
11

The ABC of Software Engineering Research

KLAAS-JAN STOL, University College Cork and Lero—the Irish Software Research Centre, Ireland

BRIAN FITZGERALD, University of Limerick and Lero—the Irish Software Research Centre, Ireland

A variety of research methods and techniques are available to SE researchers, and while several overviews
exist, there is consistency neither in the research methods covered nor in the terminology used. Furthermore,
research is sometimes critically reviewed for characteristics inherent to the methods. We adopt a taxonomy
from the social sciences, termed here the ABC framework for SE research, which offers a holistic view of eight
archetypal research strategies. ABC refers to the research goal that strives for generalizability over Actors
(A) and precise measurement of their Behavior (B), in a realistic Context (C). The ABC framework uses two
dimensions widely considered to be key in research design: the level of obtrusiveness of the research and
the generalizability of research findings. We discuss metaphors for each strategy and their inherent limita-
tions and potential strengths. We illustrate these research strategies in two key SE domains, global software
engineering and requirements engineering, and apply the framework on a sample of 75 articles. Finally, we
discuss six ways in which the framework can advance SE research.

CCS Concepts: • General and reference → Surveys and overviews; General literature; Empirical studies;

Additional Key Words and Phrases: Research methodology, research strategy

ACM Reference format:

Klaas-Jan Stol and Brian Fitzgerald. 2018. The ABC of Software Engineering Research. ACM Trans. Softw. Eng.

Methodol. 27, 3, Article 11 (September 2018), 51 pages.
https://doi.org/10.1145/3241743

1 INTRODUCTION

The proper place to study elephants
is the jungle, not the zoo.1

The proper place to study bacteria
is the laboratory, not the jungle.2

1Ephraim R. McLean, comment on a paper by Richard van Horn [135].
2Remark by Keng-Leng Siau at a conference.

This work was supported, in part, by Science Foundation Ireland grant 15/SIRG/3293 and 13/RC/2094 and cofunded under
the European Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero—the
Irish Software Research Centre (http://www.lero.ie).
Authors’ addresses: K.-J. Stol, School of Computer Science and Information Technology, Western Gateway Building, Univer-
sity College Cork, Western Road, Cork, Lero—the Irish Software Research Centre; B. Fitzgerald, Lero—the Irish Software
Research Centre, Tierney Building, Department of Computer Science and Information Systems, University of Limerick,
Limerick.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM
1049-331X/2018/09-ART11 $15.00
https://doi.org/10.1145/3241743

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

https://doi.org/10.1145/3241743
http://www.lero.ie
mailto:permissions@acm.org
https://doi.org/10.1145/3241743

11:2 K.-J. Stol and B. Fitzgerald

The choice of research strategy is not “good” or “bad” a priori but is very much dependent on the
setting and goal of the research. A biologist may be interested in studying the behavior of elephants
in groups, for example, in which case a visit to the jungle is warranted, with a considerable lack of
control of variables (and the elephant’s behavior) as an inherent consequence. On the other hand,
a researcher may be interested in studying parts of an elephant, such as the structure of its skin,
in which the continuous and immediate access that a zoo offers is more appropriate. Besides ease
of access, the zoo environment offers a potentially higher degree of control of measurement of the
variables that a researcher might be interested in. However, this comes at the inherent cost of a
less realistic context.

Research methodology has received considerable attention in the software engineering research
community in recent years [48, 84, 155, 190]. In a review published in 2002, Glass et al. concluded
that SE research was “narrow regarding research approach and method” [63], but this has since
changed dramatically. Software engineering researchers have adopted numerous research meth-
ods, approaches, and techniques from other fields, partly driven by calls for more evidence-based
practice and empirical research. Traditionally, empirical research in software engineering has been
characterized by a strong emphasis on quantitative and experimental research [12, 102, 155, 206].
However, more recently, a broader range of approaches have been applied, including qualitative
approaches such as grounded theory studies [202], ethnographies [179], and Delphi studies [105].

A key issue in discussing research methods in software engineering is disagreement and con-
fusion about terminology. Two decades ago, Harrison et al. called for “a classification scheme of
research methodologies” [68] to improve the state of empirical research in software engineering.
Thus far, a common taxonomy has been lacking, despite numerous overviews of research meth-
ods in software engineering. Table 1 presents a small selection of sources from the SE literature
presenting overviews of research methods.3 These overviews provide a good introduction but tend
to list a “mixed bag” [132] of methods. Typically, such sources enumerate a set of methods, with-
out a holistic view that affords a systematic comparison. Furthermore, when considering the re-
search process as a series of steps, the “scope” or “granularity” of various methods and techniques
varies widely, ranging from data analysis techniques (e.g., discourse analysis and social network
analysis) to a complete research process that addresses data collection, sampling, and analysis
(e.g., grounded theory [60]). Terminology can also be ambiguous: terms such as “case study” and
“experiment” are sometimes misinterpreted [48, 191]. This ambiguity and lack of a systematic
comparison make it difficult, especially for novice researchers who have embarked on a doctoral
program, to understand the tradeoffs of choosing one method over another.

Rather than discussing research methods, we “borrow” (following Sim et al. [187]) the term “re-
search strategy” [170]. A research strategy is a category of research methods that can be char-
acterized by two dimensions: (a) the level of obtrusiveness of the research in a given setting and
(b) the extent to which the findings are generalizable to other settings. We discuss these dimensions
in more detail in Sections 2 and 3.

All research strategies are inherently limited in one way or another. For example, case studies
are often unfairly criticized for their lack of generalizability. Likewise, readers may lament the
lack of realism in a controlled experiment conducted in a laboratory setting. Researchers have
argued for more realism in software engineering experiments [188], specifically with respect to
participants, or actors (e.g., students vs. professionals), tasks, or what we could also describe as
behavior (e.g., artificial problems vs. real-life problems) and environments, or contexts (e.g., pen
and paper vs. an industrial development environment). Others may find the lack of contextual
information in sample survey research unsatisfactory. These inherent limitations can never be

3Many more sources exist. We selected these because they are well known within the SE literature judging by their citation
counts.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:3

Table 1. A “Mixed Bag”: Alternative Research Methods in Software Engineering
According to a Selection of Sources

Glass et al. [63] Zannier et al. [230] Sjøberg et al. [190] Höfer and Tichy [75] Easterbrook et al. [48]

Action research Controlled experiment Controlled experiment Case study Experimentation

Conceptual analysis Quasi experiment Surveys Correlational study Case study

Concept implementation Case study Case studies Ethnography Survey

Case study Exploratory case study Action research Ex post facto study Ethnography

Data analysis Experience report Experiment Action research

Discourse analysis Meta-analysis Meta-analysis

Ethnography Example application Phenomenology

Field experiment Survey Survey

Field study Discussion

Grounded theory

Hermeneutics

Instrument development

Laboratory experiment
(human/software)

Literature review

Meta-analysis

Mathematical proof

Protocol analysis

Phenomenology

Simulation

Descriptive/expl. survey

Table 2. Examples of Actors, Behavior, and Context in Software Engineering Research

Actors Managers, software engineers, users, software systems, software development artifacts incl. defects,
tools, techniques, prototypes

Behavior System behavior (e.g., reliability, performance, and other quality attributes), software engineers’
behavior and antecedents such as productivity, motivation, and intention

Context Industrial settings, organizations, software projects, development teams, software laboratory,
classroom, meeting rooms

overcome, no matter how hard a researcher might try. McGrath observed that optimizing a study to
achieve generalizability over actors (A) and precise measurement of their behavior (B), in a realistic
context (C), is impossible, and is a “three-horned dilemma [since] there is no way—in principle—to
maximize all three (conflicting) desiderata of the research strategy domain” [132]. Consequently, if
an evaluation of a study is to be fair, it must be based on how well it achieves its potential strengths,
rather than on criteria that it can never fulfill.

Much software engineering research is concerned with the same three components (see Table 2):

• Actors (A), which includes software professionals [103, 216], software systems [23], and
their users

• Their behavior (B) [33, 218] (e.g., coordination among developers [107]; developer produc-
tivity [64] and antecedents, e.g., motivation [14]; systems’ performance and other quality
attributes)

• The context (C) of a specific system or organization [47, 156, 157]

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:4 K.-J. Stol and B. Fitzgerald

Table 3. Comparison of Knowledge-Seeking versus Solution-Seeking Research
in Software Engineering Research

Knowledge-Seeking Research Solution-Seeking Research

Goal To generate or propose scientific claims and to
evaluate and validate those claims. This may also
include the development of instruments or other
artifacts with the specific purpose of supporting
or enabling these knowledge-seeking activities,
e.g., the construction of an instrument that
facilitates data gathering or analysis.

To design or develop new or improve existing
solutions that can help to overcome or ameliorate
challenges, bottlenecks, and other problems in
the development of software systems and
supporting processes.

Focus of
research

A phenomenon within software engineering,
or a characteristic thereof, that is not (or not
sufficiently) well understood or known.

A specific software engineering challenge,
obstacle, or problem, and the design or creation
of a solution.

Outcome Empirical findings, descriptions, insights
generated by simulations, theoretical or
conceptual frameworks, or hypotheses.

Artifacts that include algorithms, tools, notations
(incl. languages), models, mechanisms, and
techniques.

Example Research question: How does Extreme
Programming work? Sharp et al. conducted an
ethnographic study to capture how developers
employ XP development practices [180].

Research question: how to select a manageable
subset of the input data faster in order to
automatically find performance bottlenecks?
Luo et al. proposed FOREPOST: an adaptive,
feedback-directed learning testing system that
helps to find performance bottlenecks [124].
(Note that the evaluation of FOREPOST is a
knowledge-seeking study.)

In this article,4 we present the ABC framework (named after the three concerns mentioned
above), which is adapted from the taxonomy developed by McGrath and his colleagues in the social
sciences [130–132, 134, 170], and seek to provide guidance to help researchers select an appropriate
research strategy that aligns with the goals of their research. The ABC framework contributes to
the discourse on research methodology in software engineering by offering an alternative, holistic
view that positions eight archetypal research strategies along the two dimensions of obtrusiveness
and generalizability mentioned above.

We distinguish between solution-seeking and knowledge-seeking studies [201] (see Table 3 for
a summary). Solution-seeking studies aim to solve practical problems for which solutions can be
engineered. Wieringa has called this type of research world problems [220] and later practical prob-
lems [219]. In solution-seeking studies, researchers design, create, or develop solutions for a soft-
ware engineering challenge. The outcome of these studies includes algorithms, models, and tools.

Knowledge-seeking studies, on the other hand, aim to learn something about the world around
us—and in a software engineering context, that world includes software systems, artifacts result-
ing from the software development process (e.g., defects), and users and developers along with
their behavior, within a given context. Knowledge-seeking studies can also be conducted to eval-
uate or validate solutions developed in solution-seeking studies or to compare different solutions
for performance, for example. Knowledge-seeking studies are not limited to empirical methods
only; nonempirical (or theoretical) approaches such as computer simulation and the development
of conceptual models also address knowledge questions. In this article, we focus on knowledge-
seeking studies exclusively. Furthermore, we focus on strategies to conduct primary research, and
therefore do not consider strategies to conduct secondary studies including systematic literature
reviews, meta-analyses, and meta-ethnographies. Secondary studies are typically conducted as
“desk research” and aim to synthesize or summarize research results presented in primary studies.

4This article is a revised and extended version of our paper “A Holistic Overview of Software Engineering Research Strate-
gies” [199].

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:5

This article proceeds as follows. Section 2 discusses a number of problems related to terminology
in SE research methodology. This section also provides an overview of methodological guidance
for SE researchers and concludes with a discussion of two key dimensions (obtrusiveness and
generalizability) that are important in the selection of a research strategy. In Section 3, we present
the ABC framework, which defines eight archetypal research strategies for software engineering
research. Section 4 demonstrates the applicability of the framework by illustrating how the eight
archetypal research strategies are employed in two key research areas within SE: global software
engineering (GSE) and requirements engineering (RE). Section 5 concludes the article by discussing
implications for SE research and how to further advance SE research.

2 BACKGROUND AND RELATED WORK

This section starts with a brief discussion of terminology concerning research methods (Sec-
tion 2.1). We then summarize prior work that offers guidance in selecting research methods (Sec-
tion 2.2). We conclude this section by discussing the two previously mentioned dimensions that
are central when choosing research strategies: the level of obtrusiveness of a study and the gen-
eralizability of a study’s findings (Section 2.3).

2.1 Terminology

Since Glass and colleagues noted the “narrow” range of research approaches [61, 63], the SE com-
munity has seen an increased interest in the social and human aspects of software engineering,
though the importance of these aspects was already observed much earlier [35, 114, 179]. Tradi-
tionally, empirical research in software engineering implied quantitative approaches and experi-
mentation [11], [109, p. 98], [20, 32, 139, 154, 155, 175, 207]. However, there has been an increasing
awareness that software engineering is multidisciplinary [68], a “social activity” [42], and “essen-
tially a human activity” [175, 222], and that SE researchers must make observations in the “real
world” [139, p. 17]. Consequently, the SE field has now widely embraced these alternative ap-
proaches to study human aspects. A landmark paper in this respect was Seaman’s 1999 article on
qualitative methods for software engineering [174], which was published in a special issue of IEEE
Transactions on Software Engineering on empirical software engineering [84]. Besides special is-
sues in key journals in the field [43, 46], there are dedicated events that focus on these topics, most
notably the CHASE (Cooperative and Human Aspects of Software Engineering) workshops [40].

While there is now a considerable body of knowledge on research methods and techniques as
they pertain to a software engineering context (see Table 1), the SE literature lacks a commonly
adopted typology or taxonomy of research strategies that systematically positions them in relation
to each other. When discussing research design, researchers often cite a number of dichotomies
[56, 62, 81, 186, 222]:

• field versus laboratory research • positivist versus interpretivist research
• desk versus field research • inductive versus deductive research
• in vitro versus in vivo • exploratory versus confirmatory research
• quantitative versus qualitative research • rigor versus relevance
• fixed versus flexible research • internal versus external validity
• positivist versus interpretivist research

These dichotomous distinctions are useful for researchers to understand some fundamental
research design decisions. For example, it is quite clear that field research differs from laboratory
research in a variety of ways, most notably the level of control that a researcher may exert on the
research setting. While these distinctions provide some hints as to a researcher’s intention, they
do not fully convey the details of the research strategy that the researcher may have in mind.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:6 K.-J. Stol and B. Fitzgerald

Furthermore, these distinctions do not paint the complete picture, and indeed some represent
false dichotomies—that is, the dichotomy suggests two mutually exclusive “extremes,” as if it
were a tradeoff, while in actual fact reality is more complicated.

Terminology is often misused when discussing research methods [143, 232]. We illustrate termi-
nological disagreements with a number of examples. Edmondson and McManus defined field stud-
ies as “systematic studies that rely on the collection of original data—qualitative or quantitative—in
real organizations” [50, p. 1155]. Common methods used in field studies are the case study, inter-
view study, or online questionnaires. However, even these terms are problematic. In a review of
methods for evaluation, Zelkowitz [231] observed that “many of the authors used terms like ‘ex-
periment,’ ‘case study,’ ‘simulation,’ ‘controlled,’ etc. in very different ways.”

The term “case study” has been particularly problematic. Easterbrook et al. [48] pointed out that
“There is much confusion in the SE literature over what constitutes a case study.” Indeed, as East-
erbrook et al. and others [90] have observed, the term “case study” has been used as an empirical
method to study a phenomenon (e.g., a case study of open-source software development [142]) or
as a “worked example” (e.g., a simulation of adaptive security in a building [211]). Rosenblum and
Weyuker [166] used the term “case study” for their study on a regression test suite, but Lanubile
considered this an experiment instead, drawing a clear distinction between a study of the artificial
and real world events [109, p. 105]:

Although the authors use 31 real versions of the popular KornShell command proces-
sor, the test suite is artificial and thus the study is a simulation of the real evolution.
The artificiality of the study does not fit with the definition of case study, which fo-
cuses on real events.

Van Horn differentiated between case studies and field studies, with case studies focusing on a
single organization (or part thereof) and field studies considering “several or more” organizations
[212]. In his description, both methods lack experimental control. Furthermore, he acknowledged
that field studies are similar to case studies.

Limiting a study’s characterization as a “case study” or an “experiment” does not clearly convey
the goal of the research. Case studies, for example, can be descriptive, exploratory, or evaluative,
and within each of those, the level of control that a researcher (believes he or she) can exert varies.
A descriptive case study typically depends on “thick description” to capture information about a
phenomenon within a given real-world context. Some exploratory case studies only present quali-
tative findings (e.g., Herbsleb and Grinter’s study of distributed development [73]), whereas others
develop and quantitatively evaluate a set of hypotheses (e.g., the two case studies of open-source
development by Mockus et al. [142]). The term “experiment” has been used for several types of
research design [191], and Montesi and Lago found that the terms “experiment” and “experimen-
tation” are often inappropriately used in software engineering research [143].

The term “survey” is equally problematic; in most cases it refers to a sample survey, but the term
has also been used as a synonym for literature review (e.g., “A Survey of Controlled Experiments
in Software Engineering” [191]) or as an overview of existing solutions in a given domain (e.g.,
“A Survey on Software Architecture Analysis Methods” [44]). Other terms have been misused
as well; for example, many software engineering researchers claim to have done a “ Grounded
Theory” study when in reality they may have merely used specific data analysis techniques
(e.g., open coding) [202]. Consequently, it is not always clear what is meant by research method,
data collection method, or technique. Table 1 presents a selection of mixed bags of methods in
the SE literature by different authors—several other overviews exist; the aim of this table is not
to be exhaustive, but rather to illustrate the point that different authors have presented quite
varying overviews of methods. Some sources provide more detailed classifications than others.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:7

For example, some sources use the term “experimentation,” whereas others differentiate between
controlled experiment and quasi experiment.

It is important that studies report clearly which research strategy has been employed in or-
der to prevent misunderstandings. One example of this arose around an experiment by Sobel and
Clarkson [192]. This experiment investigated the effects of teaching formal methods to undergrad-
uate software engineering students. In a comment on this study, Berry and Tichy argued that the
experiment was invalid for several reasons, including weaknesses in the experimental design and
a lack of control [17]. In turn, Sobel and Clarkson issued a rebuttal claiming that their experiment
was not laboratory research, but rather field research, and claimed that, as a consequence, Berry
and Tichy’s points of critique were moot [193].

Defining a common taxonomy of methods is very complicated for several reasons. One difficulty
is that research methods tend to be of different “granularities.” A case study, for example, implies
quite a specific scope of study (which is what makes it a case study), and researchers typically
define a unit of analysis [229]. However, the actual data collection and analysis methods are not
prescribed—while common data collection methods include interviews, case studies could also
rely on quantitative data only. An ethnographic study is more precisely focused as being conducted
within a very specific and natural context, and data collection is done in unobtrusive ways—that is,
the researcher does not manipulate or control the research setting, but merely aims to understand
it. On the other hand, the scope in Grounded Theory studies is not readily clear. Grounded Theory
studies can be conducted within a specific organization (e.g., [1]) or across organizations (e.g.,
[74]), depending on the goal of the study.

A second complication is that hundreds of methods and techniques exist, and new methods are
proposed as researchers become dissatisfied with existing approaches or develop new techniques
based on technological advances. Grounded Theory, for example, was developed in the 1960s as a
result of a dissatisfaction with how contemporary research was conducted [59]. Newly developed
theories also give rise to new methods. For example, Personal Construct Theory (PCT) gave rise to
an approach called the Repertory Grid Technique [51]. Social Network Analysis (SNA) is another
well-known data analysis technique that can be traced back to sociology, anthropology, and role
theory [205]. Today, SNA has been used to study software development activity and developers
[123], which is enabled by the rich availability of data and technology to analyze these networks.

2.2 Related Work

The selection and appropriate use of research methods and strategies is critically important to
conduct sound research. Numerous authors have provided guidance and analyses toward this
goal—Table 4 lists a number of well-known sources. Similar to Table 1, the purpose of Table 4 is not
to be exhaustive, but rather to list some of the key sources that are available to SE researchers, and
to indicate the range of variety in different methods that have been used in SE research. Several
of the sources in the table provide an analysis on the use of, or guidance for, specific methods. For
example, extensive guidance is available for conducting case studies [168, 169], experiments [91,
223], and survey studies [158]. Other sources discuss the use and reflect on the role of approaches
such as the Repertory Grid Technique [51], Grounded Theory [202], and ethnographic studies in
software engineering [179].

Seaman presented one of the first in-depth overviews of qualitative methods for software engi-
neering research, in particular focusing on data collection methods and analysis techniques such
as interviews and the constant comparison method found in Grounded Theory [174]. This article
represented a major milestone in SE research, given the hitherto strong focus on quantitative
methods. Lethbridge et al. proposed a taxonomy of data collection techniques that is specifically fo-
cused on field studies [117]. Their taxonomy is organized around the level of human intervention,

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:8 K.-J. Stol and B. Fitzgerald

Table 4. Selection of Methodological Guidance Relevant to Software Engineering
Research in the Last Two Decades

Authors Year Focus Contribution
Zelkowitz and
Wallace [232]

1998 Technology
validation

Provides an overview of experimental techniques to validate new
technologies.

Seaman [174] 1999 Qualitative
methods

Guidelines for qualitative data collection and analysis.

Wohlin et al. [223,
224]

2000,
2012

Experiments Book with a brief overview of empirical methods in SE with the
remainder focused on conducting experiments. Second edition
published in 2012.

Juristo and
Moreno [91]

2001 Experiments Book on experimentation in software engineering.

Pfleeger and
Kitchenham
[97–101, 158]

2001-
2003

Surveys A six-part tutorial series on designing and conducting surveys in
software engineering.

Kitchenham et al.
[102]

2002 Experimental
studies

Guidelines for conducting (experimental) empirical studies.

Shaw [182, 183] 2002 Software
engineering
studies in ICSE
2002

Overview of types of research questions, research results, validation
techniques, and research strategies based on analysis of ICSE 2002
papers.

Lethbridge et al.
[117]

2005 Data collection
methods for field
research

A typology of data collection methods based on the degree of human
intervention. Distinction between first-, second-, and third-degree
methods.

Wieringa et al.
[221]

2006 Requirements
engineering
research

Framework for classifying RE research: evaluation, validation,
opinion, solution proposal, philosophical, personal experience.

Easterbrook et al.
[48]

2008 Empirical
software
engineering
research

Overview of common methods. Selection of methods informed by
type of research question and epistemology. (Chapter in Shull et al.
[185] below.)

Shull et al. [185] 2008 Empirical
software
engineering

Collection of chapters that discuss variety of research methods,
including focus groups, simulation, experiments, and theory
development.

