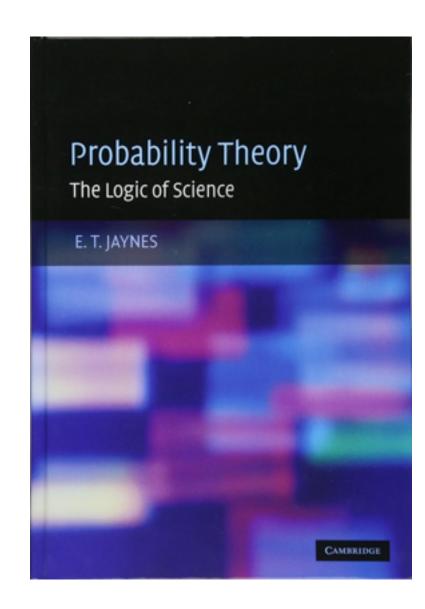
Why normal?

- Ontological perspective
 - Processes which add fluctuations result in dampening
 - Damped fluctuations end up Gaussian
 - No information left, except mean and variance
 - Can't infer process from distribution!
- Epistemological perspective
 - Know only mean and variance
 - Then least surprising and most conservative (*maximum entropy*) distribution is Gaussian
 - Nature likes maximum entropy distributions



Language for modeling

Give them definitions:

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \beta x_i$
 $\beta \sim \text{Normal}(0, 10)$
 $\sigma \sim \text{Exponential}(1)$
 $x_i \sim \text{Normal}(0, 1)$

Some data: Kalahari foragers

```
library(rethinking)
data(Howell1)
d <- Howell1</pre>
```

```
precis( d )
```

```
'data.frame': 544 obs. of 4 variables:

mean sd 5.5% 94.5% histogram

height 138.26 27.60 81.11 165.74

weight 35.61 14.72 9.36 54.50

age 29.34 20.75 1.00 66.13

male 0.47 0.50 0.00 1.00
```



Life Histories of the DOBE !KUNG

FOOD, FATNESS, AND WELL-BEING OVER THE LIFE-SPAN

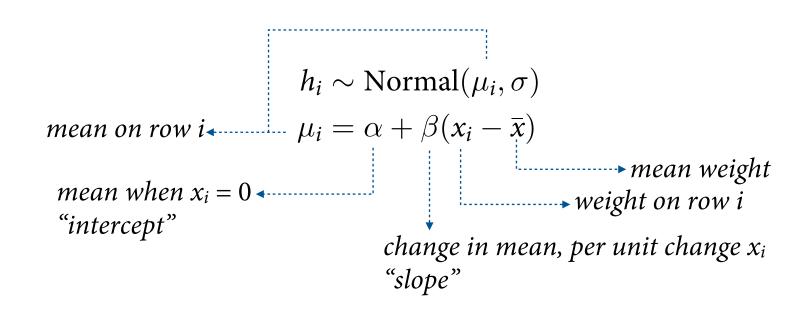
NANCY HOWELL

Adding a predictor variable

• Use a linear model of the mean, *mu*:

$h_i \sim \text{Normal}(\mu_i, \sigma)$	[likelihood]
$\mu_i = \alpha + \beta(x_i - \bar{x})$	[linear model]
$\alpha \sim \text{Normal}(178, 20)$	[$lpha$ prior]
$\beta \sim \text{Normal}(0, 10)$	[eta prior]
$\sigma \sim \text{Uniform}(0, 50)$	$[\sigma \ prior]$

Adding a predictor variable



Prior predictive distribution

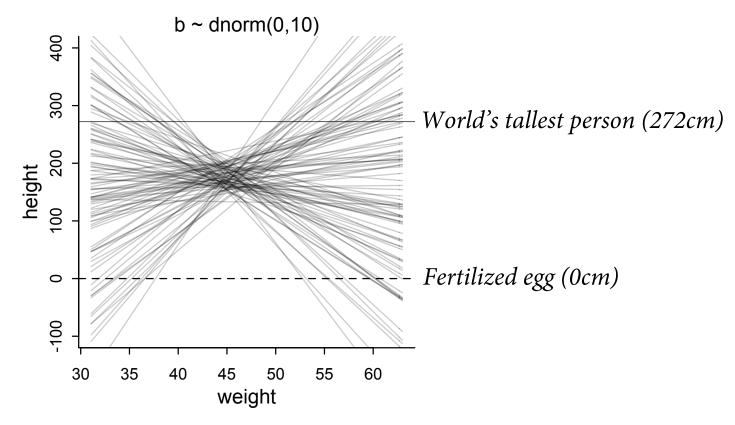


Figure 4.5

Prior predictive distribution

```
R code

4.41 set.seed(2971)

N <- 100  # 100 lines

a <- rnorm( N , 178 , 20 )

b <- rlnorm( N , 0 , 1 )
```

