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It’s like with the helmets. Once they added those in there were more
head injuries. But less deaths.

Unknown
The weekly exercises are mainly from
McElreath’s notes which can be found
on GitHub: https://github.com/
rmcelreath/stat_rethinking_2020/

tree/main/homework

Exercise 1. Consider the data(Wines2012) data table. These data
are expert ratings of 20 different French and American wines by 9
different French and American judges. Your goal is to model score,
the subjective rating assigned by each judge to each wine. I recom-
mend standardizing it.

In this first problem, consider only variation among judges and
wines. Construct index variables of judge and wine and then use
these index variables to construct a linear regression model. Justify
your priors. You should end up with 9 judge parameters and 20 wine
parameters. Use ulam() instead of quap() to build this model, and
be sure to check the chains for convergence. If you’d rather build the
model directly in Stan or PyMC3 or Julia (Turing is a good choice!),
go ahead. I just want you to use MCMC instead of quadratic approxi-
mation.

How do you interpret the variation among individual judges and
individual wines? Do you notice any patterns, just by plotting the
differences? Which judges gave the highest/lowest ratings? Which
wines were rated worst/best on average?

Exercise 2. Now consider three features of the wines and judges:

flight: Whether the wine is red or white.

wine.amer: Indicator variable for American wines.

judge.amer: Indicator variable for American judges.

Use indicator or index variables to model the influence of these fea-
tures on the scores. Omit the individual judge and wine index vari-
ables from Problem 1. Do not include interaction effects yet. Again
use ulam, justify your priors, and be sure to check the chains. What
do you conclude about the differences among the wines and judges?
Try to relate the results to the inferences in Problem 1.

Exercise 3. Now consider two-way interactions among the three
features. You should end up with three different interaction terms

https://github.com/rmcelreath/stat_rethinking_2020/tree/main/homework
https://github.com/rmcelreath/stat_rethinking_2020/tree/main/homework
https://github.com/rmcelreath/stat_rethinking_2020/tree/main/homework
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in your model. These will be easier to build, if you use indicator
variables. Again use ulam, justify your priors, and be sure to check
the chains. Explain what each interaction means. Be sure to interpret
the model’s predictions on the outcome scale (mu, the expected score),
not on the scale of individual parameters. You can use link to help
with this, or just use your knowledge of the linear model instead.

What do you conclude about the features and the scores? Can you
relate the results of your model(s) to the individual judge and wine
inferences from Exercise 1?
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Solution 1. Load the data and construct the variables we’ll need:

library(rethinking)

data(Wines2012)

d <- Wines2012

dat_list <- list(

S = standardize(d$score),

jid = as.integer(d$judge),

wid = as.integer(d$wine)

)

The model is straightforward. The only issue is the priors. Since I’ve
standardized the outcome, we can use the ordinary Normal(0, 0.5)
prior from the examples in the text with standardized outcomes.
Then the prior outcomes will stay largely within the possible out-
come space. A bit more regularization than that wouldn’t be a bad
idea either.

m1 <- ulam(

alist(

S ~ dnorm( mu , sigma ),

mu <- a[jid] + w[wid],

a[jid] ~ dnorm(0,0.5),

w[wid] ~ dnorm(0,0.5),

sigma ~ dexp(1)

), data=dat_list , chains=4 , cores=4 )

Since this is your first MCMC homework, we’ll spend some time
inspecting the chains to ensure they worked. First, the diagnostics
that precis provides:

precis( m1 , 2 )