Runeson et al.
[168, 169]

2009,
2012

Case studies Guidance for designing, conducting, and reporting case studies; the
2009 article was extended into a book published in 2012.

Edwards et al.
[51]

2009 Repertory Grid
Technique

Review and discussion of the Repertory Grid Technique in SE.

Ivarsson and
Gorschek [79]

2011 Rigor and
relevance

Presents a model for evaluating rigor and relevance of technology
evaluations for industry.

Wohlin and
Aurum [222]

2015 Empirical
software
engineering
research

A decision-making structure for selecting a research design,
considering issues such as research question, research logic, and
research purpose.

Sharp et al. [179] 2016 Ethnographic
studies

Discusses the use and value of ethnographic studies in SE research.

Stol et al. [202] 2016 Grounded theory Discusses different variants of grounded theory, GT use in SE studies,
and guidelines for reporting GT.

Ralph [161] 2018 Developing
process theories
and taxonomies

Guidance for developing process theories (as opposed to variance
theories) in software engineering.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:9

that is, how much involvement of the researcher or participants is needed to collect data. Tech-
niques vary from first-degree techniques such as interviews, to second-degree techniques such as
instrumenting systems and fly-on-the-wall, to third-degree techniques such as document analysis.

A number of authors have presented typologies and taxonomies of research approaches in soft-
ware engineering. Shaw developed a bottom-up classification of research questions and research
methods based on an analysis of paper abstracts submitted to the 2002 International Conference on
Software Engineering (ICSE) [183]. Her classification addresses questions regarding generalizability
or characterization of phenomena, methods for analysis, and design and evaluation of an artifact
or practice. Wieringa et al. [221] proposed a paper classification based on an “engineering cycle,”
which focuses specifically on Requirements Engineering and consists of activities such as problem
investigation, solution design, and solution validation. The paper classification distinguishes the
following types of research: evaluation research, proposal of solution, validation research, philo-
sophical papers (which include conceptual papers), opinion papers, and personal experience pa-
pers. Though the classification was suggested specifically for the RE field, it has proven useful in
many other areas within software engineering, in particular for classifying studies in systematic
reviews and mapping studies (e.g., [157]). Montesi and Lago proposed a taxonomy of SE article
types based on previous literature discussing research methodology, author instructions provided
by selected journals, and calls for papers of major SE conferences [143]. While these classifications
are useful, they do not assist in understanding the inherent strengths and limitations of the various
research strategies that a researcher may select to conduct research.

Wohlin and Aurum proposed a decision-making structure for selecting a research design [222].
Their framework considers a number research design decisions including the research outcome,
research logic (i.e., inductive vs. deductive), and research purpose (i.e., explanatory, descriptive,
exploratory, or evaluative).

Most authors discuss empirical research methods, which refers to research approaches to gather
observations and evidence from the real world. However, knowledge-seeking studies may also
adopt nonempirical, or theoretical, research strategies that can provide useful insights, such as
formal theory development [161, 189, 200] and simulation [77]. While the various classifications
discussed above each have a specific focus and strengths, their discussion remains at the level of
individual research methods and techniques. Furthermore, they do not provide a holistic overview
of research approaches that systematically positions and compares alternative strategies in relation
to one another. In the next subsection, we lay the foundation for such a holistic overview.

2.3 Dimensions of Research Strategies: Obtrusiveness and Generalizability

Two important dimensions of research strategy are the level of obtrusiveness and generalizability.
These two dimensions are the axes in the ABC framework in Section 3, and are described in turn
here.

2.3.1 Obtrusiveness. The first dimension is concerned with how obtrusive the research is: to
what extent does a researcher “intrude” on the research setting, or simply make observations in
an unobtrusive way. Researchers who wish to exert more control in a research study usually have
to intrude in the research setting, for example, to manipulate some variables. Several authors have
argued that the level of control that a researcher can exert while conducting a study is a key con-
cern [35, 54, 67, 154, 169, 232]. One concern often raised in the context of qualitative methods
such as ethnographic and case study research is a lack of control. Parnas lamented the lack of
experimental design in current empirical software development research and how observations
from a small number of “uncontrolled case studies” do not contribute to scientific knowledge [154,
p. 56]. In response to Parnas, Curtis argued that “the more realistic the experimental environment,

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:10 K.-J. Stol and B. Fitzgerald

the more difficult it becomes to control all the factors that create alternate explanations of the
hypothesized results” [34]. This clearly suggests the inherent tension between the experimental
environment (Context) and precision of measurement (of Behavior). Expectations as to what rep-
resents a “good case study” also vary. For example, some reviewers have lamented the “[lack of]
control usually required to do a good case study paper,” or that studies are “poorly controlled”
[35, p. 1099]. However, in many cases, the purpose of an exploratory or descriptive case study is
to understand the challenges and practices in a real-world setting, rather than measuring any re-
lationship between variables. Thus, the level of control that a researcher has (or thinks to have)
will depend on the goal of the research and will affect the realism of the research context. Hannay
and Jørgensen distinguished between the “structural” and “situational” artificiality in experiments:
structural artificiality is “the methodological essence of control” to allow for controlling of vari-
ables and drawing conclusions about treatment-outcome relationships [67]. Situational artificiality
refers to the elements of the experimental design, such as the subjects (e.g., the use of students)
and tasks and settings (e.g., toy systems). Selecting a research approach with high potential for
control does not guarantee that this is achieved in practice. For example, a controlled experiment
offers considerable potential for a high level of control, but this can be very difficult to achieve and
such a study requires a careful design (e.g., [17, p. 569]).

2.3.2 Generalizability. A second key concern that authors have expressed is the level of gen-
eralizability of research findings. This has been a recurring concern in software engineering re-
search, in particular in the context of case studies—captured succinctly by one referee: “Case study
reports are [. . .] limited, because they report a single case.” Indeed, exploratory case studies, and
other types of field studies, are limited in that the researcher cannot draw any statistically gen-
eralizing conclusions from such studies. However, such generalization of findings is not the goal
of such studies—instead, exploratory case studies and other types of field studies aim to develop
an understanding rather than generalization of findings across different settings. Exploratory case
studies can be used to theorize and propose hypotheses about other, similar contexts. For example,
Mockus et al. developed hypotheses based on a case study of one open-source project and tested
these through a second case study [142].

Ethnography is another research method that has been adopted by software engineering re-
searchers [164]. Van Maanen defines the aim of an ethnography as “to discover and disclose the
socially acquired and shared understandings necessary to become a member of a specified social
unit,” and the result to be a “cultural description” [213, p. 103]. Thus, the scope of the setting is
by definition limited. This inherent limitation of the method should not be highlighted as a short-
coming when evaluating such a study.

3 THE ABC FRAMEWORK FOR RESEARCH STRATEGIES

This section presents a framework that provides a holistic overview of eight different research
strategies. The framework, which we have termed the ABC framework (Figure 1), was originally
devised by McGrath and his colleagues for the social sciences [131, 133, 134, 170, 217]. We have in-
terpreted, tailored, and operationalized the framework for a software engineering research context.
Specifically, we refined the terminology used in the framework—for example, in the social sciences
the term “actor” refers to a person, whereas in SE, actors may represent professionals, applications
and systems, or their users. To operationalize the framework, we identified exemplar studies
that adopted the archetypal research strategies in two SE research areas (global software engi-
neering and requirements engineering). To demonstrate a more general applicability of the frame-
work, we analyzed all articles published in Springer’s Empirical Software Engineering journal in
2017. Both analyses are presented in Section 4.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:11

Fig. 1. The ABC framework: eight research strategies as categories of research methods for software engi-
neering (adapted from Runkel and McGrath [170]). Quadrants I to IV represent different research settings.

The framework is underpinned by the two key dimensions of obtrusiveness and generalizabil-
ity, which were described in Section 2.3. These axes frame an area within which eight archetypal
research strategies can be positioned. The first dimension (the x-axis in Figure 1) is that of gen-
eralizability or universality: research strategies can result in findings that are either specific to a
particular context or system or more generalizable. The second dimension (the y-axis in Figure 1)
is the level of “obtrusiveness” and refers to the degree to which a research setting is manipulated
or instrumented to conduct research. A researcher may be unobtrusive by merely observing an
activity or interviewing informants without manipulating any aspect of the research setting—an
industry case study using document analysis and interviews to gather data is one example of this.
On the other hand, a researcher may “intrude” on the research setting by manipulating some vari-
ables or divide participants into different treatment groups in order to measure some effect; such
operations change the circumstances of a study and its participants.

An article may report on one or more studies, each of which may employ a different research
strategy, for example, a case study followed by a sample study [197]. As discussed in Section 1,
many SE studies are solution-seeking studies, which result in an artifact such as a new algorithm,
approach, or tool. Such solution-seeking studies do not fall within the scope of the ABC frame-
work. However, it is customary that such proposed artifacts are evaluated or validated, and such
evaluation studies can be classified using the ABC framework.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:12 K.-J. Stol and B. Fitzgerald

The remainder of this section presents each of the eight research strategies. For each strategy we
discuss a metaphor that, in our opinion, conveys the essence of that strategy and which may help
in distinguishing the eight strategies. For example, we adopted the “jungle” metaphor from this
article’s opening quote to represent field studies. Metaphors may help to understand the essence of
concepts and terms, but metaphors have limits and should not be taken literally—we do not suggest
that field studies (i.e., jungle) pose any danger to researchers. Instead, it suggests that a researcher
enters a research setting that existed prior to, and independent of, the researcher’s presence. In this
setting, we see the researcher as an “explorer” who aims to study or observe a subject in this natural
setting without disturbing the actors inhabiting the setting. Because the eight research strategies
differ quite significantly in terms of their typical settings and procedures (e.g., a controlled experi-
ment in a contrived setting vs. an ethnography in a natural setting), the metaphors also vary quite
significantly. The different metaphors are not meant to be compared, though some are in related
domains (e.g., jungle, nature reserve, and greenhouse). Table 5 presents a summary of the research
strategies and their associated metaphors, purpose, methods, and inherent limitations.

3.1 Field Studies

Field study refers to any research conducted in a specific, real-world setting to study a specific
software engineering phenomenon. The field study strategy is located in Quadrant I (Figure 1),
representing natural settings. Field studies are unobtrusive in that a researcher does not actively
control or change any parameters or variables. That is, there is no deliberate modification of the
research setting. Field studies are used to develop a deep understanding of phenomena in specific,
concrete, and realistic settings—the specific setting may refer (among others) to a particular system,
organization, or team of individuals. For this reason, a field study offers maximum potential for
capturing a realistic context (indicated by the “C” marker in Figure 1), unlike, for example, a labora-
tory experiment (see Section 3.4). However, this realism is gained at the price of a low precision of
measurement of behavior (point “B” in Figure 1) and a low generalizability of findings (point “A”).

It is important to note that the mere fact that data is collected in a “field setting” does not imply
the study is a field study. For example, a focus group conducted on a company’s premises does
not automatically make it a field study. Instead, the question is whether or not the field setting is
essential to the study, or whether or not the study captures any realistic context. A focus group
study could be conducted in any appropriate space. The same applies to studies that mine software
repositories.

As mentioned, the metaphor we chose for field studies is the jungle from McLean’s opening
quote (see Section 1). A jungle is usually an undisturbed setting, so wildlife can be observed in its
natural habitat—but the researcher is expected to not disturb the natural setting as this would lead
to different behavior, which in turn reduces the realism of the context. Field studies have become
a common strategy within software engineering since the mid-1990s, though some field studies
were conducted in the 1980s [35]. A common method in SE research that falls within the field
study strategy is the descriptive or exploratory case study (e.g., [73, 141, 198]).

One example of a field study in SE is an ethnographic study of XP (Extreme Programming) by
Sharp et al. [180]. This study did not aim to “control” any variables, nor to change anything in
the case study setting. Rather, the authors stated that their “motivation is to gain insight into the
culture and community of an agile method.”

3.2 Field Experiments

A field experiment refers to an experimental study conducted in a natural setting with a high degree
of realism (similar to a field study), but in this strategy the researcher manipulates some proper-
ties or variables in the research setting so as to observe an effect of some kind—this manipulation

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:13

Table 5. Research Strategies and Their Metaphors, Purpose, Methods, and Inherent Limitations

Study Type Metaphor and Setting Purpose Typical Methods & Data Inherent Limitations

Field Study Jungle: Natural setting that
exists before the researcher
enters it. Minimal intrusion
of the setting so as not to
disturb realism, only to
facilitate data collection.

Facilitates study of
phenomena and actors and
their behavior in natural
contexts. Exploratory, to
understand what’s going on,
how things work, or to
generate hypotheses.

Case study, ethnography,
observational study;
qualitative data incl.
interviews, field notes,
archival documents, may
include quantitative data.

• No statistical generalizability
• No control over events
• Low precision of measurement

Field
Experiment

Nature reserve: Natural,
pre-existing setting (in
vivo), but some level of
intrusion due to the
deliberate manipulation of
aspects of the setting; study
affected by confounding
factors.

To investigate, evaluate, or
compare techniques,
practices, processes, or
approaches within a
real-world and pre-existing
setting.

Evaluative case study,
quasi-experiment, Action
Research; studies may use
either quantitative data or
qualitative data.

• No statistical generalizability
• Precision of measurement

affected by confounding
contextual factors

Experimental
Simulation

Greenhouse, flight simulator:
Contrived setting (in virtuo)
created specifically for a
study to represent a
concrete type of setting.
Environment is created by
the researcher to study
behavior of actors.

To study behavior of
participants or systems in a
controlled setting that
resembles a real-world,
concrete class of settings as
closely as possible.

Simulation games,
management games,
instrumented multiplayer
games; quantitative or
qualitative data, depending
on the simulation
instrument.

• Generalizability reduced as
setting is designed to mirror a
specific type of setting
• Realism reduced due to

artificial setting

Laboratory
Experiment

Cleanroom, test tube:
Contrived setting (in vitro)
created specifically for a
study, with high degree of
control of all measured
variables.

To study with a high degree
of precision relationships
between variables, or
comparisons between
techniques; may allow
establishment of causality
between variables.

Randomized controlled
experiments and quasi
experiments, comparative
evaluations with benchmark
studies; usually quantitative
data exclusively.

• Abstract or unrealistic context
due to highly artificial setting
• Typically scope of problem

reduced to study the “essence,”
optimizing internal validity at
cost of external validity

Judgment
Study

Courtroom: Neutral setting;
may be actively designed to
nullify the context, so that
“responses” are in relation
to some stimulus (question
or instructions),
independent of setting.

To elicit information from
subjects for purposes of
evaluation or study of an
object. To seek
generalizability of responses
to stimuli, not
generalizability to a
population.

Delphi studies, interview
studies, focus group,
evaluation studies; use of
qualitative and/or
quantitative data.

• Responses not related to any
specific or realistic context
• Less generalizability than

sample studies due to lack of
representative sampling
• Less control and precision of

measurement than a lab. exp.

Sample
Studies

Referendum: Neutral setting.
Limited level of precision of
measurement; no variables
are manipulated. The
researcher must deal with
whatever data is collected.

To study the distribution of
a particular characteristic in
a population (of people or
systems), or the correlation
between two or more
characteristics in a
population. Information is
sought of the subjects.

Software repository mining,
questionnaires, interviews;
analysis includes
correlational methods, e.g.,
regression. Typically,
quantitative data (e.g.,
Likert scales) but can
include qualitative data.

• Reductionist—depth of and
number of data points per
participant limited
• Data collection not

“interactive”: no option to
clarify questions; repository
data comes as is, no opportunity
to manipulate variables, only
to correlate them

Formal
Theory

Jigsaw puzzle: Nonempirical
setting; typically a research
office or library.

To develop a
conceptualization,
framework, or theory on a
topic. Focus is on
formulating relations
among concepts, or
explanations that hold for a
wide range of contexts.

Conceptual reasoning,
concept development,
development of propositions
and/or hypotheses;
framework development.

• Low on realism: does not
consider a specific context but
rather abstract concepts
• No manipulation of variables or

measurement (no empirical
information is gathered)

Computer
Simulation

Forecasting system:
Nonempirical setting (in
silico); no recording of
observations in the real
world. There are no actors
(people, real-world systems)
or real-world behavior:
everything is specified in
the simulation.

To model a particular
system or phenomenon that
facilitates evaluation of a
large number of complex
scenarios that are captured
in the preprogrammed
model.

Development of software
programs that contain
symbolic representations of
all variables a researcher
considers important; usually
these variables are derived
and calibrated based on
prior empirical studies.

• No manipulation of variables or
precision of measurement (no
empirical data is gathered)
• Results will be as good as the

accuracy of the model
representing the simulated
system
• Low generalizability as it

attempts to model a specific
class of real-world systems

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:14 K.-J. Stol and B. Fitzgerald

reduces the level of realism compared to a field study. The realistic research setting exists indepen-
dent of the researcher, which distinguishes it from the contrived research setting in a laboratory
experiment. Common settings for field experiments in SE include a specific software development
organization or team or a deployed production system.

The term “experimental” should be interpreted in a broad sense, rather than in a strictly sci-
entific sense. In our broader interpretation, Action Research [7] also falls within this strategy. In
Action Research, a researcher aims to intervene and improve a specific setting through a cycle of
making changes, observing the resulting situation, and making further changes. The researcher is
“experimenting” by making adjustments and observing the effects of those adjustments. Similarly,
the goal in an in vivo controlled experiment is to manipulate certain independent variables while
measuring some dependent variables. While the level of obtrusiveness is higher than in a field
study as a researcher is actively making changes to the research setting, the natural study setting
is realistic but subject to confounding factors that limit the precision of measurement (hence, the
field experiment is distant from point “B”), and findings are limited in their transferability to other
settings (hence a very long distance to point “A”). For example, the improvements achieved using
Action Research in a particular organization may not easily transfer to other organizations as the
researcher’s interventions are likely to be dependent on the specific organizational context.

We suggest a nature reserve as a metaphor for a field experiment setting. In a nature reserve, flora
and fauna can still thrive as normal, but the reserve facilitates the conduct of research, for example,
by placing fences so as to separate the wildlife into different treatment groups and evaluate the
effects of those treatments. An example of a field experiment in SE is a study by Anda et al. in
which four companies were selected to implement the same software system [13]. The systems
were implemented by developers in real companies; for the developers, the setting was natural
and existed before the researchers entered. The study’s goal was to investigate the reproducibility
of software projects.

3.3 Experimental Simulations

The experimental simulation strategy is one of two strategies in Quadrant II—the quadrant that
represents contrived research settings. In an experimental simulation, the behaviors of actors (e.g.,
developers, users, or software systems) that a researcher aims to observe and measure are natu-
ral, but the setting within which these occur has been specifically created for the purposes of the
study—that is, without the study, the setting would not exist. Thus, the term “simulation” in this
context refers to the artificially created setting that aims to recreate a concrete type of setting in
which the “experiment” or observed behavior takes place. The level of obtrusiveness is higher than
that of a field experiment, because the simulation requires a contrived setting. As the setting is con-
trived, a researcher is often required to make certain simplifying assumptions—it is often too costly
to recreate a highly realistic setting, though the degree of realism can vary considerably across dif-
ferent studies adopting this strategy. In any case, the context of such a setting is less realistic than
that of a field study (where realism is potentially maximized, as indicated by point “C” in Figure 1)
or a field experiment. On the other hand, the findings from experimental simulations allow a re-
searcher to more precisely measure actors’ behavior or systems’ properties than would be the case
in a field experiment—this strategy lies closer to point “B,” where such precision can be maximized.

We borrow Runkel and McGrath’s metaphor, who compared an experimental simulation to a
greenhouse [170]. A greenhouse is built to simulate a certain setting, optimized for certain char-
acteristics, for example, to grow fruits that require much sunlight and high temperatures, which
otherwise could not be grown in cold climates. Compared to a nature reserve (i.e., field experi-
ments), a greenhouse is a far more contrived setting and less realistic, but it gives a researcher
potentially more control over what happens inside. An alternative metaphor is a flight simulator

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:15

[170]. While the specific series of events cannot be fully controlled (it depends on user input),
the behavior of participants (e.g., pilots in training) can be carefully monitored and analyzed. The
flight simulator metaphor is a computer-based virtual environment—Travassos and Barros [210]
adopted Tisseau’s term “in virtuo” [208] for such experiments, to distinguish it from in vivo ex-
periments (i.e., field experiments) discussed above. One example of an experimental simulation is
a study on design competitions in the context of crowdsourcing software development [110]. The
design competitions were artificially created specifically for the study—the context was therefore
contrived and not what one would find in a real crowdsourcing setting (as found, for example, in
a field study on crowdsourcing [198]).

3.4 Laboratory Experiments

The laboratory experiment is the second strategy in Quadrant II. It differs from field experiments,
which are positioned in Quadrant I and thus study phenomena in their natural context, whereas
laboratory experiments are set in a contrived setting. A laboratory experiment is characterized by a
high potential to neutralize any confounding factors and extraneous conditions [170, p. 105]. Con-
sequently, laboratory experiments allow a researcher to exercise maximum precision of measure-
ment of behavior on the studied object—this is indicated by the “B” marker in Figure 1. Clearly, such
a level of control would not be possible in a real-world software development environment. How-
ever, as a result, the context in a laboratory experiment is very unrealistic—the research setting is
contrived and specifically designed for the study at hand. Indeed, this strategy is far removed from
the “C” marker in Figure 1. Furthermore, laboratory experiments may involve a limited number
of subjects (different system setups or human participants—or, as McGrath observed, whomever
can be “lured into the laboratory”), and consequently the findings of a laboratory experiment are
limited in their generalizability. Laboratory experiments differ from experimental simulations in
that the former offers a higher degree of precision of measurement. In laboratory experiments, the
researcher conducts “discrete” trials of relatively short time span. In experimental simulations, in
contrast, a researcher offers an environment where the more continuous flow of events depends
on the simulation environment and the actors’ behavior.

We do not imply the term “laboratory experiment” to mean a controlled or quasi experiment ex-
clusively, but any investigation to establish a quantitative “relationship between several variables
or alternatives under examination” [91, p. 10]. In this interpretation, benchmarking studies that
compare a number of algorithms or techniques based on a predefined set of criteria represent “ex-
perimentation” too, because the researcher actively sets up a contrived environment to measure
and analyze those algorithms and techniques. In SE research, a common approach is to set up a
dedicated computer to compare different algorithms or techniques.

A useful metaphor for laboratory experiment is a test tube, which Runkel and McGrath [170]
used to set it clearly apart from the greenhouse (experimental simulation, representing a more
continuous flow of events) and nature reserve (field experiment). This also aligns well with the term
“in vitro” (i.e., in glass) used to characterize laboratory studies. Alternatively, we could think of it as
a cleanroom, in which there is a high degree of control over what happens inside. It is worth noting
that the term “laboratory” does not imply an actual laboratory, and that laboratory experiments
can be conducted at software development organizations as well. Likewise, not all experiments
conducted with students are necessarily laboratory experiments—as per the description above,
this depends on the extent to which the experimental setting was contrived. After all, for students,
a computer laboratory can pass as a natural setting.

An example of a laboratory experiment is a study on pair programming [5]. For this study, 295
Java consultants with varying levels of seniority were hired to participate. The task at hand was to
make changes to two alternative Java systems with different levels of complexity. It is clear that the

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:16 K.-J. Stol and B. Fitzgerald

study setting was contrived; the 295 participants would not have undertaken these tasks without
explicitly being requested (and paid). The change tasks themselves were also carefully designed as
part of the study.

3.5 Judgment Studies

A judgment study involves gathering empirical data from a group of participants who are asked to
judge or rate behaviors, to respond to a request or “stimulus” offered by a researcher, or to discuss
a given topic of interest. Judgment studies rely on systematic sampling rather than representative
sampling and should involve experts, appropriately informed to respond to a certain question or
stimulus. The goal of a judgment study is to seek generalizability over the responses, rather than
generalizability to a population of actors. Using a judgment study, a researcher is actively involved
to steer the direction and progress of the study. Judgment studies are positioned in Quadrant III,
which represents “neutral” settings—that is, the setting plays no role in the study. In fact, a re-
searcher may actively aim to “mute” the setting so as to ensure that the setting bears no effect on
responses. There is no experimental setup or otherwise contrived setting, as is the case in labo-
ratory experiments and experimental simulations. Instead, the researcher aims to “cancel out” the
setting from the research design. The researcher is merely interested in the responses of the partic-
ipants regarding a given question or stimulus, such as opinions and expertise on a subject matter.

One method that fits well with this strategy is the Delphi method, which was developed in
the late 1940s [36]. The method can be used to structure a group communication process to deal
with complex problems [121, p. 3]. A Delphi study comprises a panel of experts and allows the re-
searcher “to elicit their input through an iterative, controlled feedback process” [78, p. 93]. Another
method within this strategy is the “focus group,” “carefully planned discussions, designed to ob-
tain personal perceptions of the group members on a defined area of research interest” [104, p. 94].
In focus groups, participants are also systematically selected based on their expertise and charac-
teristics. A third and very common instance of judgment studies is the evaluation study, whereby
participants are typically asked to judge, for example, the utility of an approach or technique.

We liken a judgment study to a courtroom, in which a panel of participants (the jury) are carefully
and systematically selected. In a courtroom, evidence is presented (a stimulus) and eventually the
jury returns a verdict. The setting itself (i.e., the courtroom) is only manipulated to the extent that
it aims to be neutral and not distract the participants from the matter at hand (i.e., the case). An
example of a judgment study is an investigation of key characteristics for effective tailoring of
agile methods [30]. The study was conducted with a panel from both industry and academe that
were systematically selected for their expertise.

3.6 Sample Studies

Also in Quadrant III is the sample study strategy, which aims to achieve generalizability over
a certain population of actors, whether these are software professionals, software systems, or
artifacts of the development process. The sample study is one of two strategies with the potential
to maximize generalizability to a population—this is indicated by the marker “A” in Figure 1. The
sample study is one of the most common strategies in SE research (see Tables 1 and 8). When the
sample consists of human respondents, data is usually collected through questionnaires that can
be administered in hard copy or through websites. In SE research, the sample study is also used
quite frequently to study large sets of software development artifacts or projects, in particular
open-source software projects, which are easy to access. In that case, data collection is usually
performed by mining software repositories. A sample study is unobtrusive, in the sense that
the researcher does not manipulate any variables during data collection. As a result, the level
of precision may be affected—for example, a researcher has no control over respondents to a

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:17

questionnaire who misunderstand questions. Hence, the sample study strategy is removed from
point “B” in Figure 1. When collecting data from repositories, again, no variables are manipulated.
At best, the researcher can conduct correlational analysis, but no causal relationships can typically
be inferred. Positioned in Quadrant III, the research setting is neutral, and consequently, the
sample study cannot capture a realistic context (as suggested by the far distance to point “C”); the
goal is to generalize, and this means the focus is not on specific contextual details.

A metaphor for the sample study strategy is a referendum (though we admit this only suggests
samples of human participants, not development artifacts). In a referendum, usually a limited set
of questions is presented to a large group of people, who are invited to respond—typically, only
a sample actually responds. An example of a sample study is a survey by Storey et al. [203], who
investigated communication channels used by software developers. In particular, their study re-
ceived a large number of responses (over 1,400), suggesting a representative sample of the GitHub
developer population, and thus a high degree of generalizability of the findings. An example of a
sample study of software repositories was conducted by Ray et al. [162], who investigated the cor-
relation between programming language and quality. One of their findings was that strong typing
is correlated with moderately higher-quality code than weak typing. In their study, they could not
actively manipulate any variables, and so no causal relationships could be established.

3.7 Formal Theory

Formal theory is one of two strategies in Quadrant IV that have no empirical setting. Formal the-
ory5 is a strategy that aims at a high level of universality so that the resulting theory or frame-
work can be applied under a wide array of circumstances, although most theories have bound-
aries outside of which they do not apply [200]. This maximum potential for generalizability over
a population of actors is indicated by the marker “A” in Figure 1, which is shared with the sample
study strategy. The result of this research strategy is not necessarily a theory in the traditional
sense of the word (i.e., a process or variance theory [161, 200]) but can also include develop-
ment of conceptual or research frameworks. Thus, in our use of the term “theory,” we include any
form of conceptualization or frameworks that seek to have some degree of generalizability. Formal
theory and its role in software engineering research have received considerable attention in recent
years, including a series of workshops and special issues in journals [189, 201]. Formal theory is
a desk research activity and does not involve any concrete or realistic context (hence, it is distant
from point “C”), nor does it involve any empirical measurement of behavior (it is positioned far
from point “B” also). However, the development of theories and conceptual frameworks typically
depends on prior empirical observations.

As a metaphor, we propose that developing formal theory is akin to solving a jigsaw puzzle. Solv-
ing a jigsaw puzzle can be done as a solitary or team effort, it happens in a nonempirical context
(e.g., at a large table to fit all the pieces), and the goal is to “fit” all pieces together. In particularly
complex jigsaw puzzles, some pieces will be “theorized” as representing the sky or water (both are
variations of blue), and as the puzzle proceeds, more and more pieces fit together. Theorized pieces
may have to be validated through empirical studies using other research strategies. As well, the
“boundary” of the puzzle may also have to be empirically established using empirical strategies.
One example of a study that we classify as formal theory development is the classification and
comparison study of architecture description languages (ADLs) [136]. The three main elements of
an architecture description are components, connectors between them, and architecture configu-
rations; these elements serve as categories to organize the framework. The framework represents
a conceptualization of ADLs based on the literature thus far; as such, it provides an analytical tool

5Not to be confused with formal methods that are used, for example, to develop formal program specifications.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:18 K.-J. Stol and B. Fitzgerald

to reason about ADLs, or a theory for analysis [65]. The framework is constructed with an aim
to be applicable to any ADL and hence has a high level of generalizability. Another example of a
formal theory is a general theory of software engineering (GTSE) developed by Wohlin et al. [225].
The authors’ theory is developed based on empirical observations of industry practice and aims
to explain how organizations can successfully develop software by balancing different types of in-
tellectual capital. Project managers can use the theory to inform their decision-making processes.

3.8 Computer Simulations

The eighth research strategy is computer simulation, also positioned in Quadrant IV. The goal of a
computer simulation is to create a symbolic replica of a certain type of concrete system that can
be executed by a computer [170, p. 87]. In a computer simulation of a real-world phenomenon or
setting, everything is represented symbolically and created artificially. Where studies in natural
settings (Quadrant I) can be costly or even impossible to conduct as they may involve a higher
level of engagement from participants, computer simulations (which take place in a nonempirical
setting) “are like virtual laboratories where hypotheses about observed problems can be tested”
before they are implemented in real-world systems [144]. Consequently, while simulations model
a specific system or phenomenon, a simulation takes place in a nonempirical setting. That is, while
variables can be modeled and manipulated based on the rules that are defined within the computer
simulation, the researcher does not make any new empirical observations of behavior of outside
actors in a real-world setting (whether these are human participants or systems); hence, computer
simulations are positioned far away from point “B” in Figure 1. Tisseau used the term “in silico” to
refer to “computerized calculations” [80, 208]. While prior empirical results can be used to create
and calibrate computer simulations, this strategy does not lead to empirical results itself.

As a metaphor, we liken a computer simulation to a forecasting system, such as those used in
weather prediction, which employ complex mathematical models of the atmosphere and oceans.
Such systems are programmed to do a very specific thing based on a set of preprogrammed rules.
The lack of further input by external actors sets computer simulations apart from experimental
simulations, which we compared to a flight simulator and a greenhouse. An example of a com-
puter simulation is a study that simulates adaptive security in buildings [211]. Before actually
implementing such a system in the real world (which would involve making many costly changes
to the physical building), the authors performed a simulation as proof of concept. By analyzing a
number of preprogrammed “threat scenarios,” the researchers could evaluate the applicability and
effectiveness of the approach as well as evaluate the classes of security requirements that could be
handled by such a system.

4 APPLICABILITY OF THE ABC FRAMEWORK TO SOFTWARE

ENGINEERING RESEARCH

To illustrate the use of different research strategies in software engineering research, we present
examples from two different research areas: Global Software Engineering (GSE) and Requirements
Engineering (RE). We selected these topics because they are well-established and important re-
search areas within the software engineering literature, evidenced by their dedicated conferences
(ICSGSE, RE). For both areas, we selected exemplar studies that clearly illustrate the eight research
strategies. We emphasize that we do not intend to cast any judgment on the cited examples. How-
ever, for each example study, we discuss some inherent limitations that are a consequence of the
selected research strategy—rather than due to poor research design decisions of the authors. In
addition to these two detailed examples, we also applied the framework to a sample of 75 articles
in Springer’s Empirical Software Engineering journal. Section 4.3 discusses details of the decision
rules as well as a summary of the results.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:19

4.1 Research Strategies in Global Software Engineering Research

GSE has been actively studied since the 1990s, and research has focused primarily on the chal-
lenges associated with distributed development, whether as a result of offshoring or outsourcing
strategies.

4.1.1 Field Study. A key issue in GSE is that of coordination of distributed teams as geograph-
ical, temporal, and sociocultural distances give rise to a variety of challenges [2]. To investigate
why coordination of distributed teams is so difficult and how associated challenges manifest in a
real-world context, Herbsleb and Grinter conducted an in-depth case study at one division of an
organization with teams in the United Kingdom and Germany [73]. The study’s direct goal was
neither to evaluate specific theoretical constructs affecting coordination (which were not well un-
derstood at the time of the study) nor to improve coordination in the organization. Instead, the
authors aimed to develop a deep understanding of the intricacies of coordination of distributed
teams in a real-world setting. Hence, the field study strategy was highly appropriate.

The results of this study discussed the means of coordination (e.g., component specifications
and software processes) and their limitations, and barriers to informal communication (e.g., lack of
unplanned contact such as conversations at the water cooler). The study concludes with a number
of lessons learned; for example, Herbsleb and Grinter suggested bringing people from different
locations together early on in a project. This type of insight would be unlikely to emerge from,
say, a laboratory experiment.

This study captured specific events rooted in a concrete, real-world, and thus realistic context.
While high in realism, the study does not aim to generalize to a population of companies that
conduct distributed development, although some of the recommendations may be useful to other
organizations. Furthermore, the study did not measure any specific behavior, nor did it establish
any causal relationships. These are inherent limitations of field studies. Instead, this study’s value
lies in capturing a realistic setting, thus achieving its potential strength.

4.1.2 Field Experiment. Geographical distance has consequences for development activities
of distributed teams. To ensure a high level of software quality, organizations can implement
so-called validation activities, such as code inspections, peer review, and testing. In order to un-
derstand the impact of geographical distance on software quality when conducting such activities
in a distributed fashion, Ebert et al. conducted a field experiment [49]. The authors investigated
three factors that might impact the cost of rework: (1) the effect of colocation on the efficiency and
effectiveness of defect detection; (2) the effect of coaching on software quality, and (3) the effect of
changes to the development process on teamwork, and continuous build on management of dis-
tributed projects. To evaluate these hypotheses, Ebert et al. used project data that the company had
carefully collected over several years. To address the first two hypotheses, the dataset was divided
into different groups, based on specific parameters (e.g., whether or not inspections were done by
colocated or distributed teams). For the third hypothesis, a number of changes were made to the
development process, which were tracked in the project data. The authors found that inspections
conducted by colocated teams significantly improved both the efficiency and effectiveness of defect
detection. Furthermore, the authors also found that providing coaching to teams (at a cost of 1%
to 2% of the project budget) led to a reduction of rework cost. Finally, the various changes made to
the development process in relation to teamwork and continuous build also reduced rework cost.

Ebert et al.’s study is an excellent example of a field experiment. Their study description ad-
dresses many potential threats to validity to ensure that we can have confidence in the findings.
Nevertheless, the study has some inherent limitations. For example, one hypothesis was evaluated
using a set of projects “within one culture (i.e. Europe) and similar skill background that received
a coaching effort of ca. 1..2% of total project budget” [49, p. 302]. The precision of measurement

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:20 K.-J. Stol and B. Fitzgerald

of culture and background is limited—measuring latent constructs such as culture is a nontrivial
task [76]. Furthermore, the natural setting of the projects is likely to have had many confounding
factors that were not controlled for. The phrase “similar skill background” also suggests some lat-
itude. Notwithstanding these inherent limitations, the study’s strength lies in the rich set of data
captured in a natural setting, achieving a very high degree of realism.

4.1.3 Experimental Simulation. Despite technological innovations that allow developers to in-
teract using high-quality communication channels, there are still “formidable barriers” associated
with distant collaborations due to factors such as a lower level of trust [19]. Bos et al. hypothesized
that colocated individuals interact more among each other, forming an “in-group” (H1) [19]. Fur-
thermore, they suggested that isolated individuals would form a separate in-group due to being
excluded from the colocated in-group (H2). Finally, they argued that colocated individuals would
outperform isolated members of the team (H3).

In order to evaluate these hypotheses, Bos and colleagues conducted an experimental simulation
using an online multiplayer game [19]. Rather than real-world development activities (i.e., soft-
ware development tasks), the task at hand was to fill “orders” of colored shapes, e.g., Blue Square
and Purple Circle. Each player could produce one type of shape, so in order to complete an order,
players were required to “buy” and “sell” shapes—hence, there was a need to build relationships,
negotiate, and collaborate. The use of shapes instead of real tasks allowed for an easy under-
standing of the simulation but greatly reduced the realism of the task. In this simulation, some
participants were colocated, whereas others were not—these were referred to as “telecommuters.”
The simulation was further constrained by limited resources and time.

The researchers found strong evidence for hypothesis H1: colocated participants had a strong
tendency to collaborate with one another, rather than with those who were not colocated. Fur-
thermore, the isolated telecommuters formed an in-group of their own (supporting H2). As for
hypothesis H3, there was no significant difference in performance between colocated participants
and the telecommuters.

This experimental simulation is clearly characterized by a contrived setting and unrealistic tasks.
Furthermore, given that the study was conducted with a relatively small group of participants, the
study’s findings are not readily generalizable. However, these are inherent limitations of the ex-
perimental simulation strategy. Instead, the authors aimed to measure participants’ behavior with
a high degree of precision. In a realistic setting (i.e., a distributed software development organi-
zation), achieving this level of precision of participants’ behavior would have been much more
difficult, and also very expensive.

4.1.4 Laboratory Experiment. A system’s software architecture plays a pivotally important role
in coordinating distributed teams [72, 151]. Before a software system is implemented, its software
architecture (SA) should be evaluated as it has a major impact on quality attributes such as per-
formance and reliability. Most SA evaluation methods (e.g., ATAM [93]) assume that the various
stakeholders attending such reviews are colocated, which can be difficult or costly to achieve for
globally distributed teams. Alternatively, SA evaluations can be conducted in a distributed set-
ting supported by groupware tools. However, this raises the question as to whether the quality of
distributed evaluations is as good as those conducted face to face. To evaluate this, Babar et al. con-
ducted a controlled experiment [8]. Using 32 teams of three undergraduate students each, Babar
and colleagues found that the quality of the scenario profiles developed by the distributed teams
using groupware tool support were, in fact, of higher quality than those developed by colocated
teams.

The setting of this study was clearly contrived: the authors set up an environment specifically
for the purpose of this study. Student (instead of professional) participants were specifically

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:21

Table 6. Examples of Different Research Strategies Used in Global Software Engineering Research

Strategy Authors Objective Study Setting Study Procedure Findings

Field Study Herbsleb
and Grinter
1999 [73]

To understand why
geographically
distributed
development is
difficult to coordinate.

Natural: Two locations
of a division of Lucent
Technologies

18 interviews, archival
sources, documents.

Coordination mechanisms;
barriers to informal
communication; lessons
learned for multisite
development.

Field
Experiment

Ebert et al.
2001 [49]

To investigate the
impact of colocation,
coaching, and
teamwork and a
continuous
development process
on software quality
and cost.

Natural: Alcatel’s
Switching and Routing
business unit. Data
collected over a period
of several years.

Comparison of
inspections in colocated
and distributed teams;
projects within one
culture and similar
backgrounds with and
without coaching;
“before” and “after”
introducing teamwork
and continuous
development process

Colocating peer reviews
improves defect detection;
coaching within the project
reduces cost of rework;
teamwork and continuous
build in the development
process improves global
project management.

Experimental
Simulation

Bos et al.
2004 [19]

To study the effect of
colocation, the
presence of multiple
sites within a large
company,
collaboration across
multiple sites, and the
influence of social
networks in these
collaborations.

Contrived: online
multiplayer game (the
Shape Factory
simulation
environment).
Participants recruited
through a campus
newspaper ad.

13 simulation sessions
with 5 rounds each;
10 players per session,
130 participants in total.

Colocated participants
collaborated more with each
other than with
telecommuters. The
telecommuters also formed
an in-group. No significant
difference in performance
between colocated
individuals and
telecommuters.

Laboratory
Experiment

Babar et al.
2008 [8]

To study the impact of
groupware support on
the quality of software
architecture evaluation
deliverables.

Contrived:
experimental tasks
part of assessed course
tasks. Participants
received training on
SA evaluation, tools.

Controlled
experiment, AB/BA
crossover design;
32 teams of 3
participants
(3rd/4th-year undergrad
students of a SE course).

Quality of deliverables from
the distributed meeting
groups was significantly
better than the quality of
deliverables from the F2F
meeting groups.

Judgment
Study

Iacovou and
Nakatsu
2008 [78]

To investigate risk
factors for
offshore-outsourcing
software development.

Neutral: systematically
selected panel of
experts at a variety of
organizations based on
their experience.

Delphi study,
15 experts, 3 rounds:
identification; rating;
rating feedback and
revision. Interaction
presumably online.

25 risk factors that could
influence the success of an
offshore-outsourced project,
rated in importance by the
experts; the top 10 are
discussed in detail.

Sample
Study

Ma et al.
2008 [125]

To investigate 3 issues
in software
development by
Chinese software
suppliers: language
barriers, channels of
communication, and
working overtime.

Neutral: questionnaire
sent out to companies
by email.

Random sample of 2,000
from a database of
approx. 6,000 Chinese
software companies; 53
responses from
41 companies.

Language not a major
obstacle; email used for
development issues and
face-to-face meetings to
discuss management
issues/requirements; reasons
for overtime are requirement
changes and underestimation
of effort.

Formal
Theory

Espinosa
and Carmel
2003 [52]

To develop a
conceptual foundation
for future research on
GSE.

Nonempirical: desk
research without any
direct empirical
observations

Theorizing and
conceptualization based
on Coordination Theory
and previous
exploratory field
research reported
elsewhere.

A model of coordination
costs due to time differences
in dispersed software teams.

Computer
Simulation

Setamanit
et al. 2007
[160, 177]

To evaluate the choice
of task allocation
strategy and its impact
on project duration.

Nonempirical: GSD
simulator with which
the researchers can
model several factors,
resulting in different
GSE strategies.

For each of 3 strategies:
5 replications for each
design point (7 factors,
27), resulting in 640
runs per strategy;
1,920 runs in total.

Increasing overlap of work
hours contributes to shorter
duration for module-based
and phase-based strategy,
and a longer project duration
for FTS strategy.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:22 K.-J. Stol and B. Fitzgerald

Table 7. Examples of Different Research Strategies Used in Requirements Engineering Research

Strategy Authors Objective Study Setting Study Procedure Findings

Field Study Damian and
Zowghi [37]

To investigate the
impact of distributed
stakeholders on RE
activities in GSD.

Natural: first author
spent 7 months on-site
at an organization.

Document study,
observation,
interviews.

Four major problems and 8
specific challenges related to
requirement engineering
activities in distributed
development.

Field
Experiment

Lauesen and
Vinter [111]

To identify a
cost-effective way to
avoid requirement
defects.

Natural: company staff
and researcher
collaborated on-site,
using real products to
evaluate new
approaches.

Action research, data
include defect reports,
time spent, usability
issues, timeliness of
the project, product
sales.

Several conclusions, incl.:
scenarios and early usability
testing are beneficial
techniques; classifying
defects according to the
source of the defect was not
helpful.

Experimental
Simulation

Lerch et al.
[116]

To identify the
computer support
needs of automation
staff in a large
organization.

Contrived: simulation
environment with
experimental stimuli
that were previously
collected.

3 distinct groups of
3 people each to gauge
how level of expertise
and circumstances
affect behavior.
Participants received
training.

Insights into different
information needs and
search strategies and
decision-making strategies
depending on users’
expertise. Insights on
performance with
feedback/feedforward.

Laboratory
Experiment

Porter et al.
[159]

To investigate the
hypothesis that
scenario-based
inspections are more
effective than ad hoc
inspections.

Contrived: classroom
laboratory exercise
with graduate students
doing a course in
formal methods.

Measurement of effect
of detection methods
(ad hoc, checklist,
scenario) on
4 dependent variables
incl. fault detection
rate.

4 key findings, incl.:
scenario-based method leads
to higher fault detection rate
than other methods; scenario
reviewers were more
effective at detecting faults
the scenarios were designed
to uncover.

Judgment
Study

Daneva and
Ahituv [39]

To evaluate a set of 12
practices based on
feedback by ERP
practitioners.

Neutral: dedicated
meeting room with
seating around a table.