60

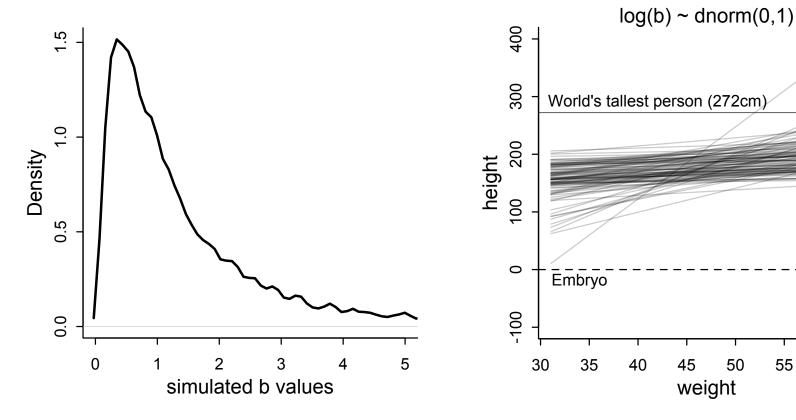
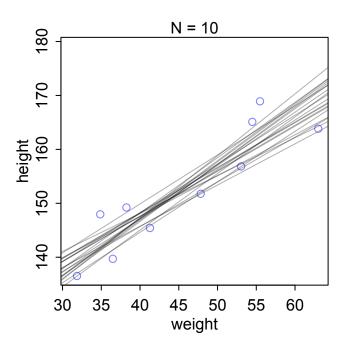


Figure 4.5

Sampling from the posterior

- Want to get uncertainty onto that graph
- Again, sample from posterior
 - 1. Use mean and standard deviation to approximate posterior
 - 2. Sample from *multivariate normal* distribution of parameters
 - 3. Use samples to generate predictions that "integrate over" the uncertainty

Posterior is full of lines



```
R code

4.47 post <- extract.samples( m4.3 )

post[1:5,]

a b sigma

1 154.5505 0.9222372 5.188631

2 154.4965 0.9286227 5.278370

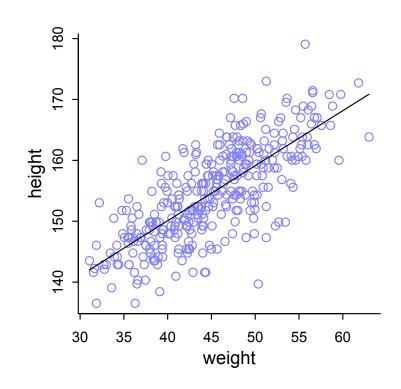
3 154.4794 0.9490329 4.937513

4 155.2289 0.9252048 4.869807

5 154.9545 0.8192535 5.063672
```

Showing Uncertainty

- Want to get uncertainty onto that graph
- Again, sample from posterior
 - 1. Use mean and standard deviation to approximate posterior
 - 2. Sample from *multivariate normal* distribution of parameters
 - 3. Use samples to generate predictions that *integrate over* the uncertainty



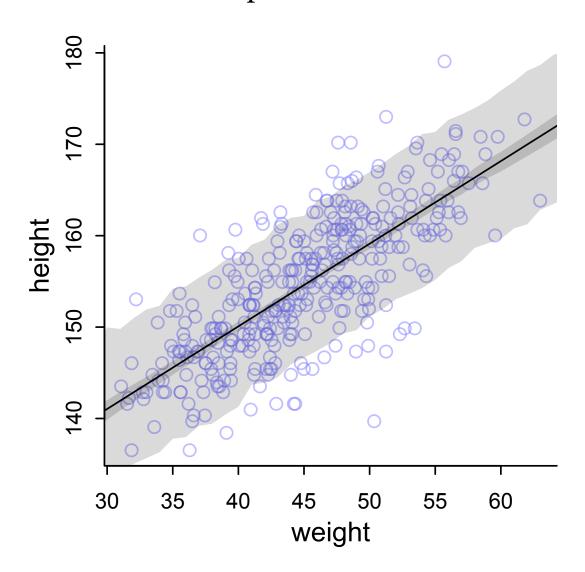
How link works

- Sample from posterior
- Define series of predictor (weight) values
- For each predictor value
 - For each sample from posterior
 - Compute mu: $a + b^*(weight xbar)$
- Summarize

```
R code
4.58

post <- extract.samples(m4.3)
    mu.link <- function(weight) post$a + post$b*( weight - xbar )
    weight.seq <- seq( from=25 , to=70 , by=1 )
    mu <- sapply( weight.seq , mu.link )
    mu.mean <- apply( mu , 2 , mean )
    mu.HPDI <- apply( mu , 2 , HPDI , prob=0.89 )</pre>
```

