The Fork

$$X \leftarrow Z \rightarrow Y$$

Open unless you condition on Z

The Pipe

$$X \longrightarrow Z \longrightarrow Y$$

Open unless you condition on Z

The Collider

$$X \longrightarrow Z \longleftarrow Y$$

Closed until you condition on Z

The Descendant

Conditioning on A is like conditioning on Z

Two paths from E to W:

$$(1) \to W$$

(2)
$$E \leftarrow U \rightarrow W$$

Close 2nd path by conditioning on U, closing the pipe.

Ulysses' Compass

• Two major hazards: (1) Too simple (2) Too complex

Goals

- Understand overfitting and underfitting
- Introduce regularization
- Cross-validation & information criteria:
 - estimate predictive accuracy
 - estimate overfitting risk
 - understand how overfitting relates to complexity
 - identify influential observations
- See that prediction and causal inference are different objectives

The Problem with Parameters

- What should a model learn from a sample?
- Underfitting: Learning too little from the data. Too simple models both fit and predict poorly.
- Overfitting: Learning too much from the data.
 Complex models tend to fit better, predict worse.
- Want to find a model that navigates between underfitting and overfitting
- Problem: Fit to sample always* improves as we add parameters

^{*}Not true of multilevel models & other types

Figure 7.3

Figure 7.5

Importance of being regular

- Want the *regular* features of the sample
- Strategies
 - Regularizing priors (penalized likelihood)
 - Cross-validation
 - Information criteria
 - Science!
- Proper approach depends upon purpose
- Answers are never *only* in the data, but they do usually require data

Information entropy

• 1948, Claude Shannon derived *information entropy*:

$$H(p) = -\operatorname{E}\log(p_i) = -\sum_{i=1}^n p_i \log(p_i)$$

Uncertainty in a probability distribution is average (minus) log-probability of an event.

Shannon (1916–2001)

Entropy to accuracy

- Two probability distributions: *p*, *q*
- *p* is true, *q* is model
- How accurate is q, for describing p?
- Distance from *q* to *p*: *Divergence*

$$D_{\mathrm{KL}}(p,q) = \sum_{i} p_{i} (\log(p_{i}) - \log(q_{i}))$$

Distance from q to p is the average difference in log-probability.

Divergence is not symmetric!

Everybody overfits

Figure 7.7

Regularization

Figure 7.9

Regularization

- Must be skeptical of the sample!
- Use informative, conservative priors to reduce overfitting => model learns less from sample
- But if too skeptical, model learns too little
- Such priors are regularizing

Smooth Cross-validation

- Most common: Leave-one-out
- Very expensive!
- Useful approximation: Importance sampling (IS)
- More useful: Pareto-smoothed importance sampling (PSIS)
- PSIS-LOO accurate, lots of useful diagnostics
- L00 function in rethinking
- See also loo package

Prof Aki Vehtari (Helsinki), smooth estimator

Akaike information criterion [ah-ka-ee-kay]

- Estimate K-L Distance in theory
- Most famous is the first, AIC
- Under some strict conditions:

$$AIC = D_{train} + 2k \approx ED_{test}$$
 k is parameter count

Hirotugu Akaike 赤池弘次 (1927–2009)

Widely Applicable IC

- AIC of historical interest now
- Widely Applicable Information Criterion (WAIC)
 - Sumio Watanabe 2010

WAIC
$$(y, \Theta) = -2(\operatorname{lppd} - \sum_{i} \operatorname{var}_{\Theta} \log p(y_i | \Theta))$$
penalty term

- Does not assume Gaussian posterior
- WAIC function in rethinking

Cambridge Monographs on Applied and Computational Mathematics **Algebraic Geometry and Statistical Learning** Theory Sumio Watanabe Normal Crossing Kullback Function Information Blowing Set of Learning Machines Manifold

Copyrighted Material

Copyrighted Material

Using CV & WAIC


```
R code
7.27 set.seed(77)
compare( m6.6 , m6.7 , m6.8 )
```

```
WAIC pWAIC dWAIC weight SE dSE treat + fungus m6.7 361.9 3.8 0.0 1 14.26 NA fungus m6.8 402.8 2.6 40.9 0 11.28 10.48 intercept m6.6 405.9 1.6 44.0 0 11.66 12.23
```

