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Parametric bootstrap/Monte Carlo simulation

Given (X1, X2, . . . , Xn), forecast Xn+h for some h > 0. Denote this by
Xn(h). Parametric bootstrap computes forecasts of Xn+1, . . . , Xn+h

sequentially. For i = 1, . . . , h repeat:

1. Generate a random sample of the driving noise at time n+ i

according to model.

2. Compute X̃n+i using sample, model, data, and previous forecasts
Xn(1), . . . , Xn(i− 1).

3. Repeat the previous two steps K times to get K realizations
(X̃(k)

n+i, k = 1, . . . ,K). Set Xn(i) = K−1∑K
k=1 X̃

(k)
n+h.

If model is adequate, Xn(h) ≈ E(Xn+h|Xn, Xn−1, . . . , X1).
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Example: Markov switching AR(p) model

Let S be a Markov chain taking values in {1, 2} with

P (St = 2|St−1 = 1) = w1,

P (St = 1|St−1 = 2) = w2

with w1, w2 ∈ [0, 1]. X = (Xt, t ∈ Z) follows a Markov switching
autoregressive model (MSA) with two states if

Xt =
{
c1 +

∑p
i=1 φ1iXt−i + Z1t if St = 1,

c2 +
∑p

i=1 φ2iXt−i + Z2t if St = 2.

Here Z1 = (Z1t, t ∈ Z) and Z2 = (Z2t, t ∈ Z) are IID(0, σ2) noises for
finite σ2 and independent of each other.
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Forecasting evaluation

• Subdivide (X1, X2, . . . , XN ), into: (X1, X2, . . . , Xn), (training
subsample or estimation subsample) and (Xn+h, Xn+h+1, . . . , XN )
(test subsample or forecasting subsample)

• Rolling forecasting procedure: (X1, X2, . . . , Xn) is used to compute
Xn(h), (X1, X2, X3, . . . , Xn+1) is used to compute Xn+1(h) and so
on

• m = N − n− h+ 1 the size of the test subsample
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Forecasting evaluation

Method (Directional measure)
Contingency table that summarizes “hits” and “misses” of predicting
ups and downs up of Xn+h in the test subsample:

Actual
Predicted Up Down

Up m11 m12 m10

Down m21 m22 m20

m01 m02 m

Calculate row sums and column sums. Larger values in m11 and m22

indicate better forecasts.

Large values of the test statistic

χ2 :=
2∑

i,j=1

(mij −mi0m0j/m)2

mi0m0j/m

signifies that the model outperforms the chance of random choice.
Under mild assumptions, χ2 ∼ χ2

1.
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Forecasting evaluation

Method (Magnitude measure)
Three statistics for forecasting performance:

• the mean squared error

MSE(h) := m−1
m−1∑
j=0

(Xn+h+j −Xn+j(h))2

• the mean absolute deviation

MAD(h) := m−1
m−1∑
j=0
|Xn+h+j −Xn+j(h))|

• the mean absolute percentage error

MAPE(h) := m−1
m−1∑
j=0

∣∣∣∣Xn+j(h)
Xn+h+j

− 1
∣∣∣∣
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Forecasting evaluation

• If X is a continuous random variable with cumulative distribution
function FX , then the distribution of the random variable
Y = FX(X) ∼ U([0, 1])

• A distributional measure (goodness of fit): for Xn+h+j ,
j = 0, . . . ,m− 1, in the test set, compute empirical CDF F̂

F̂j(y) = 1
K

K∑
k=1

I(X̃(k)
n+h+j ≤ y)

out of the parametric bootstrap sample. Use the test set to compute

un+j(h) := F̂j(Xn+h+j)

for all j = 0, . . . ,m− 1
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Forecasting evaluation

For sufficiently large m, the Kolmogorov–Smirnov statistic

D = sup
x∈[0,1]

∣∣∣∣∣∣ 1
m

m−1∑
j=0

I(un+j(h) ≤ x)− x

∣∣∣∣∣∣
can be used to test the sample with respect to the uniform distribution.
The (asymptotic) distribution for this statistic is complex but if the
model is adequate the statistic D should be small. This fact can be used
to choose between several models.
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