89% prediction interval



Nothing special about 95%

Try 50%, 80%, 99%

Interested in *shape*, not *boundaries*

Figure 4.10

Curves From Lines

- "Linear" models can make curves
- Polynomial regression
 - Common
 - Badly behaved
- Splines
 - Very flexible
 - Highly geocentric

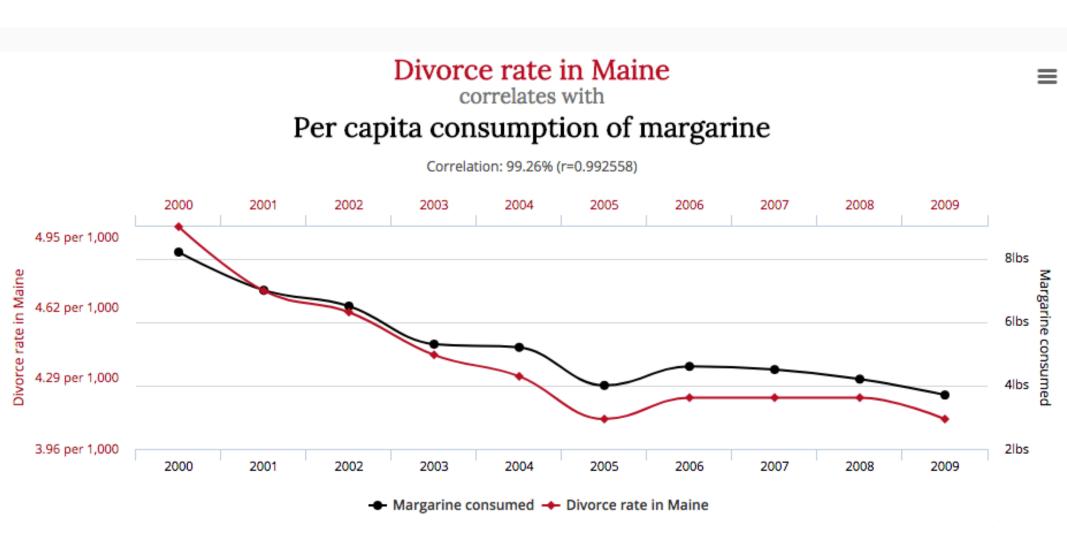
Going Local — B-Splines

• B-Splines are just linear models, but with some weird synthetic variables:

$$\mu_i = \alpha + w_1 B_{i,1} + w_2 B_{i,2} + w_3 B_{i,3} + \dots$$

- Weights w are like slopes
- Basis functions B are synthetic variables
 - In spirit like a squared or cubed terms
 - But observed data not used to build *B*
 - *B* values turn on weights in different regions of *x* variable

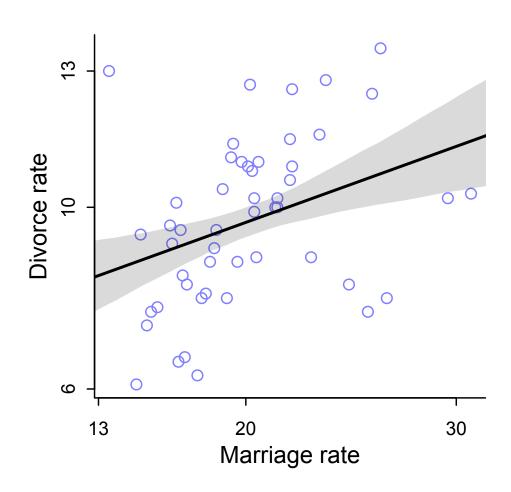
Correlation is commonplace



http://www.tylervigen.com/spurious-correlations

Spurious association

- Correlation does not imply causation
- Causation does not imply correlation
- Causation implies conditional correlation
- Need more than just models
- Q: Does marriage cause divorce?

