Partial answer sheet

Below are the answers to some of the more computational exercises. If you spot any mistakes, please contact andreas.petersson [at] chalmers . se. The amount of details is not representative for what would be needed from a similar question on the exam.

Below [BD] means the book by Brockwell and Davis and [E] means the PDF "Extra Exercises in Basic Probability for Financial Time Series".
[BD] 1.4: a) Yes. b) Yes. c) No. d) Yes. e) No. f) Yes.
[BD] 1.6: a) 4.6375 b) 0.1257
[E] 1: a) $\frac{1}{2} \sigma^{2}$ b) a) $\frac{1}{8} \sigma^{2}$
[BD] 2.3: a) $\gamma(0)=1.25, \gamma(1)=0.18, \gamma(2)=-0.4, \gamma(h)=0$ for $|h|>2$. b) Same as in a).
[BD] 2.21 Let in this exercise a_{i} be the coefficient in front of X_{i}. a) $a_{1}=-\frac{\theta^{2}}{\theta^{4}+\theta^{2}+1}$, $a_{2}=\frac{\theta\left(\theta^{2}+1\right)}{\theta^{4}+\theta^{2}+1}$ b) $a_{4}=\frac{\theta\left(\theta^{2}+1\right)}{\theta^{4}+\theta^{2}+1}, a_{5}=-\frac{\theta^{2}}{\theta^{4}+\theta^{2}+1}$ c) Coefficients coincide with answers from parts a and b. d) The MSE for a and b is $\frac{\left(\theta^{2}+1\right)\left(\theta^{4}+1\right) \sigma^{2}}{\theta^{4}+\theta^{2}+1}$ and for c it is $\frac{\left(\theta^{6}+1\right) \sigma^{2}}{\theta^{4}+\theta^{2}+1}$
[BD] 3.1: a) Causal and invertible. b) Not causal but invertible. c) Not invertible but causal. d) Causal and invertible. e) Not causal but invertible.
$[\mathrm{BD}] 3.3: \quad$ a) $(-0.2,0.52,-0.2,0.2896,-0.15392) \quad$ c) $(0.6,-0.36,0.216,-0.1296,0.07776)$ d) $(-1.8,2.43,-2.916,3.2805,-3.54294)$
$[\mathrm{BD}]$ 3.4: For $h \in \mathbb{Z}, \rho(h)=\left\{\begin{array}{l}0.8^{|h| / 2}, h \text { even } \\ 0, h \text { odd }\end{array}\right.$. For $h \in \mathbb{N} \alpha(0)=1, \alpha(2)=0.8$ and $\alpha(h)=0$ otherwise.
[BD] 5.3: a) For $|\phi|<\frac{\sqrt{5}-1}{2}$. b) $\hat{\phi}=0.509, \hat{\sigma^{2}}=2.985$.
[BD] 5.4: a) No. b) $\hat{\mu}=3.82, \hat{\phi}_{1}=0.274, \hat{\phi_{2}}=0.358 \hat{\sigma^{2}}=0.820$ d) 0.274 ± 0.129 and 0.358 ± 0.129 e) $\hat{\alpha}(1)=\hat{\rho}(1), \hat{\alpha}(2)=\phi_{2}$ and $\hat{\alpha}(h)=0$ otherwise.
[BD] 5.11: $\hat{\phi}=\frac{2 x_{1} x_{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)}, \hat{\sigma^{2}}=\frac{\left(x_{1}^{2}-x_{2}^{2}\right)^{2}}{2\left(x_{1}^{2}+x_{2}^{2}\right)}$.
Nonlinear model exercises: 1: a) 13.86 b) 13.55 2: Null hypothesis of a linear ARMA model being adequate is not rejected at the 5% level, with a p-value of 0.0760 (the p-value is found with a suitable statistics software package, while critical values for the test can be found in any statistics textbook).

