Assignment 1: Probability & structural causal models

Published

∕<u>∖ Edit</u>

Instructions

All the problems in this assignment should be solved and handed in **individually**. You should be prepared to answer questions about your solutions yourself. The full set of solutions should be submitted as a single PDF document in Canvas. If you don't have Canvas access, submit your solution as a pdf in an email to the examiner. Feel free to use any software of your choosing for preparing illustrations and drawings.

Problem 1 [Probability]:

You are suspecting that the grades awarded to assignments in Calculus 101 depend on how long before the deadline they were handed in. To test this hypothesis, you collect *m* samples $(x_1, y_1), \ldots, (x_m, y_m)$ of times *X* (in minutes before deadline) and grades *Y* (0-100). You fit a linear regression model of *y* onto *x* and find that the slope is 0.

Q 1: Can you conclude that X and Y are independent? Why/why not? What assumptions have you made? Are there additional assumptions that could change your conclusion? Which?

Problem 2 [Probabilistic graphical models]:

Q 2: Draw *the set of* DAGs with d-connections corresponding *exactly* to (only) the independencies:

a) $A \perp C \mid B$, for variables A, B, C

b) $A \perp C$, $A \perp D \mid B$, $C \perp D \mid B$, for variables A, B, C, D

c) $C \perp B$, $A \perp D$, $C \perp D \mid A$, for variables A, B, C, D

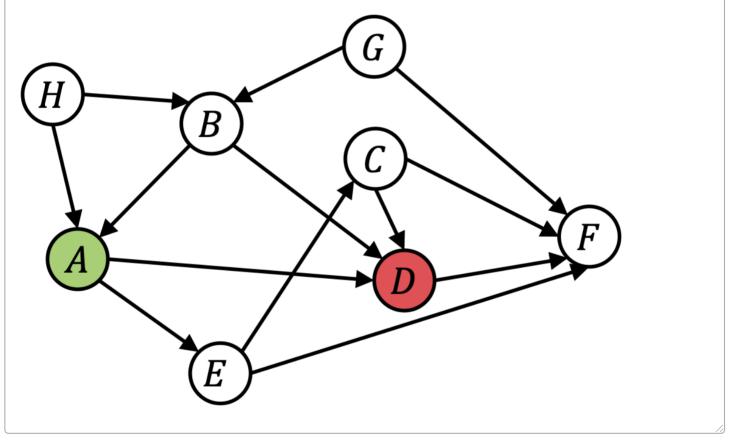
Problem 3 [Structural causal models]:

Q 3: Consider the following set of structural equations with noise variables $U_{(\cdot)}$, all distributed according to a standard Normal distribution N(0, 1)

 $A = 3U_A$ $B = 3C + U_B$ $C = U_C$ $D = 5B + A + U_D$

https://chalmers.instructure.com/courses/14968/assignments/42909

a) Draw the corresponding DAG


b) Draw the mutilated graphs following the interventions

$$\circ do (B = b)$$

$$\circ do (B = C^2 + U_B)$$

c) Compute $\mathbb{E}[D \mid do(C = 2)]$

Problem 4 [Backdoor criterion]:

Q 4: Consider the DAG below. Give *two* valid adjustment sets for identifying the effect of intervening on *A* on *D*, that is, p(D|do(A = a)). *Hint: Use the backdoor criterion.* Are there smaller adjustment sets?

Points	20
Submitting	a file upload
File types	pdf

Due	For	Available from	Until
17 Sep	Everyone	-	-

+ Rubric