{Z}$ and $\alpha_{1}+\beta_{1}<1$.
a) Find $\mathbb{E}\left[X_{t}^{4}\right]$.
b) Confirm that the kurtosis of $X_{t}, t \in \mathbb{Z}$, is given by

$$
\frac{\mathbb{E}\left(X_{t}^{4}\right)}{\mathbb{E}\left(X_{t}^{2}\right)^{2}}=\frac{\mu_{4}\left(1-\left(\alpha_{1}+\beta_{1}\right)^{2}\right)}{1-\beta_{1}^{2}-2 \alpha_{1} \beta_{1}-\mu_{4} \alpha_{1}^{2}}
$$

where $\mu_{4}=\mathbb{E}\left(Z_{t}^{4}\right) / \mathbb{E}\left(Z_{t}^{2}\right)^{2}$ is the kurtosis of $Z_{t}, t \in \mathbb{Z}$, provided that the denominator is positive.
c) If $Z_{t} \sim \mathcal{N}(0,1), \mu_{4}=3$. Show that if this Gaussian assumption holds, X_{t} has excess kurtosis, i.e.,

$$
\frac{\mathbb{E}\left(X_{t}^{4}\right)}{\mathbb{E}\left(X_{t}^{2}\right)^{2}} \geq 3
$$

Ex. $7-$ Let $Z \sim \operatorname{IID}(0,1)$ and assume that the distribution of Z_{t} is symmetric, i.e., $Z_{t} \stackrel{d}{=}-Z_{t}$.
a) Show that $g(Z) \sim \operatorname{IID}\left(0,1+\lambda^{2} \operatorname{Var}\left(\left|Z_{t}\right|\right)\right)$, where $g(Z)$ is the process defined by $g\left(Z_{t}\right)=$ $Z_{t}+\lambda\left(\left|Z_{t}\right|-\mathbb{E}\left(\left|Z_{t}\right|\right)\right), \lambda \in \mathbb{R}$, for all $t \in \mathbb{Z}$.
b) Using the previous result, show that the process $\ell=\left(\ell_{t}, t \in \mathbb{Z}\right)$ defined by

$$
\ell_{t}=\alpha_{0}+\alpha(B) g\left(Z_{t}\right)+\beta(B) \ell_{t}
$$

where

$$
\begin{aligned}
\alpha(z) & :=1+\alpha_{1} z+\cdots+\alpha_{p} z^{p}, \\
\beta(z) & :=\beta_{1} z+\cdots+\beta_{q} z^{q},
\end{aligned}
$$

is an $\operatorname{ARMA}(q, p)$ process with mean with mean $\mu=\alpha_{0} /(1-\beta(1))$ if $1-\beta(z) \neq 0$ for all $z \in \mathbb{C}$ with $|z|=1$ and $1-\beta$ and α have no common zeros.