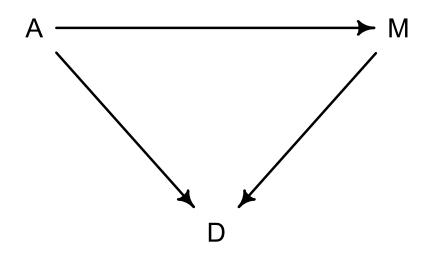


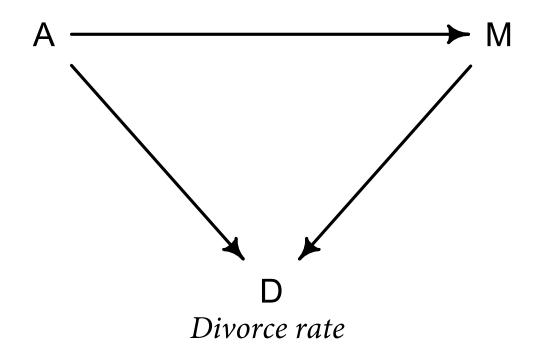
Multiple causes of divorce

- Want to know: what is value of a predictor, once we know the other predictors?
 - What is value of knowing marriage rate, once we already know median age at marriage?
 - What is value of knowing median age marriage, once we know marriage rate?

They're good DAGs, Brent

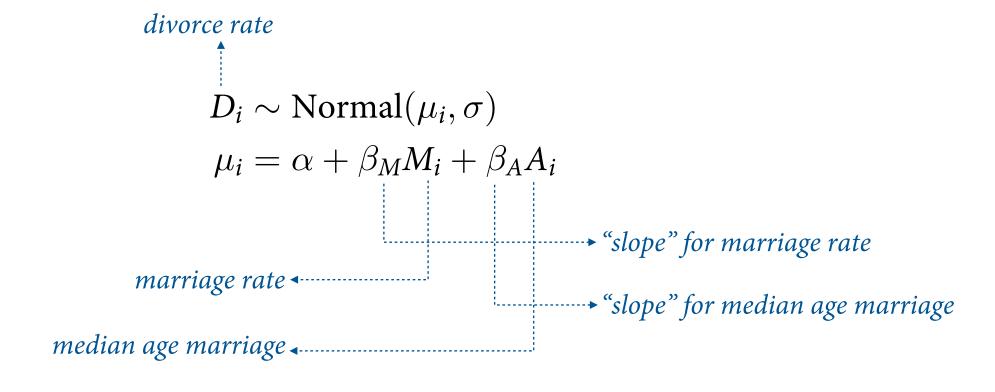
- Directed Acyclic Graphs tools for causal models
 - Directed: Arrows
 - Acyclic: Arrows don't make loops
 - Graphs: Nodes and edges
- Unlike statistical model, has causal implications





Implications:

- (1) M is a function of A
- (2) D is a function of A and M
- (3) The total causal effect of A has two *paths*:
 - (a) A -> M -> D
 - (b) A -> D



 $D_i \sim \text{Normal}(\mu_i, \sigma)$

 $\mu_i = \alpha + \beta_M M_i + \beta_A A_i$

 $\alpha \sim \text{Normal}(0, 0.2)$

 $\beta_M \sim \text{Normal}(0, 0.5)$

 $\beta_A \sim \text{Normal}(0, 0.5)$

 $\sigma \sim \text{Exponential}(1)$

[probability of data]

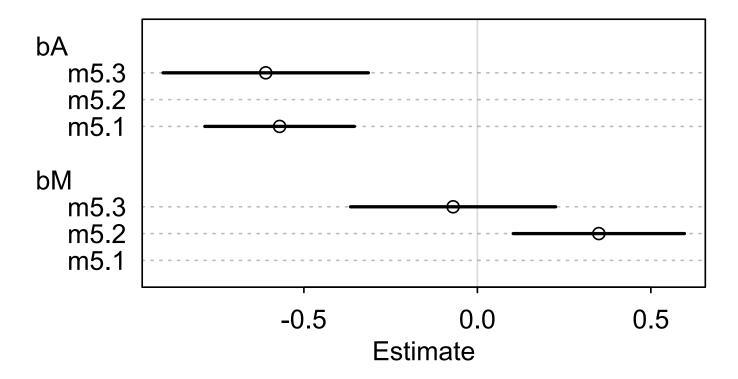
[linear model]

[prior for α]

[prior for β_M]

[prior for β_A]

