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you will hear a statistician say at least once in their lifetime. The
saying, attributed to George E. P. Box, is good because it is true.
When we design our models we assume things. The assumptions are
not always correct, and even if they were, our lack in understanding
the underlying data generation model will always make our models
approximate. Hence, we should be prepared to constantly refine our
models step-by-step to improve them when our knowledge improves.

At many universities they teach frequentist statistics in the first
stats course. The approach is often taught by presenting a flowchart
that researchers/students can follow to get to the ‘correct’ model,
which they then use to test hypotheses.

There are two problems with this approach. First, each of these
‘models’ have assumptions and often these are not stressed enough.
Second, the approach is systematic but unfortunately not very flex-
ible. What happens when you face a problem that does not have a
‘correct’ model one can use? Yes, all of these tests you see in the

figure is a ‘model’.In our case, you will be taught to design models in a very flexible,
math-like, notation. It will be your fantasy that will limit what mod-
els to design. Since the model design is very explicit it will force you
to also be explicit concerning your assumptions. This, I believe is the
best we can do, and shouldn’t we always try to do our best?

As such you will see that common things in statistics like, p-
values, hypothesis testing, etc. is something we don’t think about
much in this course. We see them as voodoo concepts that generally
speaking don’t belong to the sciences (Sect. 1.2.1 in the book stresses
this and I urge you to read it).

The tools we have at our disposal are:

1. Bayesian data analysis grounded in Bayes’ theorem.

2. Model comparison grounded in information theory.

3. Multilevel models employing partial pooling.

4. Graphical causal models implemented as directed acyclic graphs.

The above might sound like black magic and I fully understand that
most, if not all of you, have no clue what the above means. That’s
OK. You will understand at the end of this course, if not before.



all models are wrong 2

Bayesian data analysis is founded on Bayes’ theorem which we
use to calculate the posterior probability distribution. The theorem
simply states that the posterior probability distribution is propor-
tional to the likelihood times the prior belief. ∝ means proportional to.

posterior ∝ likelihood× prior

The posterior probability distribution (PPD) is the end goal with our
Bayesian analysis. Once we have it we can ask it questions and it will
give us answers, but beware that it will provide rubbish answers if
you’re not careful!

So, in math speak we get a PPD like this: Given a prior belief that a
probability distribution function is p(θ) and that the observations x
have a likelihood p(x|θ), then the posterior probability is defined as, First, θ is pronounced: thee-t e(th as

in think). Second, p(θ) is probability of
θ, while p(x|θ) is the probability of x
given θ, i.e., conditional on θ.p(θ|x) = p(x|θ) · p(θ)

p(x)

where p(x) is the normalizing constant and is calculated as (it’s not
needed for this course, but if you want to please read Thompson’s
book on calculus, which you can find in the file area),2 2 S. P. Thompson. Calculus made easy:

being a very-simplest introduction to those
beautiful methods of reckoning which are
generally called by the terrifying names of
the differential calculus and the integral
calculus. Macmillan, London, 2nd ed
edition, 1944

p(x) =
∫

p(x|θ)p(θ) dθ

for continuous θ, or by summing p(x|θ)p(θ) over all possible values
of θ for discrete θ.3

3 Refresh your mind:
∫

is sort of a long
S and you can think of it as “the sum
of”, while dθ means the sum of all the
little bits of θ (since we’re dealing with
continuous and not discrete values.

Model comparison allows us to choose between models. We use
cross-validation (CV) and information criteria (IC) to do so. More
complex models will generally make better predictions, they have
more parameters, so we penalize too complex models to make sure
we don’t learn too much from the data (i.e., overfitting). “With four parameters I can fit an

elephant, and with five I can make
him wiggle his trunk.” — John von
Neumann

In summary, CV and IC provides us with three important things:

1. Useful expectations of predictive accuracy.

2. An estimate of the tendency of a model to overfit.

3. Spot highly influential observations.

In this course we use mostly WAIC and LOO information criteria
for model comparison.

Multilevel models are not a new thing, however they fit Bayesian
data analysis very nicely. Handling uncertainty on many levels (by
adding models in models) allows us to feed the uncertainty through
the levels. However, there is another advantage with multilevel mod-
els: partial pooling.

Partial pooling is the key technology, it allows us to,
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1. adjust estimates for repeat sampling,

2. adjust estimates for imbalance in sampling,

3. study variation, and

4. avoid averaging.

Graphical causal models, or structural causal modeling, is a
concept Judea Pearl was awarded the Turing Award for in 2011. We
will make use of graphs (directed acyclic graphs) to model our belief
concerning causality. A statistical model is a beautiful association
engine, but is never enough if we want to discuss causality (which we
do!) In short, we require a causal model with which to design both
the collection of data and the structure of our statistical models. This
way we are explicit about our assumptions.

When you make a choice, you also delimit future possibilities. If
you marry someone and get a child it means that another child might
not be born. Imagine if you could play out all the paths in your life?
That is basically what Bayesian inference is about.

First, we count the possibilities. Then, we combine with other
information. Finally, we go from counts to probabilities. This is the
language we use,

• possible explanations of the data are the parameters,

• the relative number of ways that a value can produce the data is a
likelihood,

• the prior plausibility of any specific value is the prior probability,
and

• the new, updated plausibility of any specific value is the posterior
probability.

In Chapters 2.4–2.5 McElreath explains how a Bayesian model works
when taking the above into account. Read it carefully; it’s the me-
chanics and mechanics matters.

Later in the course we will make use of a technique called Markov
chain Monte Carlo (MCMC). The reason is that it is superior to other
techniques when the models become more and more complex. How-
ever, in the beginning of the course we will use other techniques: grid
approximation and, in particular, quadratic approximation. Quadratic approximation is often

equivalent to the maximum likelihood
estimate and its standard error.

Sampling to summarize. Once we have a PPD we can summarize
it in different ways. It’s important that you know these ways,

1. intervals of defined boundaries,
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2. questions about intervals of defined probability mass, and

3. questions about point estimates.

Simulate from the model. Generating implied observations from
a model is useful for many reasons. What you do is to generate fake
data and perform model checking (did the software work and is the
model adequate), i.e., posterior predictive checks.

Why is NORMAL so. . . normal? The short answer is the central
limit theorem: Any process that adds together random values from
the same distribution converges to a normal distribution (if you mul-
tiply small numbers the same thing happens since it is approximately
the same as addition, and if you multiply large deviates they produce
a Gaussian (Normal) distribution in the log scale). The earliest version of the central limit

theorem is the de Moivre-Laplace
theorem.

When we talk about the distributions we use (i.e., what we assume
about the underlying data generation process that produced the data
we have in our hands) we fall back on ontological and epistemological
arguments. We should think about these arguments before we begin
designing our models.

Ontological arguments could be, e.g., the Gaussian distribution is
a common pattern in nature. Processes that add together fluctuations
are Gaussian. However, nature comes with many patters, not only the
Gaussian! The normal distribution is often called

Gaussian after Carl Friedrich Gauss.Epistemological arguments are rooted in information theory and
the concept of maximum entropy, i.e., we want to pick a distribution
that allows the data to tell us its story.