which provides this output,

mean sd 5.5% 94.5% n_eff Rhat4

a[1] -0.27 0.20 -0.59 0.05 2496 1

a[2] 0.21 0.20 -0.11 0.55 2258 1

a[3] 0.21 0.20 -0.11 0.52 2005 1

a[4] -0.54 0.19 -0.84 -0.23 2107 1

a[5] 0.80 0.19 0.48 1.10 1958 1

a[6] 0.48 0.19 0.17 0.79 2122 1

a[7] 0.14 0.20 -0.18 0.44 2137 1

a[8] -0.65 0.20 -0.97 -0.33 2103 1

a[9] -0.34 0.20 -0.66 -0.02 2280 1

w[1] 0.12 0.27 -0.32 0.52 2977 1

w[2] 0.08 0.25 -0.33 0.49 2760 1

w[3] 0.22 0.26 -0.21 0.63 2636 1

w[4] 0.46 0.25 0.04 0.86 2655 1

w[5] -0.11 0.25 -0.48 0.29 2802 1

w[6] -0.31 0.25 -0.71 0.10 2724 1

w[7] 0.24 0.25 -0.16 0.64 2551 1

w[8] 0.23 0.26 -0.18 0.66 2661 1

w[9] 0.07 0.27 -0.36 0.52 2892 1

w[10] 0.09 0.26 -0.32 0.52 2946 1

w[11] -0.01 0.26 -0.42 0.41 2957 1

w[12] -0.03 0.26 -0.43 0.38 2776 1

w[13] -0.10 0.26 -0.52 0.32 3201 1

w[14] 0.00 0.26 -0.41 0.43 3115 1

w[15] -0.19 0.26 -0.62 0.22 2235 1
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w[16] -0.17 0.26 -0.58 0.24 2542 1

w[17] -0.12 0.26 -0.53 0.29 2773 1

w[18] -0.72 0.26 -1.14 -0.29 2640 1

w[19] -0.13 0.26 -0.54 0.27 2566 1

w[20] 0.33 0.26 -0.11 0.74 2465 1

sigma 0.85 0.05 0.77 0.93 2725 1

The n_eff values are all actually higher than the number of sam-
ples (2000), and all the Rhat values at exactly 1. Looks good so far.
These diagnostics can mislead, however, so let’s look at the trace
plots too using traceplot(m1) (an example of well-mixed chains can
be seen to the right).
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You’ll see that the traceplots pass the hairy-caterpillar-ocular-
inspection-test: all the chains mix in the same region, and they move
quickly through it, not getting stuck anyplace.

Now let’s plot these parameters so they are easier to interpret:

plot( precis( m1 , 2 ) )

The a parameters are the judges. Each represents an average de-
viation of the scores. So judges with lower values are harsher on
average. Judges with higher values liked the wines more on aver-
age. There is some noticeable variation here. It is fairly easy to tell
the judges apart. The w parameters are the wines. Each represents
an average score across all judges. Except for wine 18, there isn’t
that much variation. These are good wines, after all. Overall, there is
more variation from judge than from wine!

Solution 2. The easiest way to code the data is to use indicator
variables. Let’s look at that approach first. I’ll do an index vari-
able version next. I’ll use the three indicator variables W (NJ wine),
J (American NJ), and R (red wine).

dat_list2 <- list(

S = standardize(d$score),

W = d$wine.amer,
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J = d$judge.amer,

R = ifelse(d$flight=="red",1L,0L)

)

The model structure is just a linear model with an ordinary inter-
cept. I’ll put a relatively tight prior on the intercept, since it must be
near zero (centered outcome). What about the coefficients for the in-
dicator variables? Let’s pretend we haven’t already seen the results
from Problem 1—there aren’t any big wine differences to find there.
Without that cheating foresight, we should consider what the most
extreme effect could be. How big could the difference between NJ
and French wines be? Could it be a full standard deviation? If so,
then maybe a Normal(0, 0.5) prior makes sense, since they place a
full standard deviation difference out in the tails of the prior. I’d per-
sonally be inclined to something even tighter, so that it regularizes
more. But let’s go with these wide priors, which nevertheless stay
within the outcome space. It would make even more sense to put a
tighter prior on the difference between red and white wines—on av-
erage they should be the no different, because judges only compare
within flights. Here’s the model:

m2a <- ulam(

alist(

S ~ dnorm( mu , sigma ),

mu <- a + bW*W + bJ*J + bR*R,

a ~ dnorm( 0 , 0.2 ),

c(bW,bJ,bR) ~ dnorm( 0 , 0.5 ),

sigma ~ dexp(1)

), data=dat_list2 , chains=4 , cores=4 )

precis( m2a )

which provides the following output,

mean sd 5.5% 94.5% n_eff Rhat4

a -0.02 0.12 -0.21 0.18 1523 1

bR 0.00 0.14 -0.22 0.22 1752 1

bJ 0.22 0.13 0.00 0.44 1685 1

bW -0.17 0.14 -0.40 0.05 1755 1

sigma 1.00 0.05 0.92 1.09 1728 1

As expected, red and wines are on average the same—bR is right
on top of zero. American judges seem to be, on average, slightly
more generous with ratings—bJ is slightly but reliably above zero.
American wines have slightly lower average ratings than French
wines—bW is mostly below zero, but not very large in absolute size.

