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We need to compare disparate statistical models and tell
which one is better than the other (relatively speaking) concerning
out of sample predictions. The main question we need to answer is:

How much is our uncertainty reduced by learning the outcome?

The question is answered by measuring the decrease in uncertainty.
The decrease in uncertainty is information. How do we quantify uncer-
tainty in a probability distribution?

• Should be continuous! We don’t want a small change in any of the
probabilities to result in a massive change in uncertainty.

• Uncertainty should increase(!) as the number of possible events
increases, e.g., 50/50 rain/sun vs. one out of every three days rain,
shines, hails. In the latter example there is more uncertainty.

• Uncertainty should be additive! In short, should be the sum of the
separate uncertainties.

Only one function satisfies the above desiderata, i.e., information
entropy,1 1 C. E. Shannon. A mathematical theory
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n

∑
i=1

pi log(pi)

The above states that the uncertainty in a probability distribution is
the average log probability of an event.

As an example, consider a software under test (SUT). When we run
our test suite we find that 30% of the test cases fail (find a bug), and
70% pass. The information entropy is hence:

> p <- c(0.3, 0.7)

> -sum(p*log(p))

[1] 0.6108643

Consider now that we re-run the test suite a month later and 20%
of the test cases fail, i.e., p = {0.2, 0.8}.
> p <- c(0.2, 0.8)

> -sum(p*log(p))

[1] 0.5004024

We have now quantified our uncertainty. It has decreased!
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We now have a way to quantify uncertainty. Next we want
to answer the question:

How far away is a model from the target?

or in other words: What is the additional uncertainty induced by
using probabilities from one distribution to describe another distribu-
tion? This is called Kullback-Leibler divergence, and is key for making
model comparisons.2 Here we not only use p for events, but we also 2 S. Kullback and R. A. Leibler. On

information and sufficiency. The Annals
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introduce q.
Let’s assume that we have a distribution of events p1 = 0.3 and

p2 = 0.7. We believe that these events happened with probabilities
q1 = 0.25 and q2 = 0.75. How much uncertainty have we intro-
duced by using {q1, q2} to approximate {p1, p2}? To calculate this
uncertainty we use the Kullback-Leibler divergence: Harold Jeffreys had used this measure

already in the development of Bayesian
statistics.

DKL = ∑
i

pi log
(

pi
qi

)
i.e., the average difference in log probability between the target (p) and
our model (q).

As an example, let’s travel from from Earth to Mars, and vice versa.
If we start by traveling from Earth to Mars, we know that Earth has
70% water and 30% land, and when we land we find out that Mars is
consisting of 1% water and 99% land. If we first calculate our DK−L

divergence going from Earth to Mars we see that:

> q <- c(0.7, 0.3) # Our model

> p <- c(0.01, 0.99) # The true ratio on Mars

> sum(p * log(p/q))

[1] 1.139498

i.e., DE→M = DKL(p,q) = 1.14.
Let’s now look at what happens when we go from Mars to Earth

instead (i.e., we know the ratio for Mars but we don’t know the ratio
for Earth):

> # Our model is now Mars’ ratio since we’re standing on Mars

> q <- c(0.01, 0.99)

> # When we land on Earth we find out that there’s 70% water

> p <- c(0.7, 0.3)

> sum(p * log(p/q))

[1] 2.61577

i.e., DM→E = DKL(p,q) = 2.62.
The divergence is more than double when we go from Mars to

Earth! This is a feature and not a bug. If we use a distribution with high
entropy to approximate an unknown
true distribution of events, we will
reduce the distance to the truth and
therefore the error.