[prior for σ]



m5.1: age of marriage only D ~ A

m5.2: marriage rate only D \sim M

m5.3: multiple regression D \sim A + M

Multiple regression

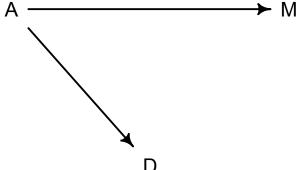
```
mean sd 5.5% 94.5% A

a 0.00 0.10 -0.16 0.16

bM -0.07 0.15 -0.31 0.18

bA -0.61 0.15 -0.85 -0.37

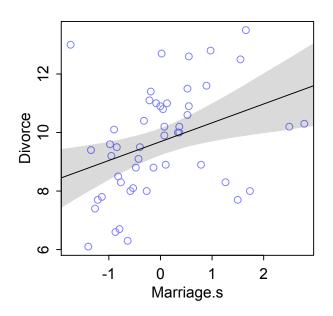
sigma 0.79 0.08 0.66 0.91
```

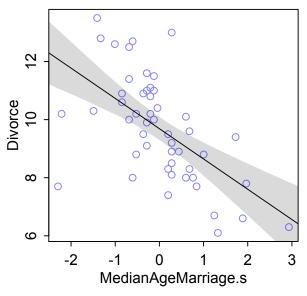


- Once we know median age marriage, little additional value in knowing marriage rate.
- Once we know marriage rate, still value in knowing median age marriage.
- If we *don't know* median age marriage, still useful to know marriage rate.

Posterior predictions

- Lots of plotting options now
 - 1. Predictor residual plots
 - 2. Counterfactual plots
 - 3. Posterior prediction plots





Masked association

- Sometimes association between outcome and predictor masked by another variable
- Need both variables to see influence of either
- Tends to arise when
 - Another predictor associated with outcome in opposite direction
 - Both predictors associated with one another
- Noise in predictors can also mask association (residual confounding)

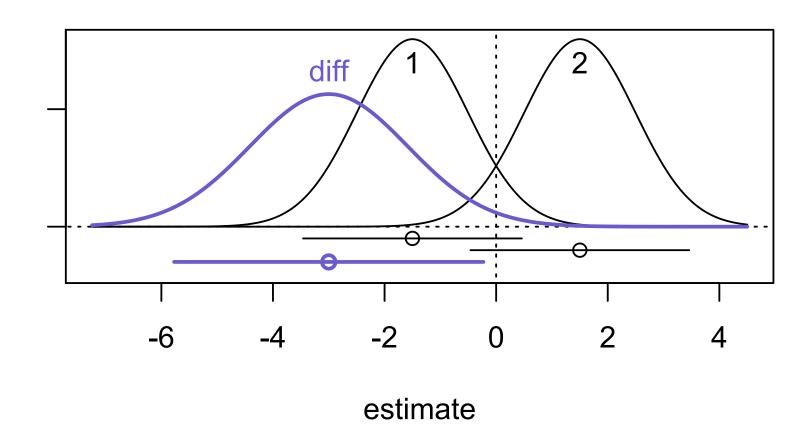
Categorical variables

- Many predictors are discrete, unordered categories
 - Gender, region, species
- How to use in regression?
- Two approaches
 - Use *dummy/indicator* variables
 - Use index variables
- Most automated software uses dummy variables
- Usually easier to think & code with index variables

Index variable

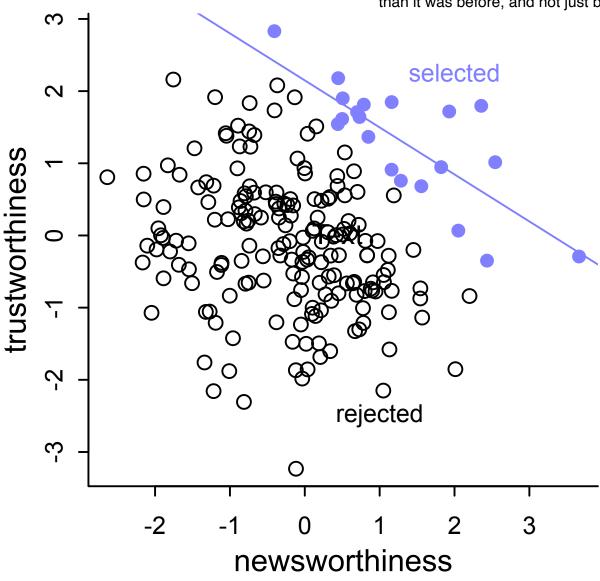
```
R code
          d$sex <- ifelse( d$male==1 , 2 , 1 )</pre>
  5.36
          str( d$sex )
           num [1:544] 2 1 1 2 1 2 1 2 1 2 ...
         h_i \sim \text{Normal}(\mu_i, \sigma)
         \mu_i = \alpha_{\text{SEX}[i]}
         \alpha_{j} \sim \text{Normal}(178, 20) , for j = 1..2
          \sigma \sim \text{Uniform}(0, 50)
```