10 consultants from
7 ERP services firms,
selected based on their
interest and expertise.

All 12 practices were
observed by several of the
panel experts.

Sample Study Neill and
Laplante
[146]

To investigate the state
of practice of
requirements
engineering in
industry.

Neutral: web-based
questionnaire.

22 questions;
participants drawn
from a Penn State
School of Graduate
Professional Studies
database; 194
responses from a
population of 1,519.

Findings include
organization and participant
characteristics (various
domains; participants held
variety of positions);
software development life
cycle model (agile, waterfall,
etc.); RE techniques.

Formal
Theory

Nguyen and
Shanks
[147]

To develop an
understanding of the
role of creativity in RE.

Nonempirical: no
empirical
observations, but
derivation of a
conceptual framework
from literature.

General creativity
literature,
requirements
engineering creativity
literature.

A theoretical framework that
offers RE researchers a basis
to incorporate creativity in
RE methods and techniques.

Computer
Simulation

Höst et al.
[77]

To investigate
bottlenecks and
overload in RE
processes.

Nonempirical: a
discrete event
simulator was
implemented in SDL.

Four simulation
scenarios with
different parameter
values to model
different
circumstances.

Two ways were identified to
avoid congestion:
(1) increase number of staff
or productivity, (2) decrease
the rate of new requirements
e.g., through prioritization.

recruited for this experiment, and the scope of the experiment was limited to only one activity
of the architecture evaluation process (i.e., scenario development). The experimental tasks and
instruments were also simplified, thus reducing the realism of the context. Nevertheless, the
study enabled the authors to achieve a high level of precision of measurement of the effectiveness
of distributed architectural evaluations, and these findings could motivate field experiments to
gauge whether such findings hold in a real-world setting.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:23

4.1.5 Judgment Study. It should be clear by now that embarking on a GSE initiative is fraught
with challenges. In the mid-2000s, numerous organizations had experienced such challenges, while
outsourcing was still increasing in volume and importance [78]. This increased interest in out-
sourcing and offshoring can be explained by the fact that managers are continuously seeking ways
to make software development faster and cheaper. However, at the same time managers may not
be cognizant of the specific risks associated with GSE. Thus, Iacovou and Nakatsu set out “to pro-
duce a set of project risks that specifically applies to offshore outsourcing” [78, p. 90]. In particular,
they adopted the judgment study strategy, implemented as a Delphi study “to solicit and analyze
the input of the expert panelists” [78, p. 93]. The panel members were systematically selected: 57
project management professionals were invited to fill out a prestudy questionnaire to summarize
their experience. After screening, 15 of them were invited to participate in the study. While the
authors do not report on how they interacted with the experts, we assume this was done through
postal mail or email (i.e., a neutral setting)—in any case, the authors focused on input from experts
based on their experience, rather than specific software projects they were involved in. Through
an iterative process of three rounds, this study identified 25 risk factors, which were ranked in
importance according to the panel. The analysis indicated a statistically significant and high level
of consensus regarding the risk factors.

This study offers excellent insights to other managers considering GSE initiatives. However, the
study does not consider any specific context—the risk factors may or may not be applicable to a
particular organization’s context. This is an inherent limitation of the judgment study strategy.
Furthermore, given the systematic selection of a relatively limited number of participants instead
of a large, representative sample of participants, these findings are not necessarily generalizable
to the wider population of software development managers. On the other hand, this strategy did
offer the researchers more control during the study through interaction in multiple rounds and
interacting with the panel in a more intensive manner.

4.1.6 Sample Study. Whereas the judgment study discussed above investigated distributed de-
velopment from an outsourcing customer’s perspective, Ma et al. [125] took a complementary ap-
proach by investigating the supplier’s perspective. In particular, as managers are adopting GSE
initiatives to improve software development (either through reducing cost or time to market), Ma
et al. investigated how well projects outsourced to Chinese suppliers actually performed in terms
of language barriers, communication, and overtime work. To that end, they adopted the sample
study strategy, using a questionnaire for data collection. Two thousand companies were invited,
resulting in 53 responses eligible for analysis. Compared to judgment studies, the sample study
strategy aims to achieve a higher level of generalizability of findings by gathering data from a large
and representative sample. However, the number and complexity of questions that can be asked
through a sample study is typically more limited than in judgment studies. When the number or
complexity of questions becomes too high, the response rate may drop considerably. Overall, the
authors found that language was not a major obstacle; email (asynchronous communication) was
primarily used for development issues, whereas synchronous, face-to-face meetings were used
to address management issues and product requirements. Key reasons for overtime work were
changing requirements and suppliers’ initial underestimation of the work.

This sample study achieved some level of generalizability, though in this case the specific
sample was limited, considering that 2,000 companies were initially invited. However, this is
always a challenge in conducting such sample studies. To indicate the representation of this
sample: the respondent companies’ size was distributed with 67% considered small (fewer than
50 employees), 26% medium (50 to 300), and the remaining 7% classified as large (over 300) and
very large (over 1,000). Other limitations were more inherent to the selected strategy. The authors
were, for example, not able to interact in-depth with the respondents to clarify responses or to

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:24 K.-J. Stol and B. Fitzgerald

ask follow-up questions (thus, precision of responses might have been low). In this study, the
authors conducted a follow-up interview study with a number of respondents, but this is not
part of the sample strategy and represents a separate research activity; also, this is only possible
if respondents identify themselves. Another inherent limitation is that this study was not able
to capture any specific context—thus, these findings must be interpreted with care as contextual
factors may affect the performance of outsourced projects.

4.1.7 Formal Theory. Temporal distance is one of the distances in globally distributed teams,
referring to the fact that teams work in different time zones. Time zone differences reduce the
“overlap” of working hours of distributed teams, and thus the potential to communicate through
video link or teleconferencing. Asynchronous communication (e.g., email) is also affected as re-
sponses may be delayed several hours. This in turn introduces a number of challenges for project
coordination. To investigate the implications of temporal distance for distributed teams, Espinosa
and Carmel presented a theoretical discussion from different perspectives [52], leading to a model
that affords a unified view of coordination challenges in time-separated contexts, which provides a
conceptual foundation. As the authors suggested, this foundation provides the basis for simulation
research, experimental research, and field research. Indeed, at the time of writing, this article has
been cited over 160 times, suggesting that other researchers have used this foundation for their
studies.

Formal theory development studies such as these are important as they advance the field by
offering a new conceptual lens to design future empirical studies. Such studies lack contextual
realism, however, as they do not rely on any observations or data gathered in real organizations.
Furthermore, given that such studies are conducted in a nonempirical setting, there is no observed
behavior, either from participants or from software systems. On the other hand, the newly pro-
posed conceptual framework abstracts reality, aiming at a high degree of generalizability.

4.1.8 Computer Simulation. Beside drawbacks, temporal distance also offers benefits, such as
Follow-the-Sun (FTS) development. As one team finishes the workday, the next team can continue
to work on the same task. Some project managers estimated that by adopting FTS, the time to mar-
ket can be reduced by 20% to 35% [24, p. 33]. Besides FTS, there are two other strategies to configure
task allocation in a distributed development project: phase-based and module-based development
[24, p. 130]. Following the module-based strategy, each development site develops a software mod-
ule from start to finish. In a phase-based configuration, a development site performs a particular
phase of the software development life cycle. For example, site A may perform design, followed by
implementation at site B. This raises the question: which task allocation strategy is most optimal?

To investigate, Setamanit et al. conducted a computer simulation to evaluate these task alloca-
tion strategies [176, 177]. The researchers first investigated the “ideal” circumstances, without any
communication and cultural barriers. This was modeled by excluding all factors affecting produc-
tivity and defect injection rate from the simulation. In this case, using an FTS strategy, the develop-
ment cycle time was 70% shorter than single-site development. The module-based approach took
slightly longer than the FTS strategy, and the phase-based strategy was very similar to a single-
site development scenario. However, the results differed significantly when taking into account
the various GSE-specific factors. In this case, the FTS strategy took 37% longer than a single-site
development scenario, while the module-based strategy resulted in the shortest development cy-
cle time. The development cycle time resulting from the phase-based strategy was similar to that
following an FTS strategy.

Using the computer simulation strategy, the authors were able to evaluate a number of differ-
ent scenarios. Evaluating these scenarios in a real-world setting would most likely have proven
infeasible or too costly. Instead, the researchers could perform this work at their desk. However,
one inherent limitation of this approach is that no real-world behavior can be observed, given that

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:25

a computer simulation is conducted in a nonempirical setting. The simulation is simply a model,
but may not accurately represent reality.

4.2 Research Strategies in Requirements Engineering Research

In this section, we illustrate the different research strategies with a second research area: Require-
ments Engineering. RE has long been one of the core areas within software engineering research,
with a first special issue in IEEE Transactions on Software Engineering in 1977 [167].

4.2.1 Field Study. RE has been cited as a critical activity for any software project. The rise of
GSE initiatives has led to new challenges for RE, some of which were highlighted in Section 4.1. To
investigate these new challenges, Damian and Zowghi conducted a field study at one large multi-
site organization [37]. One of the authors spent several months on-site at the case organization to
develop an in-depth understanding of the specific context. Data were collected through document
study, observation, and interviews. The authors report on the specifics of the context, including
the organizational structure and collaboration technologies. The study reports four key problems
in distributed development and eight specific challenges for RE. These challenges are described in
detail and illustrated with examples from the specific context of the case study organization—thus
achieving a high degree of realism. The authors conclude that improving communication would
significantly reduce the impact of global collaboration on requirements management.

Being on-site at an organization for an extensive period of time greatly helps to achieve a high
degree of realism and to capture many details of the organizational context. This is simply not
possible when conducting, for example, a sample study of organizations. On the other hand, the
rich contextual findings are not necessarily generalizable to other contexts, although some of the
challenges identified were also confirmed in other studies. Furthermore, the authors gathered data
through observations and interviews, but the lack of precision of measurement of the multiple
variables present in a natural setting prevents any inference of causal relationships.

4.2.2 Field Experiment. Requirement defects are problems with a software product that make
it unfit for its surroundings or for its users. Preventing such defects can greatly benefit the quality
and satisfaction of end-users. Lauesen and Vinter conducted a study to “find cost-effective ways to
avoid requirement defects in the products” [111]. The authors adopted the field experiment strat-
egy, by means of Action Research [111, p. 38]. The authors first studied one project to establish
a baseline in order to understand how requirement defects occurred. To improve the RE process,
Lauesen and Vinter studied 44 techniques, from which 10 were deemed worthy of further consid-
eration. Due to various constraints outside the researchers’ control, only one project adopted two
of the 10 techniques. After the project was finished, the researchers studied the defect reports and
the final product, but no improvements could be observed due to the fact that the contexts of the
projects were too different, although the authors did observe some other effects that suggested
improvements.

Interestingly, the authors reported that “we hadn’t imagined how difficult it was to compare
two very different projects” [111]. This is a significant characteristic of field experiments; the re-
searchers simply could not precisely measure differences due to the natural research setting, and
faced constraints outside their control. Another inherent limitation that became clear was the gen-
eralizability of findings. Each software project is different, which makes comparison problematic,
even within the same organization.

4.2.3 Experimental Simulation. Identifying the requirements for a new software system is very
important in order to ensure that the system will be accepted by its future users. However, this
has proven very difficult, which also explains the prominence of the RE field in the software engi-
neering domain. Before designing new systems that will operate in complex environments to help

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:26 K.-J. Stol and B. Fitzgerald

users in their decision-making process, it is important to establish how the system will be used.
Unfortunately, in highly dynamic and complex environments it is not possible to simply ask users
to describe their decision-making process [116]. Therefore, Lerch et al. set out “to discover how
and why end-users make decisions” [116, p. 346] (emphasis in original) through an experimental
simulation. The specific goal was to assess computer support needs in the US Postal Service. As
the authors asserted, an experimental simulation facilitates the assessment of system features
without building these systems and without the need to interfere with production environments.

The authors implemented a simulation that used real-world data that was collected prior to the
experimental simulation. During the simulation, several types of data were recorded in order to
compare the behavior of novices and experts. Data were recorded through keystroke loggers and
verbal protocols. The simulation tool offered a considerable level of precision to measure behavior,
as Lerch et al. describe [116, p. 350]:

we were able to observe the behavior of supervisors with different levels of experience
under identical environmental conditions. [...] In addition, by controlling the environ-
mental conditions, it was possible to collect data [...] to compare the performance of
experts and novices.

This experimental simulation took place in a contrived setting facilitating a relatively high de-
gree of precision to measure a number of variables that capture the different types of behavior of
participants. Designing such a study requires, however, considerable effort: in this case, the au-
thors went to great lengths to implement a simulation that “mimicked the real world” [116, p. 350].
Prior to implementation, the authors had spent considerable time interviewing and observing staff
at the mail facilities.

4.2.4 Laboratory Experiment. Once requirement specifications are written, different ap-
proaches can be used to validate these. One of the goals in validating requirement specifications
is to detect any faults, which is important for the quality of the resulting software and user satis-
faction (as discussed in Section 4.2.2). Porter et al. conducted a multitrial experiment to compare
alternative fault detection methods [159]. The experiment was conducted twice, in both cases with
24 graduate students who took a formal methods course.

One of the study’s key findings is that scenario-based methods led to a higher fault detection
rate than ad hoc and checklist methods. While the study achieved a high degree of precision of
measuring the various variables, the study lacked generalizability and realism—but these are two
inherent limitations of the laboratory experiment strategy. The authors declared several threats to
validity: the subjects (i.e., students) were not representative of software professionals due to their
limited experience and motivation to participate in the study; the specification documents may
not have been representative of professional documents; and the inspection process may not have
been representative of industry practice.

4.2.5 Judgment Study. Many organizations adopt off-the-shelf Enterprise Resource Planning
(ERP) packages, which have to be tailored not only to their own organizational setting but also to
that of their customers. Such interorganizational ERP projects have their own set of requirements,
and identifying and implementing them can be a challenging endeavor [39]. Daneva proposed
a set of 12 RE practices to support such operations [38]. To evaluate them, Daneva and Ahituv
[39] adopted the judgment study strategy, conducting a focus group of 10 systematically selected
practicing ERP consultants. This study validated all 12 practices.

This judgment study depended on the expertise of ERP consultants who were presented a very
specific “stimulus,” namely, the 12 proposed RE practices for interorganizational ERP projects.
Conducting such an evaluation with a sample study would have been an alternative strategy
(aiming at a higher degree of generalizability through a larger, representative sample of experts),

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:27

but this would have reduced the degree of interaction needed to explain and qualify the 12
practices, potentially leading to misinterpretations. This clarifies the benefit of a judgment study
over a sample study in this case. Interestingly, Daneva and Ahituv acknowledged the lack of a
realistic context and suggest adopting a field study strategy as their next step: “Our immediate step
will be to run a case study in two organizations to develop an understanding of the context” [39].

4.2.6 Sample Study. RE is an active research area, and it is important to regularly collect data
about the state of practice so that researchers understand the challenges that professionals face and
what solutions could benefit them. Neill and Laplante identified a lack of contemporary data about
actual requirements elicitation in practice [146]. Without such data, researchers may wrongly as-
sume how software professionals operate. Therefore, Neill and Laplante adopted the sample study
strategy by conducting an industry survey to assess the state of practice of RE [146]. Data were
collected through an online questionnaire with 22 questions. From the 1,519 invited persons, 194
completed the survey. Respondents worked in a wide variety of different companies including
multinational companies, operating in various domains such as telecommunications, aerospace,
and manufacturing. The range of positions in their respective organizations was as diverse, from
system designer to executive. The findings indicated that over 50% of respondents used scenarios or
use-cases in the requirements elicitation phase, whereas 30% indicated to be using object-oriented
analysis [146].

This sample study provided data on RE practices from a wide range of software organizations,
and thus this study scores high on generalizability. However, no variables were manipulated to
investigate any effects, nor was the survey able to capture any specific context. Thus, while we
learn little about which RE practices are appropriate for ERP projects (cf. Daneva and Ahituv’s
judgment study [39]) or the various challenges that distributed development introduces in a spe-
cific organization (cf. Damian and Zowghi’s field study), we learn about some trends manifested
in a wide array of organizations.

4.2.7 Formal Theory. In recent years, researchers have also addressed the role of creativity in
RE. To better understand this role, Nguyen and Shanks developed a theoretical framework [147].
The framework development draws on the wider creativity research literature and the literature
on creativity in the RE field. The resulting framework consists of five elements: product, process,
domain, people, and context. Using Gregor’s taxonomy [65], the authors labeled their framework a
“theory for analyzing” [147, p. 661] and, in this case, to analyze RE creativity research. The authors
identified two main implications for further research and practice. First, they called for empirical
studies on how to integrate the framework elements into RE methods to support creativity. Second,
they recommended that organizations establish an environment to encourage creative people.

This study did not result in any empirical observations, but through a careful derivation of a
framework based on extant research on creativity, the authors developed a theory for analyzing
the role of creativity in RE—this in turn can be used as a foundation for future empirical studies to
investigate how each of the framework’s five elements manifests, for example. Published in 2009,
this study has been cited well over 100 times, suggesting that a considerable number of authors
have extended this strand of research.

4.2.8 Computer Simulation. Much research in the RE field has focused on eliciting require-
ments for bespoke software projects, with far less attention paid to so-called market-driven soft-
ware development [77], whereby commerical off-the-shelf (COTS) software packages are regularly
released—for example, ERP packages mentioned earlier. Software organizations that make such
COTS components are also looking to improve their development processes, but there are many
ways to optimize such processes to overcome bottlenecks.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:28 K.-J. Stol and B. Fitzgerald

Table 8. Distribution of Research
Strategies of the Analyzed Sample

Strategy Count
Field Study 10
Field Experiment 0
Experimental Simulation 4
Laboratory Experiment 30
Judgment Study 3
Sample Study 38
Formal Theory 0
Computer Simulation 0

Höst et al. [77] point out that evaluating process improvements could be done through field ex-
periments, for example, but that this would require considerable effort. Instead, Höst et al. adopted
the computer simulation strategy to investigate situations that lead to bottlenecks. Using a series
of simulations, the authors were able to evaluate how different changes to the processes led to an
improved process (i.e., removal of bottlenecks). In particular, the computer simulation was imple-
mented as a discrete event simulation model. The authors evaluated four scenarios, each with a
different configuration of parameters. The authors concluded that “congestion” in the process can
be avoided, either by increasing the number of staff or productivity or by limiting the rate of new
requirements through, for example, requirements prioritization. However, it is important to note
that while such computer simulations may suggest how changes to the process might work in the-
ory, empirical studies are needed to actually evaluate such interventions in practice, for example,
through field experiments. This lack of a realistic setting is an inherent limitation of computer
simulations.

4.3 Analysis of a Sample of Studies

Our analysis above is based on a convenience sample; we selected studies that exemplify the eight
research strategies. In order to demonstrate a wider applicability of the framework, we analyzed
all articles published in 2017 in Springer’s Empirical Software Engineering journal. (Table 10 in
Appendix A presents the results.) Our analysis shows that all studies can be mapped to the ABC
framework. Table 8 presents the count of each research strategy; several articles present multiple
studies, which is why the total count (n = 85) is higher than the number of articles (n = 75). The
table shows that Sample Studies (n = 38) and Laboratory Experiments (n = 30) are most widely
used. Field Studies were reported in 10 articles, and only a few articles reported Experimental
Simulations and Judgment Studies. We found no instances of Field Experiments, Formal Theories,
or Computer Simulations in this particular sample.

The ABC framework in Figure 1 organizes the eight archetypal research strategies along two
dimensions: obtrusiveness and generalizability. Below we offer a set of questions to position a
study in a specific area of the circumplex.

To map a study to the circumplex, the first two questions to ask are:

• Does this study focus on a particular instance of a phenomenon, or does it aim to generalize?
• What is the level of obtrusiveness of the researcher in the research setting?

Furthermore, the eight strategies are placed in four “quadrants” with boundaries at a 45-degree
angle (not bounded by the two dimensions mentioned above) that characterize the research setting.
That is, has the research been conducted in a

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:29

• naturally occurring setting that existed before the researcher entered (Quadrant I);
• contrived setting that the researcher set up specifically for the study (Quadrant II);
• neutral setting: one that is not related to the research findings, or one that the researcher

has actively set up to be neutral, so as not to affect the research findings (Quadrant III); or
• nonempirical or theoretical setting; that is, one in which the research has been conducted

without making any empirical observations (Quadrant IV)?

The research strategy adopted can be identified without too much effort in most studies. However,
in some cases it requires careful reading. We give three examples below.

• Rojas et al. [165] sought to evaluate the effectiveness of whole test suite generation. They
conducted an empirical study on 100 Java classes and compared three different coverage
criteria (line coverage, branch coverage, and weak mutation testing). This is an example
of a Laboratory Experiment, because the researchers were clearly interested in a precise
comparison of three different approaches. The research setting was specifically created for
the study’s purpose (hence, a contrived setting). While the researchers used a “sample” of
100 Java classes (which some might associate with a Sample Study), the goal was not to seek
maximum generalizability to a population, but rather to precisely measure the behavior of
three different approaches as measured in effectiveness.

• Vitharana [215] investigated the impact of defect propagation at the project level during
early life cycle phases. The article sets up a set of hypotheses that are tested using a large
dataset consisting of inspections conducted over a period of four and a half years at one
company. To evaluate the hypotheses, a dataset from one company is used; while this might
suggest it is a study of a particular organization (i.e., a Field Study), the goal of this study is
to establish general relationships—hence, we classify this as a Sample Study. The fact that
the dataset originated in one company is of secondary importance. In practice, using data
from a range of organizations is very challenging because companies may not collect the
same type of information.

• Spinellis [194] presents an analysis of the history of Unix. The analysis is based on the com-
plete development history of the operating system, which might suggest a Sample Study.
However, the study focuses on one particular software program; rather than seeking gen-
eralizable findings, this study aims to understand one specific context of software develop-
ment, namely, the Unix operating system. We classify this as a Field Study, despite the fact
that the research was conducted as desk research, not “in the field.” One obvious reason for
this is that this is an archival study, because development took place several decades ago.

5 DISCUSSION AND CONCLUSION

5.1 Metaphors and Research Settings in Software Engineering

For each research strategy, we presented a metaphor representing that strategy within its research
setting (see Section 3 and Table 5), some of which were proposed by others [135, 170]. Metaphors
are widely used in the software engineering literature [181] and practice [106]; indeed, the term
“software engineering” itself can be considered a metaphor [21]. Metaphors are powerful peda-
gogical devices that can help to convey the essence of a term or entity. However, they are usually
limited in the extent to which they can fully capture the similarity with the real-world entity they
represent. Here, we briefly discuss these metaphors and the key benefits and drawbacks of each
research strategy (see Table 9).