Okay, now for an index variable version. The thing about index
variables is that you can easily end up with more parameters than in
an equivalent indicator variable model. But it’s still the same poster-
ior distribution. You can convert from one to the other (if the priors
are also equivalent). We’ll need three index variables:

dat_list2b <- list(

S = standardize(d$score),
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wid = d$wine.amer + 1L,

jid = d$judge.amer + 1L,

fid = ifelse(d$flight=="red",1L,2L)

)

Now wid is 1 for a French wine and 2 for a NJ wine, jid is 1 for a
French judge and 2 for an American judge, and fid is 1 for red and
2 for white. Those 1L numbers are just the R way to type the number
as an integer—“1L” is the integer 1, while “1” is the real number 1.
We want integers for an index variable.

Now let’s think about priors for the parameters that correspond
to each index value. Now the question isn’t how big the difference
could be, but rather how far from the mean an indexed category
could be. If we use Normal(0,0.5) priors, that would make a full
standard deviation difference from the global mean rare. It will also
match what we had above, in a crude sense. Again, I’d be tempted to
something narrow, for the sake of regularization. But certainly some-
thing like Normal(0,10) is flat out silly, because it makes impossible
values routine. Let’s see what we get:

m2b <- ulam(

alist(

S ~ dnorm( mu , sigma ),

mu <- w[wid] + j[jid] + f[fid],

w[wid] ~ dnorm( 0 , 0.5 ),

j[wid] ~ dnorm( 0 , 0.5 ),

f[wid] ~ dnorm( 0 , 0.5 ),

sigma ~ dexp(1)

), data=dat_list2b , chains=4 , cores=4 )

precis( m2b , depth = 2)

and the output is,

mean sd 5.5% 94.5% n_eff Rhat4

w[1] 0.12 0.30 -0.38 0.59 783 1

w[2] -0.07 0.30 -0.55 0.42 686 1

j[1] -0.13 0.31 -0.63 0.35 769 1

j[2] 0.11 0.31 -0.39 0.60 733 1

f[1] -0.01 0.29 -0.46 0.46 873 1

f[2] 0.00 0.29 -0.46 0.47 845 1

sigma 1.00 0.05 0.92 1.09 1133 1

To see that this model is the same as the previous, let’s compute
contrasts. The contrast between American and French wines is:

post <- extract.samples(m2b)

diff_w <- post$w[,2] - post$w[,1]

precis( diff_w )

which gives the output to the right.
That’s almost exactly the same mean and standard deviation as bW

in the first model. The other contrasts match as well, but please check
yourself.

Something to notice about the two models is that the second one
does sample less efficiently. The n_eff values are lower. This isn’t a
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problem in this case, but it is a consequence of the higher correlations
in the posterior, a result of the redundant parameterization. If you
look at the pairs(m2b) plot, you’ll see tight correlations for each pair
of index parameters of the same type. This is because really it is a
difference that matters, and many combinations of two numbers can
produce the same difference. But the priors keep this from ruining
our inference. if you tried the same thing without priors, it would
likely fall apart and return very large standard errors.

Solution 3. I’ll use the indicator variable approach here, because
it’ll be much easier. Once you start using MCMC in the next chapter,
it’ll be possible to define very flexible parameter structures. Then the
index approach will be easy again.

For the indicator approach, we can use the same predictor vari-
ables as before:
dat_list2 <- list(

S = standardize(d$score),

W = d$wine.amer,

J = d$judge.amer,

R = ifelse(d$flight=="red",1L,0L)

)

It’s the model that is different.
m3 <- quap(

alist(

S ~ dnorm( mu , sigma ),

mu <- a + bW*W + bJ*J + bR*R +

bWJ*W*J + bWR*W*R + bJR*J*R,

a ~ dