CHALMERS, GÖTEBORGS UNIVERSITET

SOLUTIONS FOR EXAM for ARTIFICIAL NEURAL NETWORKS
October 25, 2021
COURSE CODES: FFR 135, FIM 720 GU, PhD

Maximum score on this exam: 12 points.
Maximum score for homework problems: 12 points.
To pass the course it is necessary to score at least 5 points on this written exam.
CTH >13.5 passed; >17 grade $4 ;>21.5$ grade 5 , GU >13.5 grade $\mathrm{G} ;>19.5$ grade VG.

1. Convolutional network.

Convolutional network
Pattern 1

Pattern 2

Arbitrary choice
Kernel

関-1
\square - 0

- Apply kernel to patterns with stride $(1,1)$ and padding $(0,0,0,0)$, using a ReL activation function

Ex.

$$
\left.\begin{array}{|l|l|}
\hline & \leq \\
\hline & 0.1 \\
1.1 & 0.0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Sum the entries of the resulting matrix and apply ReLU activation function: $g(0+0+1+0)=1$

- Resulting convolution layers:

$$
V^{(1)}=\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 0
\end{array}\right), \quad V^{(2)}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

- Apply (2×3) max-pooling lager with stride $(1,1)$

$$
M^{(1)}=\binom{2}{2}, \quad M^{(2)}=\binom{1}{1}
$$

- Fully connected classification layer with signum activation function sign:
Two inputs from max-pooling layer and two output neurons

ω : (2×2) weight matrix
$\theta:(2 \times 1)$ threshold vector

$$
O_{i}^{(\mu)}=\operatorname{sgn}\left(\sum_{j}^{2} \omega_{i j} M^{(\mu)}-\theta_{i}\right), \mu=\text { pattern }
$$

Pattern 1: $\binom{0_{1}^{(1)}}{0_{2}^{(1)}}=\binom{\operatorname{sgn}\left(2 \omega_{11}+2 \omega_{12}-\theta_{1}\right)}{\operatorname{sgn}\left(2 \omega_{21}+2 \omega_{22}-\theta_{2}\right)}$
Pattern 2: $\binom{0_{1}^{(2)}}{0_{2}^{(2)}}=\binom{\operatorname{sgn}\left(\omega_{11}+\omega_{12}-\theta_{1}\right)}{\operatorname{sgn}\left(\omega_{21}+\omega_{22}-\theta_{2}\right)}$
Choose: $\omega=\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$ and $\theta=\binom{3}{-3}$

Pattern 2: $\binom{0_{1}^{(2)}}{0_{2}^{(2)}}=\binom{\operatorname{sgn}(2-3)}{\operatorname{sgn}(-2+3)}=\binom{-1}{1}$
The patterns can be classified using the parameters

$$
w=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right) \text { and } \theta=\binom{3}{-3}
$$

2. Boltzmann machine (a) Start with the KL divergence,

$$
\begin{align*}
D_{K L} & =\sum_{\mu=1}^{p} P_{\text {data }}\left(x^{\mu}\right) \log \frac{P_{\text {data }}\left(x^{\mu}\right)}{P_{B}\left(s=x^{\mu}\right)} \tag{1}\\
& =-\sum_{\mu=1}^{p} P_{\text {data }}\left(x^{\mu}\right) \log \frac{P_{B}\left(s=x^{\mu}\right)}{P_{\text {data }}\left(x^{\mu}\right)} . \tag{2}
\end{align*}
$$

Use the inequality $\log z \leq z-1$, where the equality holds iff $z=1$.

$$
\begin{align*}
-\sum_{\mu=1}^{p} P_{d a t a}\left(x^{\mu}\right) \log \frac{P_{B}\left(s=x^{\mu}\right)}{P_{\text {data }}\left(x^{\mu}\right)} & \geq-\sum_{\mu=1}^{p} P_{\text {data }}\left(x^{\mu}\right)\left[\frac{P_{B}\left(s=x^{\mu}\right)}{P_{\text {data }}\left(x^{\mu}\right)}-1\right] \tag{3}\\
& \geq-\sum_{\mu=1}^{p}\left[P_{B}\left(s=x^{\mu}\right)-P_{\text {data }}\left(x^{\mu}\right)\right] \tag{4}
\end{align*}
$$

Since the probabilities $P_{B}, P_{\text {data }}$ must sum to 1,

$$
\begin{equation*}
-\sum_{\mu=1}^{p} P_{\text {data }}\left(x^{\mu}\right) \log \frac{P_{B}\left(s=x^{\mu}\right)}{P_{\text {data }}\left(x^{\mu}\right)} \geq-[1-1] \geq 0 \tag{5}
\end{equation*}
$$

with the equality valid if and only if $P_{B}\left(s=x^{\mu}\right)=P_{\text {data }}\left(x^{\mu}\right)$.
(b) Hidden units are required because 3-point correlations must be considered to differentiate between bars and stripes.
3. Linearly inseparable classification problem The weights and thresholds for the three neurons can be inferred by writing the equations of the three decision boundaries:

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}\right)=-x_{1}-x_{2}+2=0 \tag{6}\\
& f_{2}\left(x_{1}, x_{2}\right)=x_{1}+0 x_{2}+2=0 \tag{7}\\
& f_{3}\left(x_{1}, x_{2}\right)=0 x_{1}+x_{2}+2=0 \tag{8}
\end{align*}
$$

For each decision boundary, $f_{i}\left(x_{1}, x_{2}\right)=0$ on the boundary, $f_{i}\left(x_{1}, x_{2}\right)>0$ on the side containing the origin, $(0,0)$, and $f_{i}\left(x_{1}, x_{2}\right)<0$ on the other side of the decision boundary. Since $f_{i}(0,0)>0$ for all i, the sign of the coefficients of x_{1}, x_{2} are correct.
Thus,

$$
w=\left[\begin{array}{cc}
-1 & -1 \tag{9}\\
1 & 0 \\
0 & 1
\end{array}\right], \theta=\left[\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right]
$$

Finally, choosing $W=[1,1,1]$ and $\Theta=5 / 2$ maps the region enclosed by the three decision boundaries to +1 but the region outside to -1 .
4. Backpropagation

Backpropagntion
(a) with $H=\frac{1}{2}\left(t-V^{(L)}\right)^{2}$ and $\delta \omega^{(L L-1)}=-\eta \frac{\partial H}{\partial \omega^{(L, L-1)}}$

$$
\begin{aligned}
& \frac{\partial H}{\partial \omega^{(L L L-1)}}=\frac{1}{2} \frac{\partial}{\partial \omega^{(L, L-1)}}\left(t-v^{(L)}\right)^{2}=-\left(t-V^{(L)}\right) \frac{\partial V^{(L)}}{\partial \omega^{(L L L-1)}} \\
&=-\left(t-V^{(L)}\right) \frac{\partial}{\partial \omega^{(L L L-1)}} g\left(b^{(L)}\right) \\
&(*)=-\left(t-v^{(L)}\right) g^{\prime\left(b^{(L)}\right)} \frac{\partial}{\partial \omega^{(L L-1)}}\left(\omega^{(L L-1)} v^{(L-1)}+\omega^{(L L L-2)} v^{(L-2)}-\theta^{(L)}\right) \\
&=-\left(t-v^{(L)}\right) g^{\prime\left(b^{(L)}\right) V^{(L-1)}} \\
& \because S \omega^{(L, L-1)}=\eta\left(t-V^{(L)}\right) g^{\prime\left(b^{(L)}\right) v^{(L-1)}}
\end{aligned}
$$

