Financial Time Series – Extensions of GARCH models

Andreas Petersson

TMS088/MSA410 - May 2020

Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Sweden

Random variance models

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is said to follow a *random variance model* if

$$X_t = \sigma_t Z_t \tag{1}$$

for all $t \in \mathbb{Z}$, where $Z = (Z_t, t \in \mathbb{Z})$ is IID(0, 1) and $\sigma = (\sigma_t, t \in \mathbb{Z})$ is an unspecified stochastic process called the *volatility*. If X_t can be written as a deterministic function of $(Z_s, s \leq t)$ for all $t \in \mathbb{Z}$, then Xis said to be *causal*.

Random variance models

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is said to follow a *random variance model* if

$$X_t = \sigma_t Z_t \tag{1}$$

for all $t \in \mathbb{Z}$, where $Z = (Z_t, t \in \mathbb{Z})$ is IID(0, 1) and $\sigma = (\sigma_t, t \in \mathbb{Z})$ is an unspecified stochastic process called the *volatility*. If X_t can be written as a deterministic function of $(Z_s, s \leq t)$ for all $t \in \mathbb{Z}$, then Xis said to be *causal*.

The realized volatility:

$$\hat{\sigma}_t^2 := (\tau - 1)^{-1} \sum_{j=t-\tau}^t (x_j - \bar{x}_t)^2$$

for observed data (x_1, \ldots, x_n) , fixed $\tau < n$, and $\tau < t \le n$, where

$$\bar{x}_t := \tau^{-1} \sum_{j=t-\tau}^t x_j.$$

GARCH models

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is called a GARCH(p, q) process if it is a stationary solution to the GARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0, 1)$,

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j X_{t-j}^2 + \sum_{i=1}^q \beta_i \sigma_{t-i}^2,$$

with $\alpha_0 > 0$, $\alpha_j \ge 0$ for $j = 1, \dots, p$, $\beta_i \ge 0$ for $i = 1, \dots, q$.

GARCH models

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is called a GARCH(p, q) process if it is a stationary solution to the GARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0, 1)$,

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j X_{t-j}^2 + \sum_{i=1}^q \beta_i \sigma_{t-i}^2,$$

with $\alpha_0 > 0$, $\alpha_j \ge 0$ for $j = 1, \dots, p$, $\beta_i \ge 0$ for $i = 1, \dots, q$.

Usually $Z_t \sim \mathcal{N}(0,1)$ or $\sqrt{\nu/(\nu-2)}Z_t \sim t_{\nu}$ for all $t \in \mathbb{Z}$. The factor $\sqrt{\nu/(\nu-2)}$ yields $\operatorname{Var}(Z_t) = 1$, Z_t follows a generalized or non-standardized t-distribution.

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is called an EGARCH(p, q)process if it is stationary and satisfies the EGARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0, 1)$ has a symmetric distribution, i.e., Z_t and $-Z_t$ have the same distribution,

$$\ln(\sigma_t^2) = \alpha_0 + \sum_{j=1}^p \alpha_j g(Z_{t-j}) + \sum_{i=1}^q \beta_i \ln(\sigma_{t-i}^2),$$

where $g(x) = x + \lambda(|x| - \mathbb{E}(|Z_t|))$ and $\alpha_0, \alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q, \lambda$ are real numbers.

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is called an EGARCH(p, q)process if it is stationary and satisfies the EGARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0, 1)$ has a symmetric distribution, i.e., Z_t and $-Z_t$ have the same distribution,

$$\ln(\sigma_t^2) = \alpha_0 + \sum_{j=1}^p \alpha_j g(Z_{t-j}) + \sum_{i=1}^q \beta_i \ln(\sigma_{t-i}^2),$$

where $g(x) = x + \lambda(|x| - \mathbb{E}(|Z_t|))$ and $\alpha_0, \alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q, \lambda$ are real numbers.

$$\sigma_t^2 = \exp(\alpha_0) \times \prod_{j=1}^p \exp(\alpha_j g(Z_{t-j})) \times \prod_{i=1}^q \sigma_{t-i}^{2\beta_i}.$$

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is called an EGARCH(p, q)process if it is stationary and satisfies the EGARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0, 1)$ has a symmetric distribution, i.e., Z_t and $-Z_t$ have the same distribution,

$$\ln(\sigma_t^2) = \alpha_0 + \sum_{j=1}^p \alpha_j g(Z_{t-j}) + \sum_{i=1}^q \beta_i \ln(\sigma_{t-i}^2),$$

where $g(x) = x + \lambda(|x| - \mathbb{E}(|Z_t|))$ and $\alpha_0, \alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q, \lambda$ are real numbers.

