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1. Convolutional network. Construct a convolutional neural network with one convolution layer
with a single 2 × 2 kernel with ReLU neurons, stride (1,1), and padding (0,0). This is followed
by a 2× 3 max-pooling layer with stride (1,1), and a fully connected classification layer with two
output neurons and a signum (sgn) activation function to classify the patterns shown in Figure 1.
Specify the weights of the kernel as well as weights and thresholds of the classification layer. 2p.

Figure 1: Patterns to be classified by convolutional network. Question 1.
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Figure 2: Bars-and-stripes ensemble, � corresponds to x = 1, and � to x = 0. Question 2.

2. Boltzmann machine. Boltzmann machines approximate a binary data distribution Pdata(x)
in terms a model distribution, the Boltzmann distribution.
(a) Without hidden units, the Boltzmann distribution reads PB(s) = Z−1 exp(−βH) with energy
function H = − 1

2

∑
i6=j wijsisj . A measure for how well PB approximates Pdata is the Kullback-

Leibler divergence

DKL =

p∑
µ=1

Pdata(x(µ)) log[Pdata(x(µ))/PB(s = x(µ))] . (1)

In the sum over µ, terms with Pdata(x(µ))= 0 are set to zero. Show that DKL is non-negative, and
that it assumes its global minimum DKL = 0 for Pdata(x(µ)) = PB(s = x(µ)).
(b) Explain why one needs hidden units to approximate the bars-and-stripes distribution, where
Pdata = 1/14 for the patterns shown in Figure 2, and equal to zero otherwise. 2p.

3. Linearly inseparable classification problem. A classification problem is given in Figure 3.
Inputs x(µ) inside the gray triangle have targets t(µ) = 1, inputs outside the triangle t(µ) = −1. The

problem can be solved by a perceptron with one hidden layer with three neurons V
(µ)
j = sgn

(
−θj+∑2

k=1 wjkx
(µ)
k

)
, for j = 1,2,3. The network output is computed as O(µ) = sgn(−Θ+

∑3
j=1WjV

(µ)
j ).

Find weights wjk, Wj and thresholds θj , Θ that solve the classification problem. 2p.

Figure 3: Classification problem. Question 3.
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4. Backpropagation. Figure 4 shows a chain of neurons with residual connections. (a) Using
the energy function H = 1

2 (t− V (L))2, show that the learning rule for w(L,L−1) is

δw(L,L−1) ≡ −η ∂H

∂w(L,L−1)
= η (t− V (L))g′(b(L))V (L−1). (2)

Here b(`) is the local field of neuron V (`), g(b) is its activation function, and g′(b) is the derivative
of g with respect to b. (b) Compute the learning rules for w(L−1,L−2) and w(L−2,L−3). 2p.

Figure 4: Chain of neurons with residual connections. Question 4.

5. Binary stochastic neurons have the asynchronous update rule

s′m =

{
+1 with probability p(bm) ,

−1 with probability 1− p(bm) .
(3)

Here, bm =
∑
j wmjsj−θm is the local field, and p(b) = 1

1+e−2βb . Under certain conditions, Eq. (3)
is equivalent to the following rule. Change sm to s′m with probability

Prob(sm → s′m) =
1

1 + eβ∆Hm
, (4a)

with
∆Hm = H(. . . ,s′m, . . .)−H(. . . ,sm, . . .) . (4b)

with energy function H = − 1
2

∑
ij wijsisj +

∑
i θisi.

(a) Assuming that the weight matrix is symmetric and that its diagonal elements are zero, show
that:

∆Hm = −bm(s′m − sm). (5)

(b) Using Eq. (5), derive Eq. (4) from Eq. (3). 2p.

6. Oja’s rule for a linear neuron with weight vector w, input x, and output y = wTx reads
δw = ηy(x−yw). Show that for zero-mean data, 〈x〉 = 0, this learning rule has a steady state w∗

equal to the leading normalised eigenvector of the matrix 〈xxT〉. The leading eigenvector is the
one corresponding to the largest eigenvalue, and the average 〈· · · 〉 is over the data distribution of
inputs x. 2p.
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