Quadrant I Natural Settings: Field studies take place in natural settings, which we liken to
a jungle, as it allows a researcher to investigate a real and concrete instance of a phenomenon.
Findings are grounded in realistic or concrete settings that exist independent of the study.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:30 K.-J. Stol and B. Fitzgerald

Table 9. Software Engineering Research Strategies, Metaphors, and Evaluation Considerations

Strategy Metaphor Essence Evaluation Considerations

Field Study Jungle Facilitates the study of real-world actors
(people, systems) and their behaviors in a
natural setting that is not manipulated by
the researcher. High potential to capture
realistic settings and a high degree of
detail of a particular system and context.

Not suitable to investigate statistical
relationships, or to otherwise manipulate
variables, nor for findings that hold for
larger populations.

Field
Experiment

Nature reserve Facilitates the study of effects of a
modification of properties of a studied
entity or phenomenon that occurs in a
natural setting, i.e., pre-exist independent
of the researcher. Potentially very costly
to set up due to complexity of natural
settings.

Limited level of precision of
measurement; results not generalizable,
but strongly linked to the specific setting
due to confounding variables that are
very difficult to isolate.

Experimental
Simulation

Greenhouse,
flight simulator

A contrived setting that simulates a
specific class of real-world systems that to
some extent resembles reality. Temporal
flow of events depends on the simulation
environment and actors’ behavior, which
allows for observing more natural
behavior than a laboratory experiment.

Reduced level of realism compared to
field experiments due to the contrived
setting: behavior of actors may reflect
that in natural settings, but consequences
for actors lack realism, which may affect
their behavior.

Laboratory
Experiment

Cleanroom, test
tube

A controlled setting where behavior of
actors (humans or systems) is carefully
measured through a number of discrete
trials to establish effects or conduct
comparative analyses. Maximum
potential to capture precise measurement
of variables (high internal validity) due to
potential to isolate confounding factors.

Studied relationships and variables are
more abstract due to the contrived and
“sterile” nature of the research setting.
The setting is more artificial than for
experimental simulations.

Judgment Study Courtroom Facilitates study of responses or behavior
of actors that bears no relation to the
research setting, which is neutral or
actively “neutralized.” Allows for more
complex questions and interactions
between researcher and respondents.

No concrete or natural setting, which
prohibits capturing direct observations of
phenomena.

Sample Study Referendum Facilitates data collection from a
representative sample of a population
(human or nonhuman, such as systems or
design artifacts). Maximum potential to
generalize findings to a wider population;
rather unobtrusive research strategy.
Researcher must work with whatever
data is collected.

Limited precision of measurement:
questions asked of, or about, the sample
tend to be “simple”; limited opportunity
for “complex” interaction between the
researcher and subjects. Research setting
offers no realistic context.

Formal Theory Jigsaw puzzle The careful and justified construction of a
theoretical model that represents one
view of a phenomenon, which helps to
analyze or explain the real world. Model
generic behavior for a range of classes of
populations (humans or nonhuman
artifacts), which serves to make
predictions or explanations about the real
world.

Theoretical models do not generate new
empirical observations, though may
inform future empirical studies.

Computer
Simulation

Forecasting
system

Represents a symbolic replica of a
concrete real-world system where all
configurations and variables are
preprogrammed. Useful to run a large
number of complex scenarios to explore a
solution space, which might not be
feasible to do manually.

All simulation rules are preprogrammed:
no new empirical (i.e., real world, as
opposed to simulated) behavior is
observed. Due to concrete
implementation, limited generalizability.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:31

However, in order to retain the undisturbed setting, the researcher cannot manipulate any vari-
ables or properties, as this would disturb the naturalness of the setting. Field experiments are very
similar in that they take place in a natural setting, but a researcher manipulates some variables to
administer different treatments to different projects or participants. However, this manipulation
reduces the realism of context somewhat. We propose the nature reserve metaphor—like a jungle,
it represents a natural setting, yet it allows a researcher to intrude on the setting by making
changes to the “living circumstances” of some inhabitants. In software engineering projects,
researchers are limited in natural settings by the willingness of participants or projects and their
managers to participate in a study that intrudes on their work environment. It can also be very
costly and complex to set up field experiments.

Quadrant II Contrived Settings: In the experimental simulation strategy, the researcher’s in-
trusion in the research setting increases a bit more, and we borrow the greenhouse metaphor [170].
In a greenhouse, a researcher has a controlled environment that simulates a particular type of con-
crete setting, yet the researcher aims to elicit a somewhat realistic flow of events (e.g., the growth
of a plant) rather than discrete trials (e.g., a reaction of two chemicals) more typical of laboratory
experiments. Actors may behave in natural ways, although they will be aware of the contrived set-
ting. Using an alternative metaphor of a flight simulator: there are no real consequences to crashing
a plane in a simulator. The laboratory experiment strategy is characterized by an even higher level
of intrusion by the researcher; rather than observing “natural” behavior in a contrived setting as
found in an experimental simulation, in a laboratory experiment there is a very careful measure-
ment of variables through a number of “runs” or trials, whereby the sequence of events is fully
controlled. We borrow the test tube metaphor [170].

Quadrant III Neutral Settings: Both judgment studies and sample studies are conducted in neu-
tral settings. In a judgment study, the researcher is interested in capturing responses from a panel of
participants based on some potentially complex stimulus. To facilitate this, the researcher may ac-
tively “neutralize” the setting, very similar to a courtroom so that judges and jury members are not
distracted by the environment. In a sample study, on the other hand, the setting also bears no effect
on the responses, but interactions between the researcher and the actors (either humans, systems,
or other design artifacts) are much simpler. Hence, we liken the sample survey to a referendum.

Quadrant IV Nonempirical Settings: Finally, the formal theory and computer simulation
strategies are nonempirical strategies. Neither offers an opportunity to observe real-world be-
havior or interactions. We compare the development of formal theory to solving a jigsaw puzzle
in that the researcher carefully constructs a model that helps to predict or explain a phenomenon,
based on a thorough understanding of existing literature, but also through “creative insight” [170].
A computer simulation, on the other hand, is a symbolic representation of a concrete class of sys-
tem that can be configured in a range of ways, allowing researchers to “run” a series of scenarios.
In that sense, we argue that a computer simulation is very similar to forecasting systems, such as
used for weather prediction and stock markets.

5.2 The A, B, and C of Software Engineering Research

The ABC framework positions eight archetypal research strategies that SE researchers can use,
in particular for what we have termed knowledge-seeking studies (see Section 1). The framework
is based on earlier work in the social sciences [131, 133, 134, 170, 217], which we have adapted
and operationalized for a software engineering context. The ABC framework introduces a new
approach to consider SE research studies, which can be used in at least six ways:

• Research Tutorial. The ABC framework offers a holistic overview to novice researchers
who may be overwhelmed by the numerous research methods and techniques on offer.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:32 K.-J. Stol and B. Fitzgerald

While several books and articles in the SE literature provide overviews (see Table 4), these
do not provide a holistic framework that can position the various methods available to the
SE research community. Based on two dimensions that are widely considered to be key
in choosing a research design, the framework can help understand the purpose, potential
strengths, and essential weaknesses of the eight archetypal research strategies.

• Research Program Design. The ABC framework can also be used, by both novice and ex-
perienced researchers, to design research programs. Doctoral students who conduct a series
of studies for their dissertation might wish to select a different research strategy for each.
For example, studies could adopt a strategy from different quadrants, thereby designing
studies to take place in different research settings. By so doing, the researcher can inves-
tigate a topic through triangulation of strategies, thereby overcoming inherent limitations
inherent in one strategy by adopting an alternative strategy. In this way, for example, more
complete research coverage of an existing research topic could be achieved by selecting re-
search strategies that had not been previously applied. Appendix B presents two example
scenarios to demonstrate how novice researchers could design a program of studies that
use different research strategies.

• Literature Classification. The ABC framework draws clear distinctions between differ-
ent research strategies, each with clearly defined limitations. Given the different types of
evidence that each research strategy can produce, the framework offers, in our opinion, a
good structure to classify extant literature in, for example, systematic literature reviews.
Also, because the ABC framework is grounded in two key dimensions that are important
in research design, the framework offers a reference point for terminology that may help
researchers to describe their studies. In Section 2, we gave two examples [17, 192] where the
authors’ initial characterization (and terminology) of their study led to misunderstandings
and misinterpretations.

• Research Reporting and Evaluation. Besides merely classifying extant literature, the
strengths and weaknesses of published studies can also be better evaluated and assessed,
not only in the peer review process but also after studies are published. Even today, there
is a continued concern with, for example, the lack of generalizability of exploratory case
studies (a typical method in the field study strategy, and very common in SE research). The
ABC framework clearly defines the maximum potential strengths of studies (indicated by
the markers A, B, and C in Figure 1) as well as some inherent limitations (see Table 5), which
may provide guidance to reviewers.

• Research Diversity. The eight research strategies defined in the ABC framework each
have their unique strengths and limitations, yet not all research strategies are widely known
or used. While the diversity of research methods used in the SE field has increased since
Glass’s observation of narrowness of research approach in SE, mentioned in the introduc-
tion [63], we believe an increased cognizance of how the various research strategies differ
will encourage researchers to more consciously adopt diverse strategies. Additionally, we
note that the framework also positions two nonempirical research strategies—formal theory
and computer simulation—each of which offer specific strengths and offer opportunities for
SE researchers to study phenomena from a different perspective. Again, this contributes to
potentially more thorough investigation of research topics.

• Study Integration and Synthesis. Several authors have lamented the lack of integration
of individual primary studies in software engineering (see, e.g., Cruzes and Dybå [31]).
While the primary studies can result in useful findings, there is a need to study topics
from more than one angle. On the basis of our two worked examples (see Section 4), which
identified exemplar studies for each research strategy in two important SE areas, we have

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:33

demonstrated how closely related research questions can be addressed with diverse strate-
gies. Together, these findings can converge in such a way that we can develop theories
within the SE domain.

The eight research strategies each have their limitations as discussed throughout this article and
illustrated in the two examples discussed in Section 4. These limitations are inherent, in that they
cannot be ameliorated by any tactics that a researcher might deploy. For example, the fact that
the research setting in a laboratory experiment is highly contrived and unrealistic is an inherent
limitation. It cannot be “fixed,” nor should a researcher apologize for this fact. Likewise, a sample
study should not be criticized on the grounds of lack of realistic context—it is an inherent limitation
of sample studies.

An important consequence of the observations with respect to the strengths and weaknesses
of different research strategies is that the SE research community needs better guidelines to more
fairly evaluate the quality of research studies, which should be evaluated according to how well
their potential strengths have been achieved and the degree to which incidental or operational
limitations have been identified and ameliorated. An incidental or operational limitation is one
that might have been prevented by a researcher. For example, a sample study with a very small
number of respondents (say, 10, which under any circumstances is a very small number) could
be evaluated less favorably given that its potential strength, achieving a high degree of general-
izability to a large population, has not been achieved. When evaluating a field study, reviewers
should not lament the apparent “lack of control or generalizability” in the study, because those
are its inherent weaknesses. Rather, such studies with a high degree of realism should be assessed
on the extent to which potential strengths have been realized, and the extent to which incidental
limitations have been addressed. Likewise, it would be unfair to criticize a laboratory experiment
because of its lack of realism. Rather, it should be assessed according to the extent that it has real-
ized its potential strengths, such as the degree of control of variables (construct validity, internal
validity). This is not to say that calls for more realism, such as by Sjøberg et al. [188], can be ig-
nored, but rather that both researchers and referees should acknowledge the inherent limitations
of the adopted research strategy.

5.3 Limitations of the ABC Framework

Given the socio-technical nature of the software engineering field, we argue that the framework,
though rooted in the social sciences, is also useful to SE research. We have demonstrated the fit
of the ABC framework on two worked examples in Section 4. In addition, we analyzed a sample
of 75 articles published in 2017 in Empirical Software Engineering (see Appendix A); we classi-
fied all knowledge-seeking studies using the ABC framework. Notwithstanding the fit of the ABC
framework, some limitations of the framework should be borne in mind.

First, the ABC framework does not provide guidance for specific methods—Table 4 provides an
overview of selected resources for specific methods, and so this article complements this existing
guidance. Instead, the ABC framework provides a holistic overview of different research strate-
gies, each with specific characteristics, positioned along two key dimensions (see Section 2.3) that
facilitates a systematic comparison. As a researcher selects a specific method (such as a controlled
experiment or an ethnography, for example), the researcher still needs to consider a variety of
research design considerations that are specific to those methods. This is true also during opera-
tionalization of a study: for example, a sample study can involve human respondents or using a
sample of software process artifacts (typically gathered through repository mining). A researcher
must consider the specific challenges associated with each of these data collection methods (i.e.,
challenges associated with repository mining [92] or with conducting sample studies with human
respondents [97]).

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:34 K.-J. Stol and B. Fitzgerald

Second, the ABC framework presents what we call archetypal research strategies, which is to
say that other researchers may design studies that do not fall cleanly within one of the octants of
the framework. There are certain research methods that represent a compromise between differ-
ent strategies. For example, Jansen discusses the “qualitative survey” and contrasts it with what
he refers to as the “statistical survey” [82]. The latter is equivalent to what we refer to as sample
study. Jansen defines the goal of a qualitative survey to study diversity of a topic within a popula-
tion [82]. While the term “survey” might suggest that the qualitative survey falls within the sample
study strategy, the ABC framework makes clear that its position may vary depending on the goal.
A qualitative survey may be classified as a judgment study, in particular when a researcher wishes
to explore diversity of opinions or responses based on a given stimulus (akin to a Policy Delphi
study [105]). Alternatively, as Jansen points out, a qualitative survey could be part of a Grounded
Theory study [82]. Rather than mapping methods to the various archetypal research strategies,
we believe it is more fruitful to represent the ABC framework as a device that represents polar-
ity, within which methods can vary among the three distinct goals of generalization, precision of
measurement of behavior, and capturing a realistic context. As such, it helps a researcher to care-
fully consider the tradeoffs that are represented by the framework.

Third, the ABC framework is an alternative view to software engineering research, not neces-
sarily the best view. Previous classifications such as by Shaw [182] and Wieringa et al. [221] may
be a better fit for positioning studies within a given research program, in particular for solution-
seeking studies. As we pointed out, establishing a general taxonomy is very challenging. Rather
than presenting the ABC framework as a final solution to classify research methods, we prefer to
position it as a device to reason about and to design research studies. Researchers can consider the
goal of their study, which can be to seek generalizability over a population of actors (developers,
applications, defects, etc.), to investigate relationships and behaviors through precise measure-
ment and manipulation of variables, or to capture a high degree of realism by studying specific
contexts (e.g., a specific organization or system).

Finally, as outlined in Section 1, the ABC framework applies to primary studies only, and specif-
ically those that we have labeled knowledge seeking. While we suggest that primary studies can be
identified as knowledge-seeking or solution-seeking studies, there are numerous articles that can-
not be classified as either, in particular methodological papers (e.g., [92, 161]), which includes this
article. Therefore, the ABC framework is not useful for analyzing or understanding such method-
ological papers.

5.4 Conclusion

The software engineering research community has made considerable progress in terms of the
quality of studies that seek knowledge and understanding. Over the last several decades, the com-
munity has reflected on the way it conducts research and the methods to do that research. There
are numerous guidelines for employing specific methods, and the variety of research methods has
increased without a doubt. Nevertheless, there is still some confusion about terminology, and the
various overviews of research methods are a“mixed bag” in that the various methods identified
have not been carefully positioned in relation to one another. A holistic view of the landscape of
research strategies to generate new knowledge and understanding has been missing so far in the
SE research community. In this article, we adopt a framework from the social sciences that we have
labeled the ABC framework—as such, it contributes to the literature on research methodology for
software engineering. The ABC framework represents a holistic overview of eight archetypal re-
search strategies that is oriented around two key dimensions: the level of obtrusiveness of a study
and the generalizability of the findings. The framework also clarifies the inherent weaknesses and

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:35

potential strengths of the research strategies, which facilitates a better understanding of the trade-
offs between threats to internal and external validity, for example.

In this article, we have tailored and operationalized the ABC framework for a software engi-
neering context and illustrated how the eight archetypal research strategies manifest in two key
software engineering areas (GSE, RE). In addition, we have analyzed a sample of all articles pub-
lished in 2017 in Empirical Software Engineering: An International Journal, which demonstrates
that the framework is generally suitable to reason about research strategies of knowledge-seeking
studies in SE. Finally, we discussed a number of ways in which future SE research can benefit from
the ABC framework.

APPENDIX

A SAMPLE ANALYSIS OF RESEARCH STRATEGIES

In order to demonstrate a general applicability of the framework, we conducted an analysis
of all articles published in 2017 in Springer’s Empirical Software Engineering: An International
Journal. We selected this journal because it emphasizes empirical research, which is more likely to
be “knowledge seeking” than solution seeking. The analysis included 75 articles; we excluded sec-
ondary studies (mapping studies, systematic reviews, and case surveys), editorials, methodological
papers, and errata.

Table 10 presents the detailed results of our analysis. For each study, we list the authors, title,
and predominant research strategy, followed by a brief description of the study. Several articles

Table 10. Analysis of Research Strategies in a Sample of Articles in Empirical

Software Engineering: An International Journal

Authors Title Predominant Strategy and Description

Springer Empirical Software Engineering Volume 22, Number 1, February 2017

Luo et al. [124] FOREPOST: finding performance
problems automatically with
feedback-directed learning software
testing

Solution
Seeking +
Laboratory
Experiment

Proposes FOREPOST, a solution for automatically finding
performance bottlenecks in applications using black-box
software testing. Evaluated in a laboratory experiment.

Vitharana [215] Defect propagation at the project level:
results and a post hoc analysis on
inspection efficiency

Sample Study Investigates the impact of defect propagation at the project
level during early life cycle phases. Hypotheses are set up that
are tested using a large dataset consisting of inspections
conducted over a period of 4.5 years at one company.

Niknafs and
Berry [148]

The impact of domain knowledge on
the effectiveness of requirements
engineering activities

Laboratory
Experiment

Investigates the impact of domain knowledge on requirements
engineering activities. Hypotheses are set up and evaluated
through two controlled experiments with students.

Bao et al. [10] Extracting and analyzing time-series
HCI data from screen-captured task
videos

Experimental
Simulation,
Solution
Seeking +
Laboratory
Experiment

Exp. Sim.: Seeks to better understand challenges in manually
transcribing screen-captured videos into time-series HCI data;
3 participants instructed to manually transcribe a 20-min.
screen-captured task video. Solution: proposes scvRipper, a
computer-vision-based scraping technique to automatically
extract time-series HCI data. Lab. exp.: evaluation of
scvRipper’s runtime performance and effectiveness.

Li et al. [119] Zen-ReqOptimizer: a search-based
approach for requirements assignment
optimization

Solution
Seeking +
Laboratory
Experiment

Proposes a fitness function to optimize assignment for
reviewing and clarifying requirements to different types of
stakeholders. Evaluated in a laboratory setting to compare the
performance of 4 other algorithms.

Charpentier
et al. [25]

Raters’ reliability in clone benchmarks
construction

Laboratory
Experiment

Investigates the reliability of rater judgments about
context-dependent code clones. Evaluated through a
laboratory experiment.

Niu et al. [149] Learning to rank code examples for
code search engines

Solution
Seeking +
Laboratory
Experiment

Proposes a code example search approach to automatically
train a ranking schema that calculates relevance of code
examples. Evaluated in a laboratory experiment,
demonstrating that the proposed approach outperforms
existing ranking schemas.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:36 K.-J. Stol and B. Fitzgerald

Table 10. Continued

Authors Title Predominant Strategy and Description

Ó Cinnéide et al.
[28]

An experimental search-based
approach to cohesion metric
evaluation

Solution
Seeking +
Laboratory
Experiment

Proposes a technique to “animate” metrics and observe their
behavior; through an experimental evaluation on a set of 10
Java applications with a total of 330KLOC.

Chen and Jiang
[26]

Characterizing logging practices in
Java-based open-source software
projects—a replication study in Apache
Software Foundation

Sample Study Replication study to investigate whether or not findings of an
earlier study on logging practices in open-source systems
apply to Apache Software Foundation projects.

Ye et al. [228] The structure and dynamics of
knowledge network in domain-specific
Q&A sites: a case study of stack
overflow

Field Study Investigates knowledge diffusion processes in StackOverflow.
The “field” or natural setting is online, because StackOverflow
is a Q&A website. Findings are specific to this particular site,
but can be used as a foundation to study other, similar sites.

Park et al. [153] An empirical study of supplementary
patches in open-source projects

Sample Study Seeks to understand the characteristics of “multifix” bugs and
investigate how to predict locations of supplementary patches
based on the location of initial patches. Studies a sample of
bugs from selected OSS projects, and findings are presented as
generalized statements.

Hassan et al.
[69]

An empirical study of emergency
updates for top Android mobile apps

Sample Study Investigates emergency updates for Android apps, using a
sample of 1,000 emergency updates for over 10,000 apps.

Jiang et al. [85] Why and how developers fork what
from whom in GitHub

Sample Study Investigates why and how developers fork what from whom,
using a sample of over 236,000 developers and over 1.8m forks.

Jiang et al. [86] Do Programmers Do Change Impact
Analysis in Debugging?

Experimental
Simulation,
Sample Study

Investigates whether, and how, programmers do change
impact analysis. Exp. Sim.: recording of 9 hired professional
programmers in an environment set up by the researchers; the
participants were given bug reports and asked to fix them
within an hour. Sam. Sur.: online survey with 35 responses.

Springer Empirical Software Engineering Volume 22, Number 2, April 2017

Kessentini et al.
[94]

Search-based detection of model level
changes

Solution
Seeking +
Laboratory
Experiment

Proposes an approach to detect model changes as a sequence
of refactorings. Experimentally evaluated in a contrived setting
on models of 8 projects.

Thongtanunam
et al. [204]

Review participation in modern code
review: an empirical study of the
Android, Qt, and OpenStack projects

Sample Study Studies factors that influence review participation, using a
dataset of over 196,000 reviews from 3 OSS projects. The study
develops a number of models with generalizable statements,
and does not focus specifically on the contexts of the 3 projects.

Lokan and
Mendes [122]

Investigating the use of moving
windows to improve software effort
prediction: a replicated study

Sample Study Data from a sample of 398 projects were used; these projects
came from three different organizations, but this is incidental
rather than intentional—the focus here is not to capture the
context of these three organizations.

Duarte [45] Productivity paradoxes revisited Sample Study Investigates the relationship between quality maturity levels
and labor productivity, using a sample data set of 687 firms.