(b) Performing the same steps up until (*) we have for $\delta \omega^{(L-1, L-2)}$:

$$
\begin{aligned}
& \frac{\partial H}{\partial \omega^{(L-1, L-2)}}=-\left(t-V^{(L)}\right) g^{\prime}\left(b^{(L)}\right) \omega^{(L, L-1)} \frac{\partial V^{(L-1)}}{\partial w^{(L-1, L-2)}} \\
& =-\left(t-v^{(L)}\right) g^{\prime\left(b^{(L)}\right)} \omega^{(L, L-1)} g^{\prime\left(b^{(L-1)}\right) v^{(L-2)}} \\
& \because \delta \omega^{(L-1, L-2)}=\eta\left(t-v^{(L)}\right) g^{\prime}\left(b^{(L)}\right) \omega^{(L L L-1)} g^{\prime}\left(b^{(L-1)}\right) v^{(L-2)}
\end{aligned}
$$

For $\delta w^{(L-2, L-3)}$ we have:

$$
\frac{\partial H}{\partial \omega^{(L-2, L-3)}}=-\left(t-v^{(L)}\right) g^{\prime}\left(b^{(L)}\right) \frac{\partial}{\partial \omega^{(L-2,-3)}\left(\omega^{(L L-1)} v^{(L-1)}+\omega^{(L, L-2)} v^{(L-2)}-\theta^{(L)}\right), ~}
$$

$$
\begin{aligned}
& =-\left(+-v^{(L)}\right) g^{\prime\left(b^{(L)}\right)}\left(\omega^{(L, L-1)} \frac{\partial v^{(L-1)}}{\partial \omega^{(L-2, L-3)}}+\omega^{(L, L-2)} \frac{\partial v^{(L-2)}}{\partial \omega^{(L-2, L-3)}}\right) \\
& \text { - } \frac{\partial V^{(L-1)}}{\partial \omega^{(L-2, L-3)}}=g^{\prime}\left(b^{(L-1)}\right) \omega^{(L-1, L-2)} \frac{\partial V^{(L-2)}}{\partial \omega^{(L-2, L-3)}} \\
& =g^{\prime}\left(b^{(L-1)}\right) \omega^{(L-1, L-2)} g^{\prime}\left(b^{(L-2)}\right) V^{(L-3)} \\
& \text { - } \frac{\partial V^{(L-2)}}{\partial w^{(L-2, L-3)}}=g^{\prime}\left(b^{(L-2)}\right) V^{(L-3)}
\end{aligned}
$$

Thus we have:

$$
\begin{aligned}
& \because \delta \omega^{(L-2, L-3)} \\
&=-\left(t-v^{(L)}\right) g^{\prime}\left(b^{(L)}\right)\left(\omega^{(L, L-1)} g^{\prime\left(b^{(L-1)}\right) \omega^{(L-1, L-2)} g g^{\prime}\left(b^{(L-2)}\right) v^{(L-3)}}\right. \\
&\left.+\omega^{(L, L-2)} g^{\prime}\left(b^{(L-2)}\right) v^{(L-3)}\right)
\end{aligned}
$$

5. Binary stochastic neuron

(a) Assuming only neuron m was updated, $s_{m} \rightarrow s_{m}^{\prime}$ while the other neurons remained in the same state: $s_{i} \rightarrow s_{i}^{\prime}=s_{i} \forall i \neq m$, let us start by writing the energy H :

$$
\begin{aligned}
H & =-\frac{1}{2}\left(\sum_{i \neq m, j \neq m} w_{i j} s_{i} s_{j}+\sum_{i \neq m} w_{i m} s_{i} s_{m}+\sum_{j \neq m} w_{m j} s_{m} s_{j}+w_{m m} s_{m} s_{m}\right) \\
& +\sum_{i \neq m} \theta_{i} s_{i}+\theta_{m} s_{m}
\end{aligned}
$$

Now we use the symmetery of the weights, $w_{m j}=w_{j m}$, and that $w_{m m}=0$,

$$
\begin{equation*}
H=-\frac{1}{2}\left(\sum_{i \neq m, j \neq m} w_{i j} s_{i} s_{j}+2 \sum_{j \neq m} w_{m j} s_{m} s_{j}\right)+\sum_{i \neq m} \theta_{i} s_{i}+\theta_{m} s_{m} \tag{10}
\end{equation*}
$$

Similarly, the updated energy H^{\prime} is,

$$
\begin{aligned}
H^{\prime} & =-\frac{1}{2}\left(\sum_{i \neq m, j \neq m} w_{i j} s_{i} s_{j}+\sum_{i \neq m} w_{i m} s_{i} s_{m}^{\prime}+\sum_{j \neq m} w_{m j} s_{m}^{\prime} s_{j}+w_{m m} s_{m}^{\prime} s_{m}^{\prime}\right) \\
& +\sum_{i \neq m} \theta_{i} s_{i}+\theta_{m} s_{m}^{\prime}
\end{aligned}
$$

where we have used the fact that $s_{i} \rightarrow s_{i}^{\prime}=s_{i} \forall i \neq m$. Now simpify using symmetry of weights and vanishing diagonals,

$$
\begin{equation*}
H^{\prime}=-\frac{1}{2}\left(\sum_{i \neq m, j \neq m} w_{i j} s_{i} s_{j}+2 \sum_{j \neq m} w_{m j} s_{m}^{\prime} s_{j}\right)+\sum_{i \neq m} \theta_{i} s_{i}+\theta_{m} s_{m}^{\prime} \tag{11}
\end{equation*}
$$

Subtracting Eq. (10) from (11),

$$
\begin{equation*}
\Delta H=-\left(s_{m}^{\prime}-s_{m}\right)\left(\sum_{j \neq m} w_{m j} s_{j}-\theta_{m}\right)=-b_{m}\left(s_{m}^{\prime}-s_{m}\right) \tag{12}
\end{equation*}
$$

where $w_{m m}=0$ is used again in the last equality to write $\sum_{j \neq m} w_{m j} s_{j}-\theta_{m}=$ $\sum_{j} w_{m j} s_{j}-\theta_{m}=b_{m}$.
(b) Here one needs to consider different cases and show that Equation (3) in the exam is always equivalent to Equation (4a) in the exam.
Case 1: $s_{m}^{\prime}=1, s_{m}=-1$
Equation (4a) gives:

$$
P(-1 \rightarrow 1)=\frac{1}{1+e^{\beta \Delta H_{m}}}=\frac{1}{1+e^{-2 \beta b_{m}}}
$$

Equation (3) gives: $s_{m}^{\prime}=1$ with probability

$$
p\left(b_{m}\right)=\frac{1}{1+e^{-2 \beta b_{m}}}
$$

Case 2: $s_{m}^{\prime}=-1, s_{m}=-1$.
Equation (4a): Use conservation of probability, $P(-1 \rightarrow 1)+P(-1 \rightarrow-1)=$ $1 \Longrightarrow P(-1 \rightarrow-1)=1-P(-1 \rightarrow 1)$,

$$
P(-1 \rightarrow-1)=1-\frac{1}{1+e^{-2 \beta b_{m}}}=\frac{1}{1+e^{2 \beta b_{m}}}
$$

Equation (3) gives: $s_{m}^{\prime}=-1$ with probability

$$
1-p\left(b_{m}\right)=1-\frac{1}{1+e^{-2 \beta b_{m}}}=\frac{1}{1+e^{2 \beta b_{m}}}
$$

Case 3: $s_{m}^{\prime}=-1, s_{m}=1$
Equation (4a) gives:

$$
P(1 \rightarrow-1)=\frac{1}{1+e^{\beta \Delta H_{m}}}=\frac{1}{1+e^{2 \beta b_{m}}}
$$

