CHALMERS, GÖTEBORGS UNIVERSITET

EXAM for
ARTIFICIAL NEURAL NETWORKS
COURSE CODES: FFR 135, FIM 720 GU, PhD

Time:	October 25, 2021, at $08^{30}-12^{30}$
Place:	Lindholmen-salar
Teachers:	Bernhard Mehlig, 073-420 0988 (mobile)
	Anshuman Dubey, 072-190 6469 (mobile)
Allowed material:	Mathematics Handbook for Science and Engineering
Not allowed:	Any other written material, calculator

Maximum score on this exam: 12 points.
Maximum score for homework problems: 12 points.
To pass the course it is necessary to score at least 5 points on this written exam.
CTH >13.5 passed; >17 grade $4 ;>21.5$ grade 5 ,
GU $\quad>13.5$ grade $\mathrm{G} ;>19.5$ grade VG.

1. Convolutional network. Construct a convolutional neural network with one convolution layer with a single 2×2 kernel with ReLU neurons, stride (1,1), and padding (0,0). This is followed by a 2×3 max-pooling layer with stride (1,1), and a fully connected classification layer with two output neurons and a signum (sgn) activation function to classify the patterns shown in Figure 1. Specify the weights of the kernel as well as weights and thresholds of the classification layer. $\mathbf{2 p}$.

Figure 1: Patterns to be classified by convolutional network. Question 1.

Figure 2: Bars-and-stripes ensemble, \square corresponds to $x=1$, and \square to $x=0$. Question 2 .
2. Boltzmann machine. Boltzmann machines approximate a binary data distribution $P_{\text {data }}(\boldsymbol{x})$ in terms a model distribution, the Boltzmann distribution.
(a) Without hidden units, the Boltzmann distribution reads $P_{\mathrm{B}}(s)=Z^{-1} \exp (-\beta H)$ with energy function $H=-\frac{1}{2} \sum_{i \neq j} w_{i j} s_{i} s_{j}$. A measure for how well P_{B} approximates $P_{\text {data }}$ is the KullbackLeibler divergence

$$
\begin{equation*}
D_{\mathrm{KL}}=\sum_{\mu=1}^{p} P_{\mathrm{data}}\left(\boldsymbol{x}^{(\mu)}\right) \log \left[P_{\mathrm{data}}\left(\boldsymbol{x}^{(\mu)}\right) / P_{\mathrm{B}}\left(\boldsymbol{s}=\boldsymbol{x}^{(\mu)}\right)\right] . \tag{1}
\end{equation*}
$$

In the sum over μ, terms with $P_{\text {data }}\left(\boldsymbol{x}^{(\mu)}\right)=0$ are set to zero. Show that D_{KL} is non-negative, and that it assumes its global minimum $D_{\mathrm{KL}}=0$ for $P_{\text {data }}\left(\boldsymbol{x}^{(\mu)}\right)=P_{\mathrm{B}}\left(\boldsymbol{s}=\boldsymbol{x}^{(\mu)}\right)$.
(b) Explain why one needs hidden units to approximate the bars-and-stripes distribution, where $P_{\text {data }}=1 / 14$ for the patterns shown in Figure 2, and equal to zero otherwise. 2p.
3. Linearly inseparable classification problem. A classification problem is given in Figure 3. Inputs $\boldsymbol{x}^{(\mu)}$ inside the gray triangle have targets $t^{(\mu)}=1$, inputs outside the triangle $t^{(\mu)}=-1$. The problem can be solved by a perceptron with one hidden layer with three neurons $V_{j}^{(\mu)}=\operatorname{sgn}\left(-\theta_{j}+\right.$ $\left.\sum_{k=1}^{2} w_{j k} x_{k}^{(\mu)}\right)$, for $j=1,2,3$. The network output is computed as $O^{(\mu)}=\operatorname{sgn}\left(-\Theta+\sum_{j=1}^{3} W_{j} V_{j}^{(\mu)}\right)$. Find weights $w_{j k}, W_{j}$ and thresholds θ_{j}, Θ that solve the classification problem. 2p.

Figure 3: Classification problem. Question 3.
4. Backpropagation. Figure 4 shows a chain of neurons with residual connections. (a) Using the energy function $H=\frac{1}{2}\left(t-V^{(L)}\right)^{2}$, show that the learning rule for $w^{(L, L-1)}$ is

$$
\begin{equation*}
\delta w^{(L, L-1)} \equiv-\eta \frac{\partial H}{\partial w^{(L, L-1)}}=\eta\left(t-V^{(L)}\right) g^{\prime}\left(b^{(L)}\right) V^{(L-1)} \tag{2}
\end{equation*}
$$

Here $b^{(\ell)}$ is the local field of neuron $V^{(\ell)}, g(b)$ is its activation function, and $g^{\prime}(b)$ is the derivative of g with respect to b. (b) Compute the learning rules for $w^{(L-1, L-2)}$ and $w^{(L-2, L-3)} . \mathbf{2 p}$.

Figure 4: Chain of neurons with residual connections. Question 4.
5. Binary stochastic neurons have the asynchronous update rule

$$
s_{m}^{\prime}=\left\{\begin{array}{lll}
+1 & \text { with probability } & p\left(b_{m}\right) \tag{3}\\
-1 & \text { with probability } & 1-p\left(b_{m}\right)
\end{array}\right.
$$

Here, $b_{m}=\sum_{j} w_{m j} s_{j}-\theta_{m}$ is the local field, and $p(b)=\frac{1}{1+\mathrm{e}^{-2 \beta b}}$. Under certain conditions, Eq. (3) is equivalent to the following rule. Change s_{m} to s_{m}^{\prime} with probability

$$
\begin{equation*}
\operatorname{Prob}\left(s_{m} \rightarrow s_{m}^{\prime}\right)=\frac{1}{1+e^{\beta \Delta H_{m}}} \tag{4a}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta H_{m}=H\left(\ldots, s_{m}^{\prime}, \ldots\right)-H\left(\ldots, s_{m}, \ldots\right) . \tag{4b}
\end{equation*}
$$

with energy function $H=-\frac{1}{2} \sum_{i j} w_{i j} s_{i} s_{j}+\sum_{i} \theta_{i} s_{i}$.
(a) Assuming that the weight matrix is symmetric and that its diagonal elements are zero, show that:

$$
\begin{equation*}
\Delta H_{m}=-b_{m}\left(s_{m}^{\prime}-s_{m}\right) \tag{5}
\end{equation*}
$$

(b) Using Eq. (5), derive Eq. (4) from Eq. (3). 2p.
6. Oja's rule for a linear neuron with weight vector \boldsymbol{w}, input \boldsymbol{x}, and output $y=\boldsymbol{w}^{\top} \boldsymbol{x}$ reads $\delta \boldsymbol{w}=\eta y(\boldsymbol{x}-y \boldsymbol{w})$. Show that for zero-mean data, $\langle\boldsymbol{x}\rangle=0$, this learning rule has a steady state \boldsymbol{w}^{*} equal to the leading normalised eigenvector of the matrix $\left\langle\boldsymbol{x} \boldsymbol{x}^{\boldsymbol{\top}}\right\rangle$. The leading eigenvector is the one corresponding to the largest eigenvalue, and the average $\langle\cdots\rangle$ is over the data distribution of inputs \boldsymbol{x}. 2p.