Rojas et al. [165] A detailed investigation of the
effectiveness of whole test suite
generation

Laboratory
Experiment

Compares different approaches (one goal at a time, whole,
archive) to generate test cases, using an experimental study on
a random set of 100 Java classes.

Mkaouer et al.
[140]

A robust multiobjective approach to
balance severity and importance of
refactoring opportunities

Solution
Seeking +
Laboratory
Experiment

Proposes a multiobjective approach to find the best tradeoff
between quality improvements, severity, and importance of
fixing code smells. The approach is experimentally compared
to other approaches.

Kifetew et al.
[95]

Generating valid grammar-based test
inputs by means of genetic
programming and annotated grammars

Solution
Seeking +
Laboratory
Experiment

Proposes grammar annotations to generate test data; evaluated
through a laboratory experiment that showed that the
proposed approach has comparable results to learned
probabilities in terms of coverage and fault detection, and
achieves a higher level of valid input data.

Springer Empirical Software Engineering Volume 22, Number 3, June 2017

Ståhl et al. [195] Achieving traceability in large-scale
continuous integration and delivery
deployment, usage and validation
of the Eiffel framework

Solution
Seeking +
Judgment
Study + Field
Study

Investigates how to address traceability in large-scale software
development in a CI/CD context. Proposes a framework
(“Eiffel”), which was validated through a judgment study and
field study.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:37

Table 10. Continued

Authors Title Predominant Strategy and Description

Falessi et al. [53] Estimating the number of remaining
links in traceability recovery

Solution
Seeking +
Laboratory
Experiment

Proposes an approach to estimate the number of “positive”
candidate links that provide traceability. The approach is
experimentally evaluated on a dataset; performance of
multivariate estimation models is compared to univariate
models.

Zogaan et al.
[233]

Automated training-set creation for
software architecture traceability
problem

Solution
Seeking +
Laboratory
Experiment

Proposes 3 automated techniques to create training sets, which
are experimentally evaluated.

Sharif et al.
[178]

Eye movements in software traceability
link recovery

Experimental
Simulation,
Judgment
Study

Compares the gaze-link method to IR methods. Exp. Sim.: One
set of participants is asked to perform a number of bug
localization tasks. Judgment Study: A set of participants is asked
to rank the results based on utility.

Guo et al. [66] Tackling the term-mismatch problem in
automated trace retrieval

Solution
Seeking +
Laboratory
Experiment

Proposes 3 techniques for augmenting queries to generate more
accurate trace links. Evaluated through a set of experiments.

Behnamghader
[15]

A large-scale study of architectural
evolution in open-source software
systems

Sample Study Presents an analysis of architectural changes of over 900
versions of 23 OSS systems, using ARCADE, which is an
approach that the authors published before. (ARCADE enables
this knowledge-seeking study.)

Wu et al. [226] Analysis of license inconsistency in
large collections of open-source projects

Sample Study Presents an analysis of license inconsistencies on a sample of
over 10,500 OSS projects.

Choetkiertikul
[27]

Predicting the delay of issues with due
dates in software projects

Solution
Seeking +
Sample Study

Presents an approach for project managers to predict whether
issues are at risk of delay. Evaluated using a sample of over
108,000 issues from 8 projects.

Coelho et al.
[29]

Exception handling bug hazards in
Android: results from a mining study
and an exploratory survey

Sample Study
(2 ×)

Presents an analysis of exception handling bug hazards faced by
app developers. Study 1 is a sample study of over 6,000 Java
exception stack traces from over 600 OSS apps. Study 2 is a
sample study of over 70 developers.

Munaiah et al.
[145]

Do bugs foreshadow vulnerabilities? An
in-depth study of the chromium project

Sample Study Investigates the relationship between bugs and vulnerabilities
using a sample of over 374,000 bugs and over 700 postrelease
vulnerabilities within the Chromium project.

Sawant and
Bacchelli [173]

fine-GRAPE: fine-grained APi usage
extractor—an approach and dataset to
investigate API usage

Sample Study Investigates usage of 5 APIs by a sample of over 20,000 client
projects. The study is facilitated by a purposely developed
approach called fine-GRAPE.

Spinellis [194] A repository of Unix history and
evolution

Field Study Presents an analysis of the history and evolution of Unix. The
focus of the study is a single system, which is analyzed through
archival data gathered through a repository.

Caneill et al.
[22]

The Debsources Dataset: two decades of
free and open-source software

Field Study Presents a case study of Debian, which investigates its
evolution, rate of change, use and popularity of programming
languages, and use and evolution of licenses within Debian.

Jbara and
Feitelson [83]

How programmers read regular code: a
controlled experiment using eye
tracking

Laboratory
Experiment

Seeks to verify and quantify the effect of “regular” code patterns
on code comprehension, using a controlled experiment with 18
students and 2 faculty members.

Macleod et al.
[126]

Documenting and sharing software
knowledge using screencasts

Sample Study Investigates knowledge sharing through screencasts, by
studying a total sample of 27 YouTube videos representing over
8 hours of footage. In addition, interviews with 10 screencast
creators were conducted. The study focuses on finding
generalizable answers, though the authors acknowledge the
limitations of the limited sample.

Beller et al. [16] The last line effect explained Sample Study Investigates the “last line effect,” the phenomenon that the last
line in a “micro-clone” is more likely to contain an error,
through an analysis of a sample of 219 OSS projects, which is
complemented with a set of interviews with developers.

Vendome et al.
[214]

License usage and changes: a large-scale
study on gitHub

2 × Sample
Study

Investigates when and why developers adopt or change software
licenses, through a quantitative analysis of a sample of over
16,000 Java projects hosted on GitHub. In addition, a qualitative
analysis was conducted on a sample of over 1,100 projects.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:38 K.-J. Stol and B. Fitzgerald

Table 10. Continued

Authors Title Predominant Strategy and Description

Springer Empirical Software Engineering Volume 22, Number 4, 2017

Shi et al. [184] Metric-based software reliability
prediction approach and its application

Solution
Seeking +
Laboratory
Experiment +
Judgment
Study

Proposes a software reliability prediction approach based on
metrics. Lab. exp.: Experimentally evaluated the effort
necessary for the approach. Jud. Stud.: a panel of four experts
was invited to review the methods and results of the study.

Wu et al. [226] Assessing the quality of industrial
avionics software: an extensive empirical
evaluation

Field Study Presents a case study of an industrial real-time avionics
operating system. The analysis focuses on the variation in
quality due to testing and associated characteristics in a
concrete RTOS.

Li et al. [118] Which log level should developers choose
for a new logging statement?

Sample Study Investigates log levels through a sample study of over 16,000
logging statements, originating in 4 OSS projects.

Stavropoulou
et al. [196]

Case study on which relations to use for
clustering-based software architecture
recovery

Sample Study Investigates whether a large software system’s architecture
can be accurately recovered while minimizing the data sources
to do so. Presents the results of an analysis of a small sample of
systems to answer a series of research questions.

Assunção et al.
[6]

Multiobjective reverse-engineering of
variability-safe feature models based on
code dependencies of system variants

Solution
Seeking +
Sample Study

Proposes an approach for reverse-engineering feature models
from feature sets and a dependency graph. The approach is
evaluated on a small sample of systems.

Gharehyazie
et al. [57]

Tracing distributed collaborative
development in Apache software
foundation projects

2 × Sample
Study

Presents an algorithm for tracing group collaborations in OSS,
which was then used to study associations of teams.

Li et al. [119] Toward just-in-time suggestions for log
changes

Sample Study The study identified all log statements in 4 OSS projects and
identified 20 different reasons for log changes. The goal here
was to learn characteristics about the population, not about
the specific OSS projects.

Herbold et al.
[71]

Global vs. local models for cross-project
defect prediction

Laboratory
Experiment

Presents a replication study of cross-project defect prediction,
which evaluates the performance of local models, followed by
a comparison of a global model.

Menzies et al.
[137]

Are delayed issues harder to resolve?
Revisiting cost to fix of defects
throughout the life cycle

Sample Study Investigates the “delayed issue” effect, which states that the
longer an issue lingers, the more effort is required to resolve it,
through a study involving a sample of 171 projects.

Martinez et al.
[129]

Automatic repair of real bugs in Java: a
large-scale experiment on the Defects4j
dataset

Laboratory
Experiment

Investigates the effectiveness of automatic test-suite-based
repair on Defects4J, which is a large dataset of real-world Java
bugs. Using state-of-the-art repair methods, it was
demonstrated that patches could be generated for 47 out of
224 bugs.

Mahmoud and
Bradshaw [127]

Semantic topic models for source code
analysis

Solution
Seeking +
Laboratory
Experiment

Proposes an approach for topic modeling that is designed for
source code, which is experimentally evaluated.

Sakhnini et al.
[172]

Group vs. individual use of power-only
EPMcreate as a creativity enhancement
technique for requirements elicitation

Laboratory
Experiment

Presents an experiment to evaluate how the size of a group
that uses the Power-Only EPMcreate (POEPMcreate) creativity
technique affects the effectiveness of both the group and each
group member, in terms of generating requirement ideas.

Joblin et al. [87] Evolutionary trends of developer
coordination: a network approach

Sample Study Investigates the evolution of developer coordination in
open-source projects, through an analysis of a sample of
18 large OSS projects, with findings that aim to generalize.

Lin et al. [120] Studying the urgent updates of popular
games on the Steam platform

Sample Study Investigates urgent updates of the 50 most popular games on
the Steam platform, in particular, how often developers release
urgent updates, and why.

Riaz et al. [163] Identifying the implied: Findings from
three differentiated replications on the
use of security requirements templates

Laboratory
Experiment

Presents 3 replications of a controlled experiment to evaluate
the use of automatically suggested templates in identifying
implicit security requirements vs. a manual approach.

Lenberg et al.
[115]

An initial analysis of software engineers’
attitudes toward organizational change

Sample Study Creates, verifies, and validates a model that predicts software
engineers’ attitudes toward organizational change, using
sample data collected through a questionnaire, with
56 responses.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:39

Table 10. Continued

Authors Title Predominant Strategy and Description

Johanson and
Hasselbring [88]

Effectiveness and efficiency of a
domain-specific language for
high-performance marine ecosystem
simulation: a controlled experiment

Experimental
Simulation

The scientist participants’ workflow is “imitated”; the context
is fairly realistic, using a concrete system (the Sprat Ecosystem
DSL).

Le et al. [112] Will this localization tool be effective for
this bug? Mitigating the impact of
unreliability of
information-retrieval-based bug
localization tools

Solution
Seeking +
Laboratory
Experiment

Presents an oracle that can predict whether a ranked list
produced by an information-retrieval-based bug localization
tool is likely to be effective or not. Evaluated on a dataset of
over 3,000 bug reports.

Springer Empirical Software Engineering Volume 22, Number 5, December 2017

Méndez
Fernández et al.
[55]

Naming the pain in requirements
engineering

Sample Study Presents results of a sample survey (part of the NaPiRE
initiative) with data from 228 companies on problems in
requirements engineering.

Bano et al. [9] User satisfaction and system success: an
empirical exploration of user involvement
in software development

Field Study Presents a longitudinal case study of a software development
project to explore user satisfaction in relation to user
involvement and system success.

Lehtinen et al.
[113]

Recurring opinions or productive
improvements—what agile teams actually
discuss in retrospectives

Field Study Presents a longitudinal case study based on data collected from
37 team-level retrospective meetings, within the context of a
software development company of 800 employees.

Dieste et al. [41] Empirical evaluation of the effects of
experience on code quality and
programmer productivity: an exploratory
study

Laboratory
Experiment

Investigates the effects of experience on code quality and
programmer productivity. Presents results of 10 quasi
experiments conducted in academic and industry settings (in
all cases the experiments were conducted in contrived
settings).

Jongeling et al.
[89]

On negative results when using
sentiment analysis tools for software
engineering research

Laboratory
Experiment

Investigates to what extent results from SE studies using
sentiment analysis depend on the choice of sentiment analysis
tool. Through experimental comparison, finds that tools do not
compare with manual labeling, nor do different tools agree
with each other.

Gil and
Lalouche [58]

On the correlation between size and
metric validity

Sample Study Presents an analysis of a set of 26 metrics and a dataset of over
53,000 Java source code files that demonstrates that the
validity of metrics depends on their correlation with size.

Sabané et al.
[171]

Fragile base-class problem, problem? 2 × Sample
Study

Sample Study 1 presents an analysis of over 112,000
“micro-architectures” (called Fragile Base-Class Problem,
FBCP); Sample Study 2 presents an analysis of 41 responses.

Menzies et al.
[138]

Negative results for software effort
estimation

Laboratory
Experiment

Experimental study that investigates whether new software
development effort estimation techniques generate better
estimates than older methods.

King et al. [96] To log or not to log: using heuristics to
identify mandatory log events—a
controlled experiment

Laboratory
Experiment

Presents a controlled experiment with over 100 students to
evaluate the use of a heuristics-driven method for identifying
mandatory log events.

Springer Empirical Software Engineering Volume 22, Number 6, December 2017

Palomares et al.
[152]

Requirements reuse and requirement
patterns: a state of the practice survey

Sample Study Presents a survey to investigate the state of practice of reuse of
requirements; results include an analysis of 71 responses from
requirements engineers.

Tosun et al.
[209]

An industry experiment on the effects of
test-driven development on external
quality and productivity

Laboratory
Experiment

The setting is contrived—developers had an opportunity to
sign up to participate; the research setting exists solely for the
purpose of this experiment.

Malhotra and
Khanna [128]

An empirical study for software change
prediction using imbalanced data

Laboratory
Experiment

Develops a set of change prediction models, and
experimentally evaluates these on imbalanced software
datasets.

Heikkilä et al.
[70]

Managing the requirements flow from
strategy to release in large-scale agile
development: a case study at Ericsson

Field Study Investigates the “flow” of requirements from strategy to
system release in a large-scale agile context in Ericsson.

Alégroth and
Feldt [3]

On the long-term use of visual GUI
testing (VGT) in industrial practice: a case
study

Field Study Presents a study that evaluates the use of visual GUI testing at
Spotify, which addresses questions regarding adoption of VGT,
its benefits, and challenges.

(Continued)

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:40 K.-J. Stol and B. Fitzgerald

Table 10. Continued

Authors Title Predominant Strategy and Description

Labunets et al.
[108]

Model comprehension for security risk
assessment: an empirical comparison of
tabular vs. graphical representations

Laboratory
Experiment

Presents results of a series of experiments to evaluate the
effectiveness of tabular and graphical representations for
extracting information about security risks.

Antinyan et al.
[4]

Evaluating code complexity triggers,
use of complexity measures, and the
influence of code complexity on
maintenance time

Sample Study Presents a sample survey that investigates code characteristics
and how they contribute to complexity, based on a set of
100 responses.

Noei et al. [150] A study of the relation of mobile device
attributes with the user-perceived
quality of Android apps

Sample Study Investigates the relationship between device attributes and app
attributes, on the one hand, and the user-perceived quality of
apps on the other. The study is based on an analysis of over
150,000 reviews, 30 devices, and 280 apps.

Bezemer et al.
[18]

An empirical study of unspecified
dependencies in make-based build
systems

Field Study Presents an analysis of 4 OSS systems to identify unspecified
dependencies in make-based build systems.

Xia et al. [227] What do developers search for on the
web?

Sample Study Investigates what developers search for on the web, through a
set of queries from 60 developers and a survey among
235 software engineers.

Munaiah et al.
[145]

Curating GitHub for engineered
software projects

Laboratory
Experiment

Presents a framework and reference implementation of a tool
(“reaper”) that enables researchers to identify GitHub
repositories used for software development (instead of other
purposes). The tool is experimentally evaluated using a set of
GitHub projects. The focus is on the evaluation of the tool, rather
than establishing knowledge about the sample of projects.

present solution-seeking studies—that is, such articles present a new technique, model, or tool
to solve a practical problem. We describe their research strategy as solution seeking; all articles
that present new solutions also include a knowledge-seeking study to evaluate or validate the
solutions. In almost all cases, the evaluation was performed using a laboratory experiment strategy
(we report this as solution seeking + Laboratory Experiment). We note that many such experimental
studies are not controlled experiments—instead, solutions are compared to other existing solutions
in order to demonstrate an improvement. Such comparisons aim to collect precise measurements
in a contrived setting (so as to maximize the precision of those measurements), which is why we
categorize them as laboratory experiments.

B GUIDELINES FOR USING THE ABC FRAMEWORK TO DESIGN

A RESEARCH PROGRAM

One of the ways to use the ABC framework is to design a research program. The ABC framework
suggests that any research strategy ultimately comes down to a tradeoff between generalizability
of findings to a population of actors (A), precision of measurement of behavior (B), and realism of
context (C). Each research strategy has certain inherent limitations, and potential strengths that it
can achieve. By combining studies with different research strategies, weaknesses inherent in one
study may be ameliorated by another study with a different strategy.

While norms and customs vary across the world in terms of the requirements for a PhD disser-
tation, it is custom in several countries in Europe (including Sweden, Finland, and the Netherlands)
to conduct a series of studies, which will be written up either as a monograph or a set of published
papers. Our examples here assume that a student will undertake three studies (though obviously
this number may vary depending on norms in their particular institution). By way of guidance,
we develop two hypothetical scenarios, drawing on the studies presented in Section 4.1 on Global
Software Engineering. In each of these scenarios, we imagine how a PhD student could design

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:41

Fig. 2. Two hypothetical scenarios for designing a research program. Numbers refer to the studies in Table 6;
e.g.,©1 refers to the first study, which is a Field Study by Herbsleb and Grinter. The labels A, B, and C indicate,
respectively, the maximum potential for generalizability of findings, maximum potential for precision of
measurement of behavior, and maximum potential to capture a realistic context.

a research program by conducting a series of studies using different research strategies. Figure 2
shows these in schematic form. We discuss each scenario in more detail below.

B.1 Scenario I: Exploring and Understanding

The research program of Scenario I consists of the studies listed in Table 11. All three studies focus
on challenges of distributed development; the field study ©1 documents the various challenges
involved in integration of software components. The Judgment Study ©5 explores the risk factors
for offshore-outsourcing that managers face. The Sample Study©6 , finally, explores three key issues
in software development faced by an offshore software supplier. In this scenario, the topic of study
is quite new and relatively unexplored. This has parallels with what Edmondson and McManus
[50] label as the nascent research stage for a particular topic. Thus, research is about exploring
and understanding the topic better. Through a Field Study, a high level of realism of context can

Table 11. Research Program of Scenario I

Study Research Goal Strategy Setting Strengths Weaknesses

©1 Herbsleb
and Grinter
[73]

To develop an understanding
of the difficulties of distributed
software development.

Field Study Natural
setting

Highly realistic context
facilitating a deep
understanding of the
GSE phenomenon from
one company’s
perspective.

No statistically generalizable
findings. Low level of
precision of measurement of
behavior: no causal
relationships can be
established.

©5 Iacovou
and Nakatsu
[78]

To investigate risk factors for
offshore-outsourcing software
development.

Judgment
Study

Neutral
setting

Allowed for a relatively
high level of control to
precisely capture the
various risk factors from
a panel of experts.

Results lack the realism
found in a specific concrete
setting. Participants not a
representative sample
(rather, a systematic sample).

©6 Ma et al.
[125]

Investigation of key issues in
software development by
Chinese software suppliers:
language barriers, channels of
communication, and working
overtime.

Sample
Study

Neutral
setting

Sample allowing
generalizability of
findings to a large
population.

The role of context is
minimized, because all
questions in the survey must
be answerable by all
respondents, each of which
has a unique context.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:42 K.-J. Stol and B. Fitzgerald

be achieved, and through the Sample Study, a high degree of generalizability of findings can be
achieved. The Judgment Study is a compromise between achieving a high level of precision and
generalizability of findings, not quite achieving a maximum potential of either.

B.2 Scenario II: Measuring and Testing

In the second scenario, the research program consists of the three studies listed in Table 12. These
studies are positioned in three of the four quadrants of the ABC framework (see Figure 2). Each of
these studies investigates the impact of certain aspects of distributed development (e.g., colocation
vs. distributed work; task allocation) on the three key concerns that underpin the “software crisis,”
namely, software quality, cost, and project duration. Because each study has a different strategy,
each can potentially leverage inherent strengths to overcome particular weaknesses. For example,
the field experiment ©2 benefits from a realistic setting, but this negatively affects the precision
of measurement. The laboratory experiment ©4 , on the other hand, can achieve a high precision
of measurement but suffers from a low level of realism. The third study ©8 , finally, can overcome
the cost of setting up laboratory experiments and field experiments, by running a large number
of scenarios with a computer simulation. However, the computer simulation also suffers from a
lack of realism, and in fact, this strategy only results in theoretical findings, not empirical find-
ings. Together, however, these three studies can form a research program for a PhD dissertation
focused on investigating how global software engineering can address the traditional concerns of
the software crisis.

The focus of Scenario II is much more on measuring and testing, whereas Scenario I was more
about exploring and understanding the topic. In Scenario II, there is more structure for the topic
in that constructs have emerged that should be the focus of measurement and testing. This cor-
responds with the intermediate stage of a research topic as defined by Edmondson and McManus
[50].

The studies in Scenario II vary in research settings; however, while some realism has been cap-
tured with the Field Experiment and a high level of precision of measurement could be achieved
through the Laboratory Experiment, none of the three studies achieve generalizability of findings.

We could also define a third scenario that we could label Theorizing and Bounding. This involves
greater conceptualization and theorizing about the relationships between concepts. There is also
sufficient knowledge from prior research to be more confident about defining precise constructs

Table 12. Research Program of Scenario II

Study Research goal Strategy Setting Strengths Weaknesses

©2 Ebert et al.
[49]

To investigate the impact of
co-location, coaching, and
teamwork on software quality
and costs.

Field
Experiment

Natural
setting

Company setting offers
maximum level of
realism of study context.

Results may be strongly
linked to the specific
organization due to
confounding variables that
cannot be isolated in a
natural setting.

©4 Babar et al.
[8]

To investigate the impact of
groupware support for
distributed teams on the
quality of architecture
evaluation deliverables.

Laboratory
Experiment

Contrived
setting

High precision of
measurement to
establish internal
validity.

Low level of realism due to:
contrived setting; use of
undergrad students; task
limited to one task only.
Limited level of
generalizability of findings.

©8 Setamanit
et al. [177]

To investigate task allocation
strategies in GSE and its
impact on project duration.

Computer
Simulation

Non-
empirical
setting

Ability to run a large
number of complex
scenarios that are hard
or too costly to evaluate
in real-world settings.