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is called an EGARCH(p, q)process if it is stationary and satisfies the EGARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0, 1)$ has a symmetric distribution, i.e., Z_t and $-Z_t$ have the same distribution,

$$\ln(\sigma_t^2) = \alpha_0 + \sum_{j=1}^p \alpha_j g(Z_{t-j}) + \sum_{i=1}^q \beta_i \ln(\sigma_{t-i}^2),$$

where $g(x) = x + \lambda(|x| - \mathbb{E}(|Z_t|))$ and $\alpha_0, \alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q, \lambda$ are real numbers.

$$\sigma_t^2 = \exp(\alpha_0) \times \prod_{j=1}^p \exp(\alpha_j g(Z_{t-j})) \times \prod_{i=1}^q \sigma_{t-i}^{2\beta_i}$$

$$\ln(\sigma_t^2) = \alpha_0 + \alpha(B)g(Z_t) + \beta(B)\ln(\sigma_t^2),$$

where

$$\alpha(z) := \alpha_1 z + \dots + \alpha_p z^p,$$

$$\beta(z) := \beta_1 z + \dots + \beta_q z^q.$$

$$\ln(\sigma_t^2) = \alpha_0 + \alpha(B)g(Z_t) + \beta(B)\ln(\sigma_t^2),$$

where

$$\alpha(z) := \alpha_1 z + \dots + \alpha_p z^p,$$

$$\beta(z) := \beta_1 z + \dots + \beta_q z^q.$$

• $\mathbb{E}(Z_t|Z_t|) = \mathbb{E}(-Z_t|-Z_t|) \implies \mathbb{E}(Z_t|Z_t|) = -\mathbb{E}(Z_t|Z_t|)$, i.e., that $\mathbb{E}(Z_t|Z_t|) = 0$ for all $t \in \mathbb{Z}$

$$\ln(\sigma_t^2) = \alpha_0 + \alpha(B)g(Z_t) + \beta(B)\ln(\sigma_t^2),$$

where

$$\alpha(z) := \alpha_1 z + \dots + \alpha_p z^p,$$

$$\beta(z) := \beta_1 z + \dots + \beta_q z^q.$$

- $\mathbb{E}(Z_t|Z_t|) = \mathbb{E}(-Z_t|-Z_t|) \implies \mathbb{E}(Z_t|Z_t|) = -\mathbb{E}(Z_t|Z_t|)$, i.e., that $\mathbb{E}(Z_t|Z_t|) = 0$ for all $t \in \mathbb{Z}$
- Exercise: show that

$$\begin{split} g(Z) &= (g(Z_t), t \in \mathbb{Z}) \sim \mathrm{WN}(0, 1 + \lambda^2 \operatorname{Var}(|Z_t|)) \text{ and hence that} \\ \ln(\sigma^2)/\alpha_{p'} &:= (\ln(\sigma_t^2)/\alpha_{p'}, t \in \mathbb{Z}) \text{ is an } \operatorname{ARMA}(q, p - p') \text{ (where } p' \text{ is the first } j \in \mathbb{N} \text{ such that } \alpha_j \neq 0 \text{) process with mean} \\ \mu &= \alpha_0/(\alpha_{p'}(1 - \beta(1))). \end{split}$$

• Existence if $1 - \beta(z) \neq 0$ for all $z \in \mathbb{C}$ s.t. |z| = 1, and $1 - \beta(z)$ and $\alpha(z)$ have no common zeros

- Existence if $1 \beta(z) \neq 0$ for all $z \in \mathbb{C}$ s.t. |z| = 1, and $1 \beta(z)$ and $\alpha(z)$ have no common zeros
- $\ln(\sigma^2), \sigma^2$ and X are then strictly stationary

- Existence if $1 \beta(z) \neq 0$ for all $z \in \mathbb{C}$ s.t. |z| = 1, and $1 \beta(z)$ and $\alpha(z)$ have no common zeros
- $\ln(\sigma^2), \sigma^2$ and X are then strictly stationary
- If $1-\beta(z)\neq 0$ for all $z\in \mathbb{C}$ such that $|z|\leq 1,$ then $\ln(\sigma^2)$ is also causal

- Existence if $1 \beta(z) \neq 0$ for all $z \in \mathbb{C}$ s.t. |z| = 1, and $1 \beta(z)$ and $\alpha(z)$ have no common zeros
- $\ln(\sigma^2), \sigma^2$ and X are then strictly stationary
- If $1-\beta(z)\neq 0$ for all $z\in \mathbb{C}$ such that $|z|\leq 1,$ then $\ln(\sigma^2)$ is also causal
- Finite variance (therefore stationary) if, e.g., $Z \sim {\rm IID}\, \mathcal{N}(0,1)$
- For $Z \sim \text{IID} \mathcal{N}(0, 1)$ all moments exist (problem).

- Existence if $1 \beta(z) \neq 0$ for all $z \in \mathbb{C}$ s.t. |z| = 1, and $1 \beta(z)$ and $\alpha(z)$ have no common zeros
- $\ln(\sigma^2), \sigma^2$ and X are then strictly stationary
- If $1-\beta(z)\neq 0$ for all $z\in \mathbb{C}$ such that $|z|\leq 1,$ then $\ln(\sigma^2)$ is also causal
- Finite variance (therefore stationary) if, e.g., $Z \sim \mathrm{IID}\,\mathcal{N}(0,1)$
- For $Z \sim \text{IID} \mathcal{N}(0, 1)$ all moments exist (problem).
- Parameter estimation can be done via conditional MLE

• Volatility of log-returns has long memory: sample ACF of squared log-returns can decay very slowly

IGARCH processes

- Volatility of log-returns has long memory: sample ACF of squared log-returns can decay very slowly
- Recall:

$$\phi(B)X_t^2 = \alpha_0 + \theta(B)\eta_t,$$

where $\phi(z)=1-\alpha(z)-\beta(z),$ $\theta(z)=1-\beta(z)$ and $\eta_t=X_t^2-\sigma_t^2$ is white noise

IGARCH processes

- Volatility of log-returns has long memory: sample ACF of squared log-returns can decay very slowly
- Recall:

$$\phi(B)X_t^2 = \alpha_0 + \theta(B)\eta_t,$$

where $\phi(z)=1-\alpha(z)-\beta(z),$ $\theta(z)=1-\beta(z)$ and $\eta_t=X_t^2-\sigma_t^2$ is white noise

• Idea: Let X^2 behave like an ARIMA process

- Volatility of log-returns has long memory: sample ACF of squared log-returns can decay very slowly
- Recall:

$$\phi(B)X_t^2 = \alpha_0 + \theta(B)\eta_t,$$

where $\phi(z)=1-\alpha(z)-\beta(z),$ $\theta(z)=1-\beta(z)$ and $\eta_t=X_t^2-\sigma_t^2$ is white noise

- Idea: Let X^2 behave like an ARIMA process
- $\phi(B) = (1-B)\tilde{\phi}(B)$, where $\tilde{\phi}$ is some polynomial such that $\tilde{\phi}(z) \neq 0$ for all $z \in \mathbb{C}$ with $|z| \leq 1 \implies \phi$ has a simple root at 1

Definition

A stochastic process $X = (X_t, t \in \mathbb{Z})$ is called an IGARCH(p, q)process if it is a strictly stationary solution to the GARCH equations

$$X_t = \sigma_t Z_t,$$

where $Z \sim \text{IID}(0, 1)$,

$$\sigma_t^2 = \alpha_0 + \sum_{j=1}^p \alpha_j X_{t-j}^2 + \sum_{i=1}^q \beta_i \sigma_{t-i}^2,$$

where $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q$ are non-negative numbers, $\alpha_0 > 0$ and $\sum_{i=1}^p \alpha_i + \sum_{j=1}^q \beta_j = 1.$

- A causal strictly stationary solution exists if the distribution of Z_t has unbounded support and not atom at zero (true if $Z \sim \text{IID} \mathcal{N}(0, 1)$)
- Infinite (unconditional) variance!