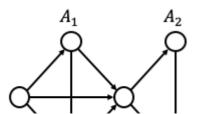
Assignment 3: Policy evaluation

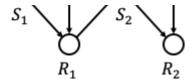
Instructions

All the problems in this assignment should be solved and handed in **individually**. You should be prepared to answer questions about your solutions yourself. The full set of solutions should be submitted as a single PDF document in Canvas. Feel free to use any software of your choosing (or pen and paper) for preparing illustrations and drawings.

Problem 1

Consider the SCM below on the variables


- $Age = U_A$, where $U_A \sim Uniform(\{18, \ldots, 66\})$ (integer valued)
- $Employed = U_E$, where $U_E \sim Bernoulli(0.8)$
- $Salary = Employed * [(Age 18) * 1000 + 15000 + U_S]$, where $U_S \sim U(\{-5000, ..., 10000\})$ (integer valued)
- Support = 0
- Income = Salary + Support


What is the *value*, in terms of Income, of the policy π for distributing financial Support, defined below?

$$\pi = \begin{cases} Support = 5000, & \text{if } Age < 25\\ Support = 10000, & \text{if } 25 \le Age < 35 \text{ and } unemployed\\ Support = 2000, & \text{if } 25 \le Age < 35 \text{ and } employed\\ Support = 0, & \text{if } Age \ge 35 \end{cases}$$

Problem 2

Consider the causal graph representing a Markov decision process (MDP) below.

Now, assume that you could access samples from the distribution p_{μ} defined by the policy μ with

$$p_{\mu}(S_1, A_1, R_1, S_2, A_2, R_2) = p(S_1) p_{\mu}(A_1 \mid S_1) p(R_1 \mid S_1, A_1) p(S_2 \mid S_1, A_1, R_1) p_{\mu}$$

Consider evaluating a new policy π with action probabilities p_{π} ($A_t \mid S_t$) under the same transition and reward probabilities as above (i.e., same conditional distributions for states and rewards).

Recall that $V(\pi)$ is defined as the expected sum of rewards under $p_{\pi}(S_1, A_1, R_1, S_2, A_2, R_2)$, that is $\mathbb{E}_{\pi}[R_1 + R_2]$.

- A) Identify (derive) a statistical estimand of the value $V(\pi)$ that uses importance weighting (or inverse-propensity weighting), derived as expectation over the distribution p_u
- B) Propose a finite-sample estimator of your estimand which makes use of samples from p_u .

Problem 3

In the sessions on off-policy evaluation, we argued that a difficulty with off-policy evaluation of sequential decision-making policies was to find enough samples that follow the proposed policy in data. We expand on this argument in the technical report Evaluating Reinforcement
Learning Algorithms in Observational Health Settings
Read Chapters 1-5 (at least) of this paper and briefly summarize the main findings of chapter 5 (~1/2 page)

Points 20

Submitting a file upload

File types pdf

Due	For	Available from	Until
15 Oct	Everyone	-	-

+ Rubric