CHALMERS, GOTEBORGS UNIVERSITET

EXAM for
ARTIFICIAL NEURAL NETWORKS

COURSE CODES: FFR 135, FIM 720 GU, PhD

Time: October 25, 2021, at 0830 — 1230
Place: Lindholmen-salar
Teachers: Bernhard Mehlig, 073-420 0988 (mobile)
Anshuman Dubey, 072-190 6469 (mobile)
Allowed material: Mathematics Handbook for Science and Engineering
Not allowed: Any other written material, calculator

Maximum score on this exam: 12 points.

Maximum score for homework problems: 12 points.

To pass the course it is necessary to score at least 5 points on this written exam.
CTH >13.5 passed; >17 grade 4; >21.5 grade 5,

GU >13.5 grade G; > 19.5 grade VG.

1. Convolutional network. Construct a convolutional neural network with one convolution layer
with a single 2 x 2 kernel with ReLLU neurons, stride (1,1), and padding (0,0). This is followed
by a 2 x 3 max-pooling layer with stride (1,1), and a fully connected classification layer with two
output neurons and a signum (sgn) activation function to classify the patterns shown in Figure 1.
Specify the weights of the kernel as well as weights and thresholds of the classification layer. 2p.
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Figure 1: Patterns to be classified by convolutional network. Question 1.
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Figure 2: Bars-and-stripes ensemble, B corresponds to z = 1, and [ to x = 0. Question 2.
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2. Boltzmann machine. Boltzmann machines approximate a binary data distribution Pyata ()
in terms a model distribution, the Boltzmann distribution.

(a) Without hidden units, the Boltzmann distribution reads Pg(s) = Z~ ! exp(—(H) with energy
function H = f% Zl 2 WijSiSj. A measure for how well Pg approximates Pqata is the Kullback-
Leibler divergence

Dxr =Y Paata(®")10g[Paata (@) / Py (s = )] (1)

p=1

In the sum over u, terms with Pdata(w(“))z 0 are set to zero. Show that Dgp, is non-negative, and
that it assumes its global minimum Dgy, = 0 for Pdata(:c(“)) = Pp(s = ac(“)).

(b) Explain why one needs hidden units to approximate the bars-and-stripes distribution, where
Pyata = 1/14 for the patterns shown in Figure 2, and equal to zero otherwise. 2p.

3. Linearly inseparable classification problem. A classification problem is given in Figure 3.
Inputs (*) inside the gray triangle have targets t(*) = 1, inputs outside the triangle t(*) = —1. The

problem can be solved by a perceptron with one hidden layer with three neurons Vj(“) =sgn(—6;+
Zi:l wjsz”)), for j = 1,2,3. The network output is computed as O = Sgn(*@*FZ?:l WjVj(“)).
Find weights w;;, W; and thresholds 6;, © that solve the classification problem. 2p.
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Figure 3: Classification problem. Question 3.



4. Backpropagation. Figure 4 shows a chain of neurons with residual connections. (a) Using
the energy function H = %(t — V(L))27 show that the learning rule for w(*L=1) ig

(L,L-1) = OH

ow " TL=1)

— n(t = V(D)g (BB ED, (2)

Here b is the local field of neuron V), g(b) is its activation function, and ¢'(b) is the derivative
of g with respect to b. (b) Compute the learning rules for w(*=1L=2) and w(k=2L-3), 2p.
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Figure 4: Chain of neurons with residual connections. Question 4.

5. Binary stochastic neurons have the asynchronous update rule

S

, {+1 with probability  p(by,), (3)

" —1  with probability 1 — p(by,).

Here, by, = 3 Win;8j — O, is the local field, and p(b) = Tl—wb' Under certain conditions, Eq. (3)
is equivalent to the following rule. Change s, to s, with probability

1

Prob(sm — S’/m.) = m s

(4a)
with
AH,, =H(...,s0,,...) — H(...\8m,...). (4b)

with energy function H = —% Zij w;js;S; + y . 08
(a) Assuming that the weight matrix is symmetric and that its diagonal elements are zero, show
that:

AH,, = —by (s, — Sm)- (5)
(b) Using Eq. (5), derive Eq. (4) from Eq. (3). 2p.
6. Oja’s rule for a linear neuron with weight vector w, input «, and output y = w'x reads
dw = ny(x — yw). Show that for zero-mean data, () = 0, this learning rule has a steady state w*
equal to the leading normalised eigenvector of the matrix (xx'). The leading eigenvector is the
one corresponding to the largest eigenvalue, and the average (---) is over the data distribution of
inputs x. 2p.