Lack of realism as the
simulation depends on rules
that must be
pre-programmed. No new
empirical results are
observed.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:43

for formal experimentation. This corresponds with the mature stage of a research topic as defined
by Edmondson and McManus [50].

ACKNOWLEDGMENTS

We thank the three anonymous reviewers for their detailed feedback, which has led to a better
article.

REFERENCES

[1] S. Adolph, P. Kruchten, and W. Hall. 2012. Reconciling perspectives: A grounded theory of how people manage the
process of software development. J. Syst. Software 85 (2012), 1269–1286.

[2] P. J. Ågerfalk and B. Fitzgerald. 2006. Flexible and distributed software processes: Old petunias in New Bowls?
Commun. ACM 49, 10 (2006), 27–34.

[3] E. Alégroth and R. Feldt. 2017. On the long-term use of visual GUI testing in industrial practice: A case study. Empir.

Software Eng. 22, 6 (2017), 2937–2971.
[4] V. Antinyan, M. Staron, and A. Sandberg. 2017. Evaluating code complexity triggers, use of complexity measures

and the influence of code complexity on maintenance time. Empir. Software Eng. 22, 6 (2017), 3057–3087.
[5] E. Arisholm, H. Gallis, T. Dybå, and D. I. K. Sjøberg. 2007. Evaluating pair programming with respect to system

complexity and programmer expertise. IEEE Trans. Softw. Eng. 33, 2 (2007), 65–86.
[6] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio, and A. Egyed. 2017. Multi-objective reverse

engineering of variability-safe feature models based on code dependencies of system variants. Empir. Software Eng.

22, 4 (2017), 1763–1794.
[7] D. Avison, F. Lau, M. Myers, and P. A. Nielsen. 1999. Action research. Commun. ACM 42, 1 (1999), 94–97.
[8] M. A. Babar, B. Kitchenham, and R. Jeffery. 2008. Comparing distributed and face-to-face meetings for software

architecture evaluation: A controlled experiment. Empir. Software Eng. 13, 1 (2008), 39–62.
[9] M. Bano, D. Zowghi, and F. da Rimini. 2017. User satisfaction and system success: An empirical exploration of user

involvement in software development. Empir. Software Eng. 22, 5 (2017), 2339–2372.
[10] L. Bao, J. Li, Z. Xing, X. Wang, X. Xia, and B. Zhou. 2017. Extracting and analyzing time-series HCI data from

screen-captured task videos. Empir. Software Eng. 22, 1 (2017), 134–174.
[11] V. R. Basili, R. W. Selby, and D. H. Hutchens. 1986. Experimentation in software engineering. IEEE Trans. Softw. Eng.

12, 7 (1986), 733–743.
[12] V. R. Basili and M. V. Zelkowitz. 2007. Empirical studies to build a science of computer science. Commun. ACM 50,

11 (2007), 33–37.
[13] B. C. D. Anda, D. I. K. Sjøberg, and A. Mockus. 2009. Variability and reproducibility in software engineering: A study

of four companies that developed the same system. IEEE Trans. Softw. Eng. 35, 3 (2009), 407–429.
[14] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp. 2008. Motivation in software engineering: A systematic

literature review. Inform. Software Tech. 50, 9–10 (2008), 860–878.
[15] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian, and N. Medvidovic. 2017. A large-scale study of

architectural evolution in open-source software systems. Empir. Software Eng. 22, 3 (2017), 1146–1193.
[16] M. Beller, A. Zaidman, A. Karpov, and R. A. Zwaan. 2017. The last line effect explained. Empir. Software Eng. 22, 3

(2017), 1508–1536.
[17] D. M. Berry and W. F. Tichy. 2003. Comments on “Formal methods application: An empirical tale of software devel-

opment.” IEEE Trans. Software Eng. 29, 6 (2003), 567–571.
[18] C.-P. Bezemer, S. McIntosh, B. Adams, D. M. German, and A. E. Hassan. 2017. An empirical study of unspecified

dependencies in make-based build systems. Empir. Software Eng. 22, 6 (2017), 3117–3148.
[19] N. Bos, N. Sadat Shami, J. S. Olson, A. Cheshin, and N. Nan. 2004. In-group/out-group effects in distributed teams:

An experimental simulation. In Proc. International Conference on Computer-Supported Cooperative Work and Social

Computing (CSCW’04). ACM, New York, 429–436.
[20] S. S. Brilliant and J. C. Knight. 1999. Empirical research in software engineering: A workshop. ACM SIGSOFT Software

Eng. Notes 24, 3 (1999), 44–52.
[21] A. Bryant. 2000. “It’s engineering jim ... but not as we know it”: Software engineering - solution to the software

crisis, or part of the problem? In Proc. International Conference on Software Engineering, 77–86.
[22] M. Caneill, D. M. Germán, and S. Zacchiroli. 2017. The debsources dataset: Two decades of free and open source

software. Empir. Software Eng. 22, 3 (2017), 1405–1437.
[23] E. Capra, C. Francalanci, and F. Merlo. 2008. An empirical study on the relationship among software design quality,

development effort, and governance in open source projects. IEEE Trans. Softw. Eng. 34, 6 (2008), 765–782.
[24] E. Carmel. 1999. Global Software Teams. Prentice Hall.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:44 K.-J. Stol and B. Fitzgerald

[25] A. Charpentier, J.-R. Falleri, F. Morandat, E. Ben Hadj Yahia, and L. Réveillère. 2017. Raters’ reliability in clone
benchmarks construction. Empir. Software Eng. 22, 1 (2017), 235–258.

[26] B. Chen and Z. M. Jiang. 2017. Characterizing logging practices in Java-based open source software projects – A
replication study in Apache Software Foundation. Empir. Software Eng. 22, 1 (2017), 330–374.

[27] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose. 2017. Predicting the delay of issues with due dates in software
projects. Empir. Software Eng. 22, 3 (2017), 1223–1263.

[28] M. Ó Cinnéide, I. Hemati Moghadam, M. Harman, S. Counsell, and L. Tratt. 2017. An experimental search-based
approach to cohesion metric evaluation. Empir. Software Eng. 22, 1 (2017), 292–329.

[29] R. Coelho, L. Almeida, G. Gousios, A. van Deursen, and C. Treude. 2017. Exception handling bug hazards in Android.
Empir. Software Eng. 22, 3 (2017), 1264–1304.

[30] K. Conboy and B. Fitzgerald. 2010. Method and developer characteristics for effective agile method tailoring: A study
of XP expert opinion. ACM Trans. Softw. Eng. Methodol. 20, 1 (2010), 1–30.

[31] D. S. Cruzes and T. Dybå. 2011. Research synthesis in software engineering: A tertiary study. Inform. Software Tech.

53 (2011), 440–455.
[32] B. Curtis. 1980. Measurement and experimentation in software engineering. Proc. IEEE 68, 9 (1980), 1144–1157.
[33] B. Curtis. 1984. Fifteen years of psychology in software engineering: Individual differences and cognitive science.

In Proc. 7th International Conference on Software Engineering (ICSE’84). IEEE Press, 97–106.
[34] B. Curtis. 2009. Point/counterpoint: Are rigorous experiments realistic for software engineering? IEEE Software 26,

6 (2009), 56–59.
[35] B. Curtis, E. M. Soloway, R. E. Brooks, J. B. Black, K. Ehrlich, and H. R. Ramsey. 1986. Software psychology: The

need for an interdisciplinary program. Proc. IEEE 74, 8 (1986), 1092–1106.
[36] N. Dalkey and O. Helmer. 1963. An experimental application of the delphi method to the use of experts. Manage.

Sci. 9, 3 (1963), 458–467.
[37] D. E. Damian and D. Zowghi. 2003. RE challenges in multi-site software development organisations. Requir. Eng. 8

(2003), 149–160.
[38] M. Daneva. 2011. Engineering the coordination requirements in cross-organizational ERP projects: A package of

good practices. In Enterprise Information Systems: Concepts, Methodologies, Tools and Applications, I. Management
Association (Ed.). Hershey, PA: IGI Global. 1941–1959. DOI:10.4018/978-1-61692-852-0.ch810

[39] M. Daneva and N. Ahituv. 2010. A focus group study on inter-organizational ERP requirements engineering prac-
tices. In Proc. 2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement. ACM.

[40] C. De Souza, Y. Dittrich, H. Sharp, and J. Singer. 2009. Cooperative and human aspects of software engineering
(CHASE 2009). In Proc. International Conference on Software Engineering (Companion Volume). 451–452.

[41] O. Dieste, A. M. Aranda, F. Uyaguari, B. Turhan, A. Tosun, D. Fucci, M. Oivo, and N. Juristo. 2017. Empirical evalua-
tion of the effects of experience on code quality and programmer productivity: An exploratory study. Empir. Software

Eng. 22, 5 (2017), 2457–2542.
[42] Y. Dittrich. 2000. Beg, borrow, and steal—But what, and what for? In Workshop: Beg, Borrow, or Steal: Using Multi-

disciplinary Approaches in Empirical Software Engineering Research (co-located with ICSE’00).
[43] Y. Dittrich, M. John, J. Singer, and B. Tessem. 2007. For the special issue on qualitative software engineering research.

Inform. Software Tech. 49, 6 (2007), 531–539.
[44] L. Dobrica and E. Niemelä. 2005. A survey on software architecture analysis methods. IEEE Trans. Software Eng. 28,

7 (2005), 638–653.
[45] C. H. C. Duarte. 2017. Productivity paradoxes revisited. Empir. Software Eng. 22, 2 (2017), 818–847.
[46] T. Dybå, R. Prikladnicki, K. Rönkkö, C. Seaman, and J. Sillito. 2011. Qualitative research in software engineering.

Empir. Software Eng. 16 (2011), 425–429.
[47] T. Dybå, D. I. K. Sjøberg, and D. S. Cruzes. 2012. What works for whom, where, when, and why? On the role of

context in empirical software engineering. In Proc. International Symposium on Empirical Software Engineering and

Measurement (ESEM’12). ACM.
[48] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. 2008. Selecting empirical methods for software engineer-

ing research. In Guide to Advanced Software Engineering, Forest Shull, Janice Singer, and Dag I. K. Sjøberg (Eds.).
Springer-Verlag London Limited.

[49] C. Ebert, C. H. Parro, R. Suttels, and H. Kolarczyk. 2001. Better validation in a world-wide development environment.
In Proc. 7th International Software Metrics Symposium (METRICS’01).

[50] A. C. Edmondson and S. E. McManus. 2007. Methodological fit in management field research. Acad. Manage. Rev.

32, 4 (2007), 1155–1179.
[51] H. Edwards, S. McDonald, and M. Young. 2009. The repertory grid technique: Its place in empirical software engi-

neering research. Inform. Software Tech. 51, 4 (2009), 785–798.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

10.4018/978-1-61692-852-0.ch810

The ABC of Software Engineering Research 11:45

[52] J. A. Espinosa and E. Carmel. 2003. The impact of time separation on coordination in global software teams: A
conceptual foundation. Software Process. Improve. Pract. 8, 4 (2003), 249–266.

[53] D. Falessi, M. Di Penta, G. Canfora, and G. Cantone. 2017. Estimating the number of remaining links in traceability
recovery. Empir. Software Eng. 22, 3 (2017), 996–1027.

[54] N. Fenton and S. L. Pfleeger. 1997. Software Metrics: A Rigorous and Practical Approach (2nd (revised printing) ed.).
PWS Publishing Company.

[55] D. Méndez Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra, A. Vetrò, T. Conte, M.-T. Christiansson,
D. Greer, C. Lassenius, T. Männistö, M. Nayabi, M. Oivo, B. Penzenstadler, D. Pfahl, R. Prikladnicki, G. Ruhe, A.
Schekelmann, S. Sen, R. Spinola, A. Tuzcu, J. L. de la Vara, and R. Wieringa. 2017. Naming the pain in requirements
engineering. Empir. Software Eng. 22, 5 (2017), 2298–2338.

[56] B. Fitzgerald and D. Howcroft. 1998. Towards dissolution of the IS research debate: From polarization to polarity.
J. Inform. Technol. 13, 4 (1998), 313–326.

[57] M. Gharehyazie and V. Filkov. 2017. Tracing distributed collaborative development in apache software foundation
projects. Empir. Software Eng. 22, 4 (2017), 1795–1830.

[58] Y. Gil and G. Lalouche. 2017. On the correlation between size and metric validity. Empir. Software Eng. 22, 5 (2017),
2585–2611.

[59] B. G. Glaser. 1978. Theoretical Sensitivity. Sociology Press.
[60] B. G. Glaser and A. L. Strauss. 1967. The Discovery of Grounded Theory. AldineTransaction.
[61] R. L. Glass. 1994. The software-research crisis. IEEE Software 11, 6 (1994), 42–47.
[62] R. L. Glass. 2002. Facts and Fallacies of Software Engineering. Addison Wesley.
[63] R. L. Glass, I. Vessey, and V. Ramesh. 2002. Research in software engineering: An analysis of the literature. Inform.

Software Tech. 44 (2002), 491–506.
[64] D. Graziotin, X. Wang, and P. Abrahamsson. 2014. Happy software developers solve problems better: Psychological

measurements in empirical software engineering. PeerJ 2, e289 (2014), 1–23.
[65] S. Gregor. 2006. The nature of theory in information systems. MIS Quart. 30, 3 (2006), 611–642.
[66] J. Guo, M. Gibiec, and J. Cleland-Huang. 2017. Tackling the term-mismatch problem in automated trace retrieval.

Empir. Software Eng. 22, 3 (Nov. 2017), 1103–1142.
[67] J. E. Hannay and M. Jørgensen. 2008. The role of deliberate artificial design elements in software engineering ex-

periments. IEEE Trans. Software Eng. 34, 2 (2008), 242–259.
[68] R. Harrison, N. Badoo, E. Barry, S. Biffl, A. Parra, B. Winter, and J. Wuest. 1999. Directions and methodologies for

empirical software engineering research. Empir. Software Eng. 4, 4 (1999), 405–410.
[69] S. Hassan, W. Shang, and A. E. Hassan. 2017. An empirical study of emergency updates for top android mobile apps.

Empir. Software Eng. 22, 1 (2017), 505–546.
[70] V. T. Heikkilä, M. Paasivaara, C. Lasssenius, D. Damian, and C. Engblom. 2017. Managing the requirements flow

from strategy to release in large-scale agile development: A case study at Ericsson. Empir. Software Eng. 22, 6 (2017),
2892–2936.

[71] S. Herbold, A. Trautsch, and J. Grabowski. 2017. Global vs. local models for cross-project defect prediction. Empir.

Software Eng. 22, 4 (2017), 1866–1902.
[72] J. D. Herbsleb and R. E. Grinter. 1999. Architectures, coordination, and distance: Conway’s law and beyond. IEEE

Software 16, 5 (1999), 63–70.
[73] J. D. Herbsleb and R. E. Grinter. 1999. Splitting the organization and integrating the code: Conway’s law revisited.

In Proc. International Conference on Software Engineering. 85–95.
[74] R. Hoda, J. Noble, and S. Marshall. 2013. Self-organizing roles on agile software development teams. IEEE Trans.

Software Eng. 39, 3 (2013), 422–444.
[75] A. Höfer and W. Tichy. 2007. Status of empirical research in software engineering. In Empirical Software Engineering

Issues, LNCS 4336. 10–19.
[76] G. Hofstede, B. Neuijen, D. D. Ohayv, and G. Sanders. 1990. Measuring organizational cultures: A qualitative and

quantitative study across twenty cases. Admin. Sci. Quar. 35, 2 (1990), 286–316.
[77] M. Höst, B. Regnell, J. N. och Dag, J. Nedstam, and C. Nyberg. 2001. Exploring bottlenecks in market-driven require-

ments management processes with discrete event simulation. J. Sys. Software 59, 3 (2001), 323–332.
[78] C. L. Iacovou and R. Nakatsu. 2008. A risk profile of offshore-outsourced development projects. Commun. ACM 51,

6 (2008), 89–94.
[79] M. Ivarsson and T. Gorschek. 2011. A method for evaluating rigor and industrial relevance of technology evaluations.

Empir. Software Eng. 16, 3 (2011), 365–395.
[80] J. Tisseau. 2008. In vivo, in vitro, in silico, in virtuo. In 1st Workshop on SMA in Biology at Meso or Macroscopic Scales.
[81] S. Jain, M. A. Babar, and J. Fernandez. 2013. Conducting empirical studies in industry: Balancing rigor and relevance.

In Proc. International Workshop on Conducting Empirical Studies in Industry (CESI’13).

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:46 K.-J. Stol and B. Fitzgerald

[82] H. Jansen. 2010. The logic of qualitative survey research and its position in the field of social research methods.
Forum: Qual. Social Res. 11, 2 (2010).

[83] A. Jbara and D. G. Feitelson. 2017. How programmers read regular code: A controlled experiment using eye tracking.
Empir. Software Eng. 22, 3 (2017), 1440–1477.

[84] D. R. Jeffery and L. G. Votta. 1999. Guest editor’s special section introduction. IEEE Trans. Software Eng. 25, 4 (1999),
435–437.

[85] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang. 2017. Why and how developers fork what from whom in
GitHub. Empir. Software Eng. 22, 1 (2017), 547–578.

[86] S. Jiang, C. McMillan, and R. Santelices. 2017. Do programmers do change impact analysis in debugging? Empir.

Software Eng. 22, 2 (2017), 631–669.
[87] M. Joblin, S. Apel, and W. Mauerer. 2017. Evolutionary trends of developer coordination: A network approach. Empir.

Software Eng. 22, 4 (2017), 2050–2094.
[88] A. N. Johanson and W. Hasselbring. 2017. Effectiveness and efficiency of a domain-specific language for high-

performance marine ecosystem simulation: A controlled experiment. Empir. Software Eng. 22, 4 (2017), 2206–2236.
[89] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik. 2017. On negative results when using sentiment analysis tools

for software engineering research. Empir. Software Eng. 22, 5 (2017), 2543–2584.
[90] H. Jordan, S. Beecham, and G. Botterweck. 2014. Modelling software engineering research with RSML. In Proc. 18th

International Conference on Evaluation and Assessment in Software Engineering.
[91] N. Juristo and A. M. Moreno. 2001. Basics of Software Engineering Experimentation. Springer Science+Business Media.
[92] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian. 2014. The promises and perils of

mining GitHub. In Proc. 11th Working Conference on Mining Software Repositories.
[93] R. Kazman, M. Klein, and P. Clements. 2000. ATAM: Method for Architecture Evaluation. Carnegie Mellon Software

Engineering Institute, Technical Report CMU/SEI-2000-TR-004.
[94] M. Kessentini, U. Mansoor, M. Wimmer, A. Ouni, and K. Deb. 2017. Search-based detection of model level changes.

Empir. Software Eng. 22, 2 (2017), 670–715.
[95] F. M. Kifetew, R. Tiella, and P. Tonella. 2017. Generating valid grammar-based test inputs by means of genetic

programming and annotated grammars. Empir. Software Eng. 22, 2 (2017), 928–961.
[96] J. King, J. Stallings, M. Riaz, and L. Williams. 2017. To log, or not to log: Using heuristics to identify mandatory log

events – A controlled experiment. Empir. Software Eng. 22, 5 (2017), 2684–2717.
[97] B. A. Kitchenham and S. L. Pfleeger. 2002. Principles of survey research Part 2: Designing a survey. ACM Software

Eng. Notes 27, 1 (2002), 18–20.
[98] B. A. Kitchenham and S. L. Pfleeger. 2002. Principles of survey research Part 3: Constructing a survey instrument.

ACM Software Eng. Notes 27, 2 (2002), 20–24.
[99] B. A. Kitchenham and S. L. Pfleeger. 2002. Principles of survey research Part 4: Questionnaire evaluation. ACM

Software Eng. Notes 27, 3 (2002), 20–23.
[100] B. A. Kitchenham and S. L. Pfleeger. 2002. Principles of survey research Part 5: Populations and samples. ACM

Software Eng. Notes 27, 5 (2002), 17–20.
[101] B. A. Kitchenham and S. L. Pfleeger. 2003. Principles of survey research Part 6: Data analysis. ACM Software Eng.

Notes 28, 2 (2003), 24–27.
[102] B. A. Kitchenham, S. L. Pfleeger, L. M. P. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg. 2008.

Preliminary guidelines for empirical research in software engineering. IEEE Trans. Softw. Eng. 28, 2 (2008), 721–734.
[103] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. 2006. An exploratory study of how developers seek, relate, and

collect relevant information during software maintenance tasks. IEEE Trans. Software Eng. 32, 12 (2006), 971–987.
[104] J. Kontio, J. Bragge, and L. Lehtola. 2008. The focus group method as an empirical tool in software engineering. In

Guide to Advanced Empirical Software Engineering. Springer.
[105] M. Krafft, K. Stol, and B. Fitzgerald. 2016. How do free/open source developers pick their tools? A Delphi study of

the Debian project. In Proc. 38th International Conference on Software Engineering (Companion Volume), 232–241.
[106] P. Kruchten, R. L. Nord, and I. Ozkaya. 2012. Technical debt: From metaphor to theory and practice. IEEE Software

29, 6 (2012), 18–21.
[107] I. Kwan, A. Schröter, and D. Damian. 2011. Does socio-technical congruence have an effect on software build success?

A study of coordination in a software project. IEEE Trans. Software Eng. 37, 3 (2011), 307–324.
[108] K. Labunets, F. Massacci, F. Paci, S. Marczak, and F. M. de Oliveira. 2017. Model comprehension for security risk

assessment: An empirical comparison of tabular vs. graphical representations. Empir. Software Eng. 22, 6 (2017),
3017–3056.

[109] F. Lanubile. 1997. Empirical evaluation of software maintenance technologies. Empir. Software Eng. 2 (1997), 97–108.
[110] T. D. LaToza, M. Chen, L. Jiang, M. Zhao, and A. van der Hoek. 2015. Borrowing from the crowd: A study of recom-

bination in software design competitions. In Proc. International Conf. Software Engineering.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

The ABC of Software Engineering Research 11:47

[111] S. Lauesen and O. Vinter. 2001. Preventing requirement defects: An experiment in process improvement. Requir.

