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Random variance models

Definition
A stochastic process X = (Xt, t ∈ Z) is said to follow a random
variance model if

Xt = σtZt (1)

for all t ∈ Z, where Z = (Zt, t ∈ Z) is IID(0, 1) and σ = (σt, t ∈ Z) is
an unspecified stochastic process called the volatility. If Xt can be
written as a deterministic function of (Zs, s ≤ t) for all t ∈ Z, then X
is said to be causal.

The realized volatility:

σ̂2
t := (τ − 1)−1

t∑
j=t−τ

(xj − x̄t)2

for observed data (x1, . . . , xn), fixed τ < n, and τ < t ≤ n, where

x̄t := τ−1
t∑

j=t−τ
xj .

2



Random variance models

Definition
A stochastic process X = (Xt, t ∈ Z) is said to follow a random
variance model if

Xt = σtZt (1)

for all t ∈ Z, where Z = (Zt, t ∈ Z) is IID(0, 1) and σ = (σt, t ∈ Z) is
an unspecified stochastic process called the volatility. If Xt can be
written as a deterministic function of (Zs, s ≤ t) for all t ∈ Z, then X
is said to be causal.

The realized volatility:

σ̂2
t := (τ − 1)−1

t∑
j=t−τ

(xj − x̄t)2

for observed data (x1, . . . , xn), fixed τ < n, and τ < t ≤ n, where

x̄t := τ−1
t∑

j=t−τ
xj .

2



GARCH models

Definition

A stochastic process X = (Xt, t ∈ Z) is called a GARCH(p, q) process
if it is a stationary solution to the GARCH equations

Xt = σtZt,

where Z ∼ IID(0, 1),

σ2
t = α0 +

p∑
j=1

αjX
2
t−j +

q∑
i=1

βiσ
2
t−i,

with α0 > 0, αj ≥ 0 for j = 1, . . . , p, βi ≥ 0 for i = 1, . . . , q.

Usually Zt ∼ N (0, 1) or
√
ν/(ν − 2)Zt ∼ tν for all t ∈ Z. The factor√

ν/(ν − 2) yields Var(Zt) = 1, Zt follows a generalized or
non-standardized t-distribution.
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EGARCH(p,q) processes

Definition

A stochastic process X = (Xt, t ∈ Z) is called an EGARCH(p, q)
process if it is stationary and satisfies the EGARCH equations

Xt = σtZt,

where Z ∼ IID(0, 1) has a symmetric distribution, i.e., Zt and −Zt
have the same distribution,

ln(σ2
t ) = α0 +

p∑
j=1

αjg(Zt−j) +
q∑
i=1

βi ln(σ2
t−i),

where g(x) = x+ λ(|x| − E(|Zt|)) and α0, α1, . . . αp, β1, . . . , βq, λ are
real numbers.

σ2
t = exp(α0)×

p∏
j=1

exp(αjg(Zt−j))×
q∏
i=1

σ2βi

t−i.
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EGARCH(p,q) processes

ln(σ2
t ) = α0 + α(B)g(Zt) + β(B) ln(σ2

t ),

where

α(z) := α1z + · · ·+ αpz
p,

β(z) := β1z + · · ·+ βqz
q.

• E(Zt|Zt|) = E(−Zt| −Zt|) =⇒ E(Zt|Zt|) = −E(Zt|Zt|), i.e., that
E(Zt|Zt|) = 0 for all t ∈ Z

• Exercise: show that
g(Z) = (g(Zt), t ∈ Z) ∼WN(0, 1 + λ2 Var(|Zt|)) and hence that
ln(σ2)/αp′ := (ln(σ2

t )/αp′ , t ∈ Z) is an ARMA(q, p− p′) (where p′

is the first j ∈ N such that αj 6= 0) process with mean
µ = α0/(αp′(1− β(1))).
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EGARCH(p,q) processes

• Existence if 1− β(z) 6= 0 for all z ∈ C s.t. |z| = 1, and 1− β(z) and
α(z) have no common zeros

• ln(σ2), σ2 and X are then strictly stationary
• If 1− β(z) 6= 0 for all z ∈ C such that |z| ≤ 1, then ln(σ2) is also

causal
• Finite variance (therefore stationary) if, e.g., Z ∼ IIDN (0, 1)
• For Z ∼ IIDN (0, 1) all moments exist (problem).
• Parameter estimation can be done via conditional MLE
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IGARCH processes

• Volatility of log-returns has long memory: sample ACF of squared
log-returns can decay very slowly

• Recall:
φ(B)X2

t = α0 + θ(B)ηt,

where φ(z) = 1−α(z)− β(z), θ(z) = 1− β(z) and ηt = X2
t − σ2

t is
white noise

• Idea: Let X2 behave like an ARIMA process
• φ(B) = (1−B)φ̃(B), where φ̃ is some polynomial such that
φ̃(z) 6= 0 for all z ∈ C with |z| ≤ 1 =⇒ φ has a simple root at 1
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IGARCH(p,q) processes

Definition

A stochastic process X = (Xt, t ∈ Z) is called an IGARCH(p, q)
process if it is a strictly stationary solution to the GARCH equations

Xt = σtZt,

where Z ∼ IID(0, 1),

σ2
t = α0 +

p∑
j=1

αjX
2
t−j +

q∑
i=1

βiσ
2
t−i,

where α1, . . . , αp, β1, . . . , βq are non-negative numbers, α0 > 0 and∑p
i=1 αi +

∑q
j=1 βj = 1.

• A causal strictly stationary solution exists if the distribution of Zt has
unbounded support and not atom at zero (true if Z ∼ IIDN (0, 1))

• Infinite (unconditional) variance!
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