Equation (3) gives: $s_{m}^{\prime}=-1$ with probability

$$
1-p\left(b_{m}\right)=\frac{1}{1+e^{2 \beta b_{m}}}
$$

Case 4: $s_{m}^{\prime}=1, s_{m}=1$ Equation (4a): Use conservation of probability, $P(1 \rightarrow-1)+P(1 \rightarrow 1)=1 \Longrightarrow P(1 \rightarrow 1)=1-P(1 \rightarrow-1)$,

$$
P(1 \rightarrow 1)=1-\frac{1}{1+e^{2 \beta b_{m}}}=\frac{1}{1+e^{-2 \beta b_{m}}}
$$

Equation (3) gives: $s_{m}^{\prime}=1$ with probability

$$
p\left(b_{m}\right)=\frac{1}{1+e^{-2 \beta b_{m}}}
$$

Thus, we have shown that in all 4 possible cases, the two update rules are equivalent.

6. Oja's rule

(a) We start with the given learning rule:

$$
\begin{aligned}
\delta \boldsymbol{w} & =\eta y(\boldsymbol{x}-y \boldsymbol{w}) \\
& =\eta\left(\boldsymbol{x} y-y^{2} \boldsymbol{w}\right), \\
& =\eta\left[\boldsymbol{x} \boldsymbol{x}^{\top} \boldsymbol{w}-\left(\boldsymbol{w}^{\top} \boldsymbol{x} \boldsymbol{x}^{\top} \boldsymbol{w}\right) \boldsymbol{w}\right],
\end{aligned}
$$

Where for the first time we have written $y=\boldsymbol{w}^{\top} \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{w}$, while for the second term: $y^{2}=y y=\boldsymbol{w}^{\top} \boldsymbol{x} \boldsymbol{x}^{\top} \boldsymbol{w}$. Now avergaing $\delta \boldsymbol{w}$ over the data distribution,

$$
\langle\delta \boldsymbol{w}\rangle=\eta\left[\left\langle\boldsymbol{x} \boldsymbol{x}^{\boldsymbol{\top}}\right\rangle \boldsymbol{w}-\left(\boldsymbol{w}^{\boldsymbol{\top}}\left\langle\boldsymbol{x} \boldsymbol{x}^{\boldsymbol{\top}}\right\rangle \boldsymbol{w}\right) \boldsymbol{w}\right] .
$$

Let $\mathbb{C} \equiv\left\langle\boldsymbol{x} \boldsymbol{x}^{\top}\right\rangle$, then the above equation reads,

$$
\langle\delta \boldsymbol{w}\rangle=\eta\left[\mathbb{C} \boldsymbol{w}-\left(\boldsymbol{w}^{\top} \mathbb{C} \boldsymbol{w}\right) \boldsymbol{w}\right] .
$$

Assume that $\boldsymbol{w}=\boldsymbol{w}^{*}$ is the normalized maximal eigenvector of the matrix \mathbb{C}. That is, $\mathbb{C} \boldsymbol{w}^{*}=\lambda_{1} \boldsymbol{w}^{*}$ where $\boldsymbol{w}^{* T} \boldsymbol{w}=1$ and λ_{1} is the maximal eigenvalue. We obtain,

$$
\begin{aligned}
\langle\delta \boldsymbol{w}\rangle & =\eta\left[\mathbb{C} \boldsymbol{w}^{*}-\left(\boldsymbol{w}^{* \mathrm{~T}} \mathbb{C} \boldsymbol{w}^{*}\right) \boldsymbol{w}^{*}\right], \\
& =\eta\left[\lambda_{1} \boldsymbol{w}^{*}-\lambda_{1}\left(\boldsymbol{w}^{* \top} \boldsymbol{w}^{*}\right) \boldsymbol{w}^{*}\right], \\
& =\eta\left[\lambda_{1} \boldsymbol{w}^{*}-\lambda_{1} \boldsymbol{w}^{*}\right], \\
& =0 .
\end{aligned}
$$

Thus we have shown that the normalized maximal eigenvector \boldsymbol{w}^{*} of \mathbb{C} is a steady state of the given learning rule.