Difference and uncertainty



Selection-distortion effect

when a sample is selected on a combination of 2 (or more) variables, the relationship between those 2 variables is different after selection than it was before, and not just because of restriction of range



Why not just add everything?

- Could just add all available predictors to model
 - "We controlled for..."
- Almost always a bad idea
 - Adding variables *creates* confounds
 - Residual confounding
 - Overfitting

The Fork

$$X \leftarrow Z \rightarrow Y$$

Open unless you condition on Z

The Pipe

$$X \longrightarrow Z \longrightarrow Y$$

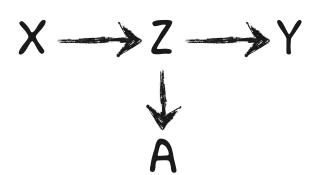
Open unless you condition on Z

The Collider

$$X \longrightarrow Z \longleftarrow Y$$

Closed until you condition on Z

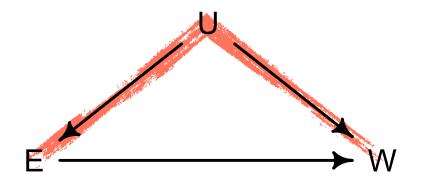
The Descendant

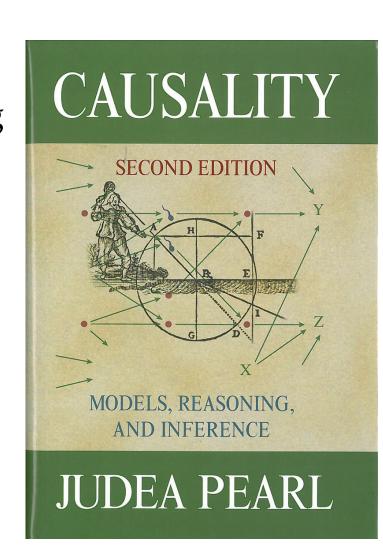


Conditioning on A is like conditioning on Z

Shutting the back door

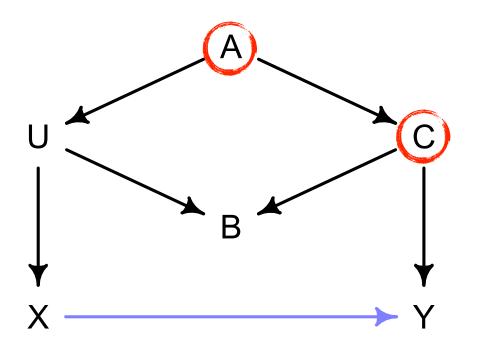
- What ties these examples together:
- The **back-door criterion**: Confounding caused by existence of open back door paths from X to Y
- If you know your elements, you know how to open/close each of them





Something more interesting

- Which variables, if any, should you condition on to infer X → Y?
- Condition on A or C. Do not condition on B.



(1) $X \leftarrow U \leftarrow A \rightarrow C \rightarrow Y$ This path is open.

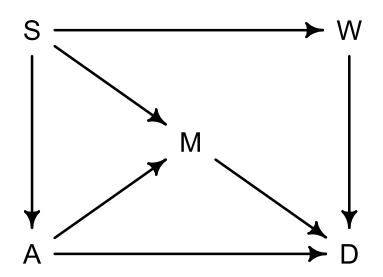
(2) $X \leftarrow U \rightarrow B \leftarrow C \rightarrow Y$ This path is closed.

Implied conditional independence

• Given DAG, can test some implications

impliedConditionalIndependencies(dag_6.2)

R code 6.36



- (1) A and W independent, conditioning on S
- (2) D and S independent, conditioning on A, M, & W
- (3) M and W independent, conditioning on S

Causal inference hard but possible

- Demonstrate capable of inferring cause
- Experiments not required!
- Experiments not always practical & ethical
 - Disease, evolution, development, dynamics of popular music, global climate, war
- Experiments must choose an intervention
 - Interventions influence many variables at once
 - Experimentally manipulate obesity?

