
CHALMERS, GÖTEBORGS UNIVERSITET

SOLUTIONS FOR EXAM for
ARTIFICIAL NEURAL NETWORKS

COURSE CODES: FFR 135, FIM 720 GU, PhD

Maximum score on this exam: 12 points.
Maximum score for homework problems: 12 points.
To pass the course it is necessary to score at least 5 points on this written
exam.
CTH ≥14 passed; ≥17.5 grade 4; ≥22 grade 5,
GU ≥14 grade G; ≥ 20 grade VG.

1. Feature map.
Local fields of feature map of pattern x(1):

6 5
2 1
1 2
5 6

 . (1)

Local fields of feature map of pattern x(2):
3 3
2 2
2 2
2 2

 . (2)

The ReLU-activation function does not exert any effect, since all local fields
are possible. The feature maps are therefore equal to the local fields above.
Max-pooling layer of pattern x(1): 6

2
6

 . (3)

Max-pooling layer of pattern x(2): 3
2
2

 . (4)
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With Wk = −δk1 and Θ = −4 we have

3∑
k=1

Wk

6
2
6


k

−Θ = −2 (5)

and

3∑
k=1

Wk

3
2
2


k

−Θ = 1. (6)

Applying the Heaviside activation function results in the requested outputs.

2. Hopfield network with hidden units
Denote the the value of hidden neuron i after the update by h′i. Suppose
that the kth hidden neuron change sign. We then have:

h′i = hi − 2hiδik, (7)

The energy after the update is

H ′ =−
M∑
i=1

N∑
j=1

wijh
′
ivj (8)

=−
N∑
j=1

vj

M∑
i=1

wij(hi − 2hiδik) (9)

=−
N∑
j=1

vj

[
M∑
i=1

wijhi − 2
M∑
i=1

wijhiδik

]
(10)

=−
N∑
j=1

vj

[
M∑
i=1

wijhi − 2wkjhk

]
(11)

=−
N∑
j=1

M∑
i=1

wijhivj + 2hk

N∑
j=1

wkjvj (12)

=H + 2hkb
(h)
k . (13)

If the kth hidden neuron change sign, then hkb
(h)
k < 0.
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3. Backpropagation
Solution: The weight update rule for L = 3 reads,

δw(3)
pr = −η ∂H

∂w
(3)
pr

(14)

= η
∑
i,µ

(y
(µ)
i −O

(µ)
i )

∂V
(3,µ)
i

∂w
(3)
pr

(15)

= η
∑
i,µ

(y
(µ)
i −O

(µ)
i )g′(b

(3,µ)
i )

∑
j

∂w
(3,µ)
ij

∂w
(3)
pr

V
(2,µ)
j (16)

= η
∑
i,µ

(y
(µ)
i −O

(µ)
i )g′(b

(3,µ)
i )

∑
j

δipδjrV
(2,µ)
j (17)

= η
∑
µ

(y(µ)p −O(µ)
p )g′(b(3,µ)p )V (2,µ)

r (18)

= η
∑
µ

∆(3,µ)
p V (2,µ)

r (19)

where, ∆
(3,µ)
p = (y

(µ)
p −O(µ)

p )g′(b
(3,µ)
p ). Similarly,

δw(2)
pr = −η ∂H

∂w
(2)
pr

(20)

= η
∑
i,µ

(y
(µ)
i −O

(µ)
i )g′(b

(3,µ)
i )w

(3)
ip g

′(b(2,µ)p )V (1,µ)
r (21)

= η
∑
i,µ

∆
(3,µ)
i w

(3)
ip g

′(b(2,µ)p )V (1,µ)
r (22)

= η
∑
µ

∆(2,µ)
p V (1,µ)

r (23)

where, ∆
(2,µ)
p =

∑
i,µ ∆

(3,µ)
i w

(3)
ip g

′(b
(2,µ)
p ). Similarly,

δw(1)
pr = η

∑
µ

∆(1,µ)
p V (0,µ)

r , (24)

where ∆
(1,µ)
p =

∑
i,µ ∆

(2,µ)
i w

(2)
ip g

′(b
(1,µ)
p ).
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4. XNOR function.

3w =

1 1 1
1 1 1
1 1 1

+

 1 1 −1
1 1 −1
−1 −1 1

 (25)

+

 1 −1 −1
−1 1 1
−1 1 1

+

 1 −1 1
−1 1 −1
1 −1 1

 (26)

=

4 0 0
0 4 0
0 0 4

 . (27)

The weight matrix is proportional to the identity matrix, and the network
does not recognise the XNOR function.

