Exercise: ATE (solution)

Since we know that X is an adjustment set, we can identify the effect of T on Y by conditioning on X. Technically, we also need to assume consistency.

By the adjustment formula, we have that

$$
\mathrm{ATE}=\mathbb{E}_{X}\left[\mathbb{E}_{Y}[Y \mid X, T=1]-\mathbb{E}_{Y}[Y \mid X, T=1]\right]
$$

and

$$
\operatorname{CATE}(\mathrm{x})=\mathbb{E}_{Y}[Y \mid X=x, T=1]-\mathbb{E}_{Y}[Y \mid X=x, T=1]
$$

Since both are functions of $\mu_{t}(x)=\mathbb{E}_{Y}[Y \mid X=x, T=t]$, we estimate this function.
By definition, for this example, since $y \in\{0,1\}$

$$
\mu_{t}(x)=\sum_{y} p(Y=y \mid X=x, T=t) y=p(Y=1 \mid X=x, T=t)
$$

From the tables, we get

$$
\begin{aligned}
& \mu_{0}(0)=\frac{40}{90+40}=\frac{4}{13} \\
& \mu_{0}(1)=\frac{100}{50+100}=\frac{2}{3} \\
& \mu_{1}(0)=\frac{10}{10+10}=\frac{1}{2} \\
& \mu_{1}(1)=\frac{50}{100+50}=\frac{1}{3}
\end{aligned}
$$

$T=0$		
	$X=0$	$X=1$
$Y=0$	90	50
$Y=1$	40	100

$T=1$

	$X=0$	$X=1$
$Y=0$	10	100
$Y=1$	10	50

Thus, we have

$$
\begin{aligned}
& \operatorname{CATE}(0)=\frac{1}{2}-\frac{4}{13}=\frac{5}{26} \\
& \operatorname{CATE}(1)=\frac{1}{3}-\frac{2}{3}=-\frac{1}{3}
\end{aligned}
$$

For the ATE, we have ATE $=p(X=0) \operatorname{CATE}(0)+p(X=1) \operatorname{CATE}(1)$. From the table, we have that

$$
p(X=0)=\frac{90+40+10+10}{90+40+10+10+50+100+100+50}=\frac{1}{3}
$$

and thus $p(X=1)=\frac{2}{3}$.
Hence,

$$
\mathrm{ATE}=\frac{1}{3} \cdot \frac{5}{26}-\frac{2}{3} \cdot \frac{1}{3}=-\frac{37}{234} \approx-0.158
$$

