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Information is the resolution of uncertainty.

Claude Shannon
The weekly exercises are mainly from
McElreath’s notes which can be found
on GitHub: https://github.com/
rmcelreath/stat_rethinking_2020/

tree/main/homework

Exercise 1. Consider three fictional Polynesian islands. On each
there is a Royal Ornithologist charged by the king with surveying the
birb population. They have each found the following proportions of 5

important birb species:
Birb A Birb B Birb C Birb D Birb E

Island 1 0.2 0.2 0.2 0.2 0.2
Island 2 0.8 0.1 0.05 0.025 0.025

Island 4 0.05 0.15 0.7 0.05 0.05

Notice

that each row sums to 1, all the birbs. This problem has two parts.
It is not computationally complicated. But it is conceptually tricky.
First, compute the entropy of each island’s birb distribution. Interpret
these entropy values.

Second, use each island’s birb distribution to predict the other
two. This means to compute the K-L Divergence of each island from
the others, treating each island as if it were a statistical model of the
other islands. You should end up with 6 different K-L Divergence
values. Which island predicts the others best? Why?

Exercise 2. Recall the marriage, age, and happiness collider bias ex-
ample from Chapter 6. Run models m6.9 and m6.10 again. Compare
these two models using WAIC (or LOO, they will produce identical
results). Which model is expected to make better predictions? Which
model provides the correct causal inference about the influence of
age on happiness? Can you explain why the answers to these two
questions disagree?
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Solution 1. To compute the entropies, we just need a function to
compute the entropy. Information entropy, as defined in lecture and
the book, is simply:

H(p) = −∑
i

pilog(pi)

where p is a vector of probabilities summing to 1. In R code this
would look like:

H <- function(p) -sum(p*log(p))

I’ll make a list of the birb distributions and then push each through
the function above.

IB <- list()

IB[[1]] <- c( 0.2 , 0.2 , 0.2 , 0.2 , 0.2 )

IB[[2]] <- c( 0.8 , 0.1 , 0.05 , 0.025 , 0.025 )

IB[[3]] <- c( 0.05 , 0.15 , 0.7 , 0.05 , 0.05 )

sapply( IB , H )

which give the following output,

[1] 1.6094379 0.7430039 0.9836003

The first island has the largest entropy, followed by the third, and
then the second in last place. Why is this? Entropy is a measure of
the evenness of a distribution. The first islands has the most even
distribution of birbs. This means you wouldn’t be very surprised by
any particular birb. The second island, in contrast, has a very uneven
distribution of birbs. If you saw any birb other than the first species,
it would be surprising. Now we need K-L distance, so let’s write a
function for it:

DKL <- function(p,q) sum( p*(log(p)-log(q)) )

This is the distance from q to p, regarding p as true and q as the
model. Now to use each island as a model of the others, we need to
consider the different ordered pairings. I’ll just make a matrix and
loop over rows and columns:

Dm <- matrix(NA, nrow=3, ncol=3)

for (i in 1:3) for (j in 1:3)

Dm[i,j] <- DKL(IB[[j]] , IB[[i]])

round(Dm, 2)

with the following output,

[,1] [,2] [,3]

[1,] 0.00 0.87 0.63

[2,] 0.97 0.00 1.84

[3,] 0.64 2.01 0.00

The way to read this is each row as a model and each column as
a true distribution. So the first island, the first row, has the smaller
distances to the other islands. This makes sense, since it has the
highest entropy. Why does that give it a shorter distance to the other
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islands? Because it is less surprised by the other islands, due to its
high entropy.

Solution 2. I won’t repeat the models here. They are in the text.
Model m6.9 contains both marriage status and age. Model m6.10
contains only age. Model m6.9 produces a confounded inference
about the relationship between age and happiness, due to opening a
collider path. To compare these models using WAIC:

compare( m6.9 , m6.10 )

which gives the following output,

WAIC pWAIC dWAIC weight SE dSE

m6.9 2714.0 3.7 0.0 1 37.54 NA

m6.10 3101.9 2.3 387.9 0 27.74 35.4

The model that produces the invalid inference, m6.9, is expected to
predict much better. And it would. This is because the collider path
does convey actual association. We simply end up mistaken about
the causal inference. We should not use WAIC (or LOO) to choose
among models, unless we have some clear sense of the causal model.
These criteria will happily favor confounded models!