H = −1

2

∑
wijxixj, (28)

= −1

2

4

3

∑
δijxixj (29)

= −2

3

∑
i

x2i (30)

= −2

3
3 (31)

= −2. (32)

Thus the energy function is always constant and the network cannot learn.
Further, even using the modified Hopfield rule in this case would not work,
because the weight matrix would just be 0 and the energy would always be
0 as well.
Storing only 3 out of the 4 patterns makes the network linearly separable
instead of linearly separable. Thus, now the network can recognise patterns.
5. Gradient descent and momentum
Consider the given energy function H as a function of weight w as shown in
Fig. 2. Use the following gradient descent update rule,

δwn+1 = −η∂H
∂w

+ α δwn. (33)

Assume that the system is initially at point A, and that ηs = 1/2. The slope
of the segment AB in Fig. 2 is −s and the slope of the segment BC is 0.
The system starts at time step 1, and assume that δw0 = 0.

1. Find the number of time steps required to travel from point A to point
B for α = 0.
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2. Repeat the previous calculation for the case α = 1/2, and graphically
find the solution of the final equation you obtain.

3. Indicate the results of the previous two parts on the same graph. Which
of the two cases: α = 0 and α = 1/2 converges faster?

4. What is the fate of the two systems α = 0 and α = 1/2 once they cross
point B?

L

H

w

M

A

B C

slope=−s

Figure 1: Energy as a function of weight for problem: Gradient descent and
momentum.

Solution: 1 and 2: We calculate the total change in weight at time step
n,∆wn =

∑n
i=1 δwi, equate ∆wn to L and solve for n. Proceed by solving

for δwn. Iterating the equation for δw we find,

δwi+1 =
i∑

j=0

ηs αj + αi+1δw0, (34)

= ηs
1− αi+1

1− α
. (35)

Next compute ∆wn,
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∆wn =
n∑
i=1

δwi, (36)

= ηs

n∑
i=1

1− αi+1

1− α
, (37)

=
ηs

1− α

(
n− α1− αn

1− α

)
. (38)

Thus using ηs = 1/2 we obtain, for α = 0, ∆wn(α = 0) = n/2, and for
α = 1/2, ∆wn(α = 1/2) = n− 1 + 2−m. Equating ∆w = L we obtain,

nα=0 = 2L, (39)

nα=1/2 − 1 + 2−nα=1/2 = L. (40)

graphing the above equations, we see that nα=1/2 < nα=0, thus, α = 1/2
converges faster.

f(n) = L+ 1− n

f(n) = 2−n

f(n)

n nα=0
nα=1/2

Figure 2: Graphical solution of problem : gradient descent and momentum.

After crossing point B, δw(α = 0) = 0 so that this system stays stationary,
however δwα=1/2 > 0 so that this system keeps on moving.
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6. Linear activation function
a)

∂H

∂wi
=

∂

∂wi

1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
(41)

=

p∑
µ=1

(
O(µ) − t(µ)

) ∂O(µ)

∂wi
(42)

=

p∑
µ=1

(
O(µ) − t(µ)

)
x
(µ)
i (43)

=

p∑
µ=1

(
N∑
j=1

wjx
(µ)
j − θ − t(µ)

)
x
(µ)
i (44)

=
N∑
j=1

p∑
µ=1

wjx
(µ)
j xµi − θ

p∑
µ=1

xµi −
p∑

µ=1

t(µ)xµi (45)

=
N∑
j=1

wj

p∑
µ=1

x
(µ)
j xµi − θ

p∑
µ=1

xµi −
p∑

µ=1

t(µ)xµi (46)

=
N∑
j=1

wjpGji − θpβi − pαi (47)

=p

(
N∑
j=1

Gijwj − θβi − αi

)
(48)

(49)

∂H

∂wi
= 0⇒ Gw = α+ θβ (50)
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∂H

∂θ
=
∂

∂θ

1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
(51)

=

p∑
µ=1

(
O(µ) − t(µ)

) ∂O(µ)

∂θ
(52)

=

p∑
µ=1

(
O(µ) − t(µ)

)
(−1) (53)

=

p∑
µ=1

(
N∑
j=1

wjx
(µ)
j − θ − t(µ)

)
(−1) (54)

=−
p∑

µ=1

N∑
j=1

wjx
(µ)
j +

p∑
µ=1

θ +

p∑
µ=1

t(µ) (55)

=− p
N∑
j=1

wjβj + pθ + pc (56)

(57)

∂H

∂θ
= 0⇒ wTβ = θ + γ. (58)

b) The first equation gives:

w = G−1α+ θG−1β. (59)

Insert into the second, and use that wTβ = βTw:

βT
[
G−1α+ θG−1β

]
= θ + γ (60)

⇒ βTG−1α+ θβTG−1β = θ + γ (61)

⇒ θ
[
βTG−1β − 1

]
= γ − βTG−1α (62)

⇒ θ =
γ − βTG−1α
βTG−1β − 1

. (63)

c) The equation can be written as

V (µ,`) = WV (µ,`−2) −Θ, (64)

where

W = w(`)w(`−1), (65)

and

Θ = w(l)θ(`−1) + θ(`). (66)

The two layers can therefore be collapsed into one single layer, and with a
linear activation function in all layers the whole perceptron collapses into
a simple perceptron with linear activation function. Such a perceptron can
only solve linearly separable problems.
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