Eng. 6 (2001), 37–50.
[112] T.-D. B. Le, F. Thung, and D. Lo. 2017. Will this localization tool be effective for this bug? Mitigating the impact of

unreliability of information retrieval based bug localization tools. Empir. Software Eng. 22, 4 (2017), 2237–2279.
[113] T. O. A. Lehtinen, J. Itkonen, and C. Lassenius. 2017. Recurring opinions or productive improvements—What agile

teams actually discuss in retrospectives. Empir. Software Eng. 22, 5 (2017), 2409–2452.
[114] P. Lenberg, R. Feldt, and L. G. Wallgren. 2015. Behavioral software engineering: A definition and systematic literature

review. J. Syst. Software 107 (2015), 15–37.
[115] P. Lenberg, L. G. W. Tengberg, and R. Feldt. 2017. An initial analysis of software engineers’ attitudes towards orga-

nizational change. Empir. Software Eng. 22, 4 (2017), 2179–2205.
[116] F. J. Lerch, D. J. Ballou, and D. E. Harter. 1997. Using simulation-based experiments for software requirements

engineering. Ann. Software Eng. 3, 1 (1997), 345–366.
[117] T. C. Lethbridge, S. E. Sim, and J. Singer. 2005. Studying software engineers: Data collection techniques for software

field studies. Empir. Software Eng. 10 (2005), 311–341.
[118] H. Li, W. Shang, and A. E. Hassan. 2017. Which log level should developers choose for a new logging statement?

Empir. Software Eng. 22, 4 (2017), 1684–1716.
[119] H. Li, W. Shang, Y. Zou, and A. E. Hassan. 2017. Towards just-in-time suggestions for log changes. Empir. Software

Eng. 22, 4 (2017), 1831–1865.
[120] D. Lin, C.-P. Bezemer, and A. E. Hassan. 2017. Studying the urgent updates of popular games on the steam platform.

Empir. Software Eng. 22, 4 (2017), 2095–2126.
[121] H. A. Linstone and M. Turoff (Eds.). 2002. The Delphi Method Techniques and Applications. Addison-Wesley.
[122] C. Lokan and E. Mendes. 2017. Investigating the use of moving windows to improve software effort prediction: A

replicated study. Empir. Software Eng. 22, 2 (2017), 716–767.
[123] L. Lopez-Fernandez, G. Robles, and J. M. Gonzalez-Barahona. 2004. Applying social network analysis to the infor-

mation in CVS repositories. In Proc. 1st Workshop on Mining Software Repositories (MSR’04). 101–105.
[124] Q. Luo, A. Nair, M. Grechanik, and D. Poshyvanyk. 2017. FOREPOST: Finding performance problems automatically

with feedback-directed learning software testing. Empir. Software Eng. 22, 1 (2017), 6–56.
[125] J. Ma, J. Li, W. Chen, R. Conradi, J. Ji, and C. Liu. 2008. A state-of-the-practice study on communication and co-

ordination between Chinese software suppliers and their global outsourcers. Software Process Improve. Pract. 13, 3
(2008), 233–247.

[126] L. MacLeod, A. Bergen, and M.-A. Storey. 2017. Documenting and sharing software knowledge using screencasts.
Empir. Software Eng. 22, 3 (2017), 1478–1507.

[127] A. Mahmoud and G. Bradshaw. 2017. Semantic topic models for source code analysis. Empir. Software Eng. 22, 4
(2017), 1965–2000.

[128] R. Malhotra and M. Khanna. 2017. An empirical study for software change prediction using imbalanced data. Empir.

Software Eng. 22, 6 (2017), 2806–2851.
[129] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus. 2017. Automatic repair of real bugs in Java: A

large-scale experiment on the defects4j dataset. Empir. Software Eng. 22, 4 (2017), 1936–1964.
[130] J. E. McGrath. 1964. Social Psychology: A Brief Introduction. Holt, Rinehart and Winston.
[131] J. E. McGrath. 1964. Towards a “Theory of Method” for research on organizations. In New Perspectives in Organization

Research, W. Cooper, H. Leavitt, and M. Shelly (Eds.). John Wiley & Sons, New York, 533–556.
[132] J. E. McGrath. 1981. Dilemmatics: The study of research choices and dilemmas. Am. Behav. Sci. 25, 2 (1981), 179–210.
[133] J. E. McGrath. 1984. Groups: Interaction and Performance. Prentice-Hall.
[134] J. E. McGrath. 1994. Methodology matters: Doing research in the behavioral and social sciences. In Readings in

Human-Computer Interaction: Toward the Year 2000, Ronald M. Baecker (Ed.). Morgan Kaufmann, 152–169.
[135] E. R. McLean. 1973. Comments on empirical studies of management information systems by Richard L. Van Horn.

Data Base 5, 2 (1973), 181–182.
[136] N. Medvidović and R. N. Taylor. 2000. A classification and comparison framework for software architecture descrip-

tion languages. IEEE Trans. Software Eng. 26, 1 (2000), 70–93.
[137] T. Menzies, W. Nichols, F. Shull, and L. Layman. 2017. Are delayed issues harder to resolve? Revisiting cost-to-fix of

defects throughout the lifecycle. Empir. Software Eng. 22, 4 (2017), 1903–1935.
[138] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn. 2017. Negative results for software effort estimation. Empir.

Software Eng. 22, 5 (2017), 2658–2683.
[139] B. Meyer, H. Gall, M. Harman, and G. Succi. 2013. Empirical answers to fundamental software engineering problems

(panel). In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’13). ACM,
14–18.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

11:48 K.-J. Stol and B. Fitzgerald

[140] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and K. Deb. 2017. A robust multi-objective approach to
balance severity and importance of refactoring opportunities. Empir. Software Eng. 22, 2 (2017), 894–927.

[141] A. Mockus, R. T. Fielding, and J. D. Herbsleb. 2000. A case study of open source software development: The Apache
server. In Proc. International Conf. Software Engineering.

[142] A. Mockus, R. T. Fielding, and J. D. Herbsleb. 2002. Two case studies of open source software development: Apache
and Mozilla. ACM Trans. Software Eng. Methodol. 11, 3 (2002), 309–346.

[143] M. Montesi and P. Lago. 2008. Software engineering article types: An analysis of the literature. J. Syst. Software 81,
10 (2008), 1694–1714.

[144] M. Müller and D. Pfahl. 2008. Simulation methods. In Guide to Advanced Software Engineering, F. Shull, J. Singer, and
D. I. K. Sjøberg (Eds.). Springer-Verlag London Limited.

[145] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan. 2017. Curating GitHub for engineered software projects. Empir.

Software Eng. 22, 6 (2017), 3219–3253.
[146] C. J. Neill and P. Laplante. 2003. Requirements engineering: The state of the practice. IEEE Software 20, 6 (2003),

40–45.
[147] L. Nguyen and G. Shanks. 2008. A framework for understanding creativity in requirements engineering. Inform.

Software Tech. 51, 3 (2008), 655–662.
[148] A. Niknafs and D. Berry. 2017. The impact of domain knowledge on the effectiveness of requirements engineering

activities. Empir. Software Eng. 22, 1 (2017), 80–133.
[149] H. Niu, I. Keivanloo, and Y. Zou. 2017. Learning to rank code examples for code search engines. Empir. Software Eng.

22, 1 (2017), 259–291.
[150] E. Noei, M. D. Syer, Y. Zou, A. E. Hassan, and I. Keivanloo. 2017. A study of the relation of mobile device attributes

with the user-perceived quality of Android apps. Empir. Software Eng. 22, 6 (2017), 3088–3116.
[151] P. Ovaska, M. Rossi, and P. Marttiin. 2003. Architecture as a coordination tool in multi-site software development.

Software Process Improve. Pract. 8 (2003), 233–247.
[152] C. Palomares, C. Quer, and X. Franch. 2017. Requirements reuse and requirement patterns: A state of the practice

survey. Empir. Software Eng. 22, 6 (2017), 2719–2762.
[153] J. Park, M. Kim, and D.-H. Bae. 2017. An empirical study of supplementary patches in open source projects. Empir.

Software Eng. 22, 1 (2017), 436–473.
[154] D. L. Parnas. 2009. Point/counterpoint: Empirical research in software engineering: A critical view. IEEE Software

26, 6 (2009), 56–59.
[155] D. E. Perry, A. E. Porter, and L. G. Votta. 2000. Empirical studies of software engineering: A roadmap. In Future of

Software Engineering.
[156] D. E. Perry, N. A. Staudenmayer, and L. G. Votta. 1994. People, organizations, and process improvement. IEEE Soft-

ware 11, 4 (1994), 36–45.
[157] K. Petersen and C. Wohlin. 2009. Context in industrial software engineering research. In Proc. 3rd International

Symposium on Empirical Software Engineering and Measurement.
[158] S. L. Pfleeger and B. A. Kitchenham. 2001. Principles of survey research: Part 1: Turning lemons into lemonade. ACM

SIGSOFT Software Eng. Notes 26, 6 (2001), 16–18.
[159] A. A. Porter, L. G. Votta, and V. R. Basili. 1995. Comparing detection methods for software requirements inspections:

A replicated experiment. IEEE Trans. Software Eng. 21, 6 (1995), 563–575.
[160] D. Raffo and S.-O. Setamanit. 2005. A simulation model for global software development project. In Proc. 6th Inter-

national Workshop on Software Process Simulation and Modeling (ProSim’05). Fraunhofer IRB Verlag.
[161] P. Ralph. 2018. Toward methodological guidelines for process theories and taxonomies in software engineering. IEEE

Trans. Software Eng. In press (2018). https://ieeexplore.ieee.org/document/8267085/.
[162] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. 2014. A large scale study of programming languages and code quality

in github. In Proc. 22nd ACM SIGSOFT International Sym. Foundations of Software Engineering.
[163] M. Riaz, J. King, J. Slankas, L. Williams, F. Massacci, C. Quesada-López, and M. Jenkins. 2017. Identifying the implied:

Findings from three differentiated replications on the use of security requirements templates. Empir. Software Eng.

22, 4 (2017), 2127–2178.
[164] H. Robinson, J. Segal, and H. Sharp. 2007. Ethnographically-informed empirical studies of software practice. Inform.

Software Tech. 49, 6 (2007), 540–551.
[165] J. Miguel Rojas, M. Vivanti, A. Arcuri, and G. Fraser. 2017. A detailed investigation of the effectiveness of whole test

suite generation. Empir. Software Eng. 22, 2 (2017), 852–893.
[166] D. Rosenblum and E. Weyuker. 1996. Lessons learned from a regression testing case study. In Proc. International

Workshop on Empirical Studies of Software Maintenance (WESS’96).
[167] D. T. Ross. 1977. Guest editorial: Reflections on requirements. IEEE Trans. Software Eng. 3, 1 (1977), 2–5.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

https://ieeexplore.ieee.org/document/8267085/

The ABC of Software Engineering Research 11:49

[168] P. Runeson and M. Höst. 2009. Guidelines for conducting and reporting case study research in software engineering.
Empir. Software Eng. 14 (2009), 131–164.

[169] P. Runeson, M. Höst, A. Rainer, and B. Regnell. 2012. Case Study Research in Software Engineering: Guidelines and

Examples. Wiley.
[170] P. J. Runkel and J. E. McGrath. 1972. Research on Human Behavior: A Systematic Guide to Method. Holt, Rinehart and

Winston.
[171] A. Sabané, Y.-G. Guéhéneuc, V. Arnaoudova, and G. Antoniol. 2017. Fragile base-class problem, problem? Empir.

Software Eng. 22, 5 (2017), 2612–2657.
[172] V. Sakhnini, L. Mich, and D. M. Berry. 2017. Group versus individual use of power-only EPMcreate as a creativity

enhancement technique for requirements elicitation. Empir. Software Eng. 22, 4 (2017), 2001–2049.
[173] A. Ashok Sawant and A. Bacchelli. 2017. fine-GRAPE: Fine-grained APi usage extractor – An approach and dataset

to investigate API usage. Empir. Software Eng. 22, 3 (2017), 1348–1371.
[174] C. B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Trans. Software Eng. 24,

4 (1999), 557–572.
[175] J. Segal. 2003. Some parallels between empirical software engineering and research in human-computer interaction.

In Proc. 15th Workshop of the Psychology of Programming Interest Group.
[176] S.-O. Setamanit. 2007. A Software Process Simulation Model of Global Software Development (GSD) Projects. Ph.D.

Dissertation. Portland State University.
[177] S.-O. Setamanit, W. Wakeland, and D. Raffo. 2007. Using simulation to evaluate global software development task

allocation strategies. Software Process Improve. Pract. 12 (2007), 491–503.
[178] B. Sharif, J. Meinken, T. Shaffer, and H. Kagdi. 2017. Eye movements in software traceability link recovery. Empir.

Software Eng. 22, 3 (2017), 1063–1102.
[179] H. Sharp, Y. Dittrich, and C. R. B. de Souza. 2016. The role of ethnographic studies in empirical software engineering.

IEEE Trans. Software Eng. 42, 8 (2016), 786–804.
[180] H. Sharp and H. Robinson. 2004. An ethnographic study of XP practice. Empir. Software Eng. 9, 4 (2004), 353–375.
[181] H. Sharp, M. Woodman, and F. Hovenden. 2005. Using metaphor to analyse qualitative data: Vulcans and humans

in software development. Empir. Software Eng. 10, 3 (2005), 343–365.
[182] M. Shaw. 2002. What makes good research in software engineering? Int. J. Software Tools Technol. Transf. 4, 1 (2002),

1–7.
[183] M. Shaw. 2003. Writing good software engineering research papers. In Proc. 25th International Conf. Software Engi-

neering. 726–736.
[184] Y. Shi, M. Li, S. Arndt, and C. Smidts. 2017. Metric-based software reliability prediction approach and its application.

Empir. Software Eng. 22, 4 (2017), 1579–1633.
[185] F. Shull, J. Singer, and D. I. K. Sjøberg (Eds.). 2008. Guide to Advanced Empirical Software Engineering. Springer.
[186] J. Siegmund, N. Siegmund, and S. Apel. 2015. Views on internal and external validity in empirical software engi-

neering. In Proc. 37th International Conference on Software Engineering. IEEE. 10.1109/ICSE.2015.24.
[187] S. E. Sim, J. Singer, and M.-A. Storey. 2001. Beg, borrow, or steal: Using multidisciplinary approaches in empirical

software engineering research. Empir. Software Eng. 6, 1 (2001), 85–93.
[188] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanovic, E. F. Koren, and M. Vokác. 2002.

Conducting realistic experiments in software engineering. In Proc. International Symposium on Empirical Software

Engineering (ISESE’02).
[189] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, and J. E. Hannay. 2008. Building theories in software engineering. In Guide to

Advanced Empirical Software Engineering, Forrest Shull, Janice Singer, and Dag I. K. Sjøberg (Eds.). Springer-Verlag
London Limited.

[190] D. I. K. Sjøberg, T. Dybå, and M. Jørgensen. 2007. The future of empirical methods in software engineering research.
In Future of Software Engineering. IEEE Computer Society.

[191] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahansanovic, N.-K. Liborg, and A. C. Rekdal. 2005.
A survey of controlled experiments in software engineering. IEEE Trans. Software Eng. 31, 9 (2005), 733–753.

[192] A. E. Kelley Sobel and M. R. Clarkson. 2002. Formal methods application: An empirical tale of software development.
IEEE Trans. Software Eng. 28, 3 (2002), 308–320.

[193] A. E. Kelley Sobel and M. R. Clarkson. 2003. Response to “Comments on ‘Formal methods application: An empirical
tale of software development.”’ IEEE Trans. Software Eng. 29, 6 (2003), 572–575.

[194] D. Spinellis. 2017. A repository of Unix history and evolution. Empir. Software Eng. 22, 3 (2017), 1372–1404.
[195] D. Ståhl, K. Hallén, and J. Bosch. 2017. Achieving traceability in large scale continuous integration and delivery

deployment, usage and validation of the Eiffel framework. Empir. Software Eng. 22, 3 (2017), 967–995.
[196] I. Stavropoulou, M. Grigoriou, and K. Kontogiannis. 2017. Case study on which relations to use for clustering-based

software architecture recovery. Empir. Software Eng. 22, 4 (2017), 1717–1762.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

10.1109/ICSE.2015.24

11:50 K.-J. Stol and B. Fitzgerald

[197] K. Stol, B. Caglayan, and B. Fitzgerald. 2018. Competition-based crowdsourcing software development: A multi-
method study from a customer perspective. IEEE Trans. Software Eng. In press (2018).

[198] K. Stol and B. Fitzgerald. 2014. Two’s company, three’s a crowd: A case study of crowdsourcing software develop-
ment. In Proc. 36th International Conference on Software Engineering. 187–198.

[199] K. Stol and B. Fitzgerald. 2015. A holistic overview of software engineering research strategies. In 3rd International

Workshop on Conducting Empirical Studies in Industry (CESI’15). ACM.
[200] K. Stol and B. Fitzgerald. 2015. Theory-oriented software engineering. Sci. Computer Program. 101 (2015), 79–98.
[201] K. Stol, M. Goedicke, and I. Jacobson. 2016. Introduction to the special section—General theories of software engi-

neering: New advances and implications for research. Inform. Software Tech. 70 (2016), 176–180.
[202] K. Stol, P. Ralph, and B. Fitzgerald. 2016. Grounded theory in software engineering research: A critical review and

guidelines. In Proc. 38th International Conference on Software Engineering. ACM, 120–131.
[203] M.-A. Storey, L. Singer, F. F. Filho, A. Zagalsky, and D. M. German. 2017. How social and communication channels

shape and challenge a participatory culture in software development. IEEE Trans. Software Eng. 43, 2 (2017), 185–204.
10.1109/TSE.2016.2584053.

[204] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. 2017. Review participation in modern code review. Empir.

Software Eng. 22, 2 (2017), 768–817.
[205] N. M. Tichy, M. L. Tushman, and C. Fombrun. 1979. Social network analysis for organizations. Acad. Manag. Rev. 4,

4 (1979), 507–519.
[206] W. F. Tichy. 1998. Should computer scientists experiment more? Computer 31, 5 (1998), 32–40.
[207] W. F. Tichy. 2000. Hints for reviewing empirical work in software engineering. Empir. Software Eng. 5 (2000),

309–312.
[208] J. Tisseau. 2001. Virtual Reality: In virtuo autonomy. University of Rennes I.
[209] A. Tosun, O. Dieste, D. Fucci, S. Vegas, B. Turhan, H. Erdogmus, A. Santos, M. Oivo, K. Toro, J. Jarvinen, and N. Juristo.

2017. An industry experiment on the effects of test-driven development on external quality and productivity. Empir.

Software Eng. 22, 6 (2017), 2763–2805.
[210] G. H. Travassos and M. de Oliveira Barros. 2003. Contributions of in virtuo and in silico experiments for the future

of empirical studies in software engineering. In Proc. 2nd Workshop on Empirical Software Engineering.
[211] C. Tsigkanos, L. Pasquale, C. Menghi, C. Ghezzi, and B. Nuseibeh. 2014. Engineering topology aware adaptive se-

curity: Preventing requirements violations at runtime. In Proc. 22nd IEEE International Requirements Engineering

Conference. 203–212.
[212] R. L. van Horn. 1973. Empirical studies of management information systems. ACM SIGMIS Database: DATABASE

Adv. Inf. Syst. 5 (1973), 172–182.
[213] J. van Maanen. 1982. Fieldwork on the beat. In Varieties of Qualitative Research, J. van Maanen, J. M. Dabbs, and R.

R. Faulkner (Eds.). Sage Publications.
[214] C. Vendome, G. Bavota, M. Di Penta, M. Linares-Vásquez, D. German, and D. Poshyvanyk. 2017. License usage and

changes: A large-scale study on gitHub. Empir. Software Eng. 22, 3 (2017), 1537–1577.
[215] P. Vitharana. 2017. Defect propagation at the project-level: Results and a post-hoc analysis on inspection efficiency.

Empir. Software Eng. 22, 1 (2017), 57–79.
[216] L. Votta. 1995. By the way, has anyone studied any real programmers, yet? In Proc. 9th International Software Process

Workshop.
[217] E. J. Webb, D. T. Campbell, R. D. Schwartz, and L. Sechrest. 1966. Unobtrusive Measures: Nonreactive Research in the

Social Sciences. Rand-McNally.
[218] G. M. Weinberg. 1971. The Psychology of Computer Programming. Van Nostrand Reinhold New York.
[219] R. Wieringa. 2009. Design science as nested problem solving. In Proc. DESRIST.
[220] R. Wieringa and M. G. Heerkens. 2006. The methodological soundness of requirements engineering papers: A con-

ceptual framework and two case studies. Requir. Eng. 11 (2006), 295–307. 10.1007/s00766-006-0037-6.
[221] R. Wieringa, N. Maiden, N. Mead, and C. Rolland. 2006. Requirements engineering paper classification and evaluation

criteria: A proposal and a discussion. Requir. Eng. 11 (2006), 102–107. 10.1007/s00766-005-0021-6.
[222] C. Wohlin and A. Aurum. 2015. Towards a decision-making structure for selecting a research design in empirical

software engineering. Empir. Software Eng. 20, 6 (2015), 1427–1455.
[223] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. 2000. Experimentation in Software Engi-

neering. Kluwer Academic Publishers.
[224] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. 2012. Experimentation in Software Engi-

neering (2nd ed.). Springer.
[225] C. Wohlin, D. Sm̆ite, and N. B. Moe. 2015. A general theory of software engineering: Balancing human, social and

organizational capitals. J. Syst. Software 109 (2015), 229–242.
[226] J. Wu, S. Ali, T. Yue, J. Tian, and C. Liu. 2017. Assessing the quality of industrial avionics software: An extensive

empirical evaluation. Empir. Software Eng. 22, 4 (2017), 1634–1683.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

10.1109/TSE.2016.2584053
10.1007/s00766-006-0037-6
10.1007/s00766-005-0021-6

The ABC of Software Engineering Research 11:51

[227] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing. 2017. What do developers search for on the web?
Empir. Software Eng. 22, 6 (2017), 3149–3185.

[228] D. Ye, Z. Xing, and N. Kapre. 2017. The structure and dynamics of knowledge network in domain-specific Q&A sites:
A case study of stack overflow. Empir. Software Eng. 22, 1 (2017), 375–406.

[229] R. K. Yin. 2003. Case Study Research: Design and Methods. Sage.
[230] C. Zannier, G. Melnik, and F. Maurer. 2006. On the success of empirical studies in the international conference on

software engineering. In Proc. International Conf. Software Engineering. 341–350.
[231] M. V. Zelkowitz. 2007. Techniques for empirical validation. Empir. Software Eng. Issues LNCS 4336 (2007), 4–9.
[232] M. V. Zelkowitz and D. R. Wallace. 1998. Experimental models for validating technology. Computer 31, 5 (1998),

23–31.
[233] W. Zogaan, I. Mujhid, J. C. S. Santos, D. Gonzalez, and M. Mirakhorli. 2017. Automated training-set creation for

software architecture traceability problem. Empir. Software Eng. 22, 3 (2017), 1028–1062.

Received October 2017; revised June 2018; accepted July 2018

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 11. Pub. date: September 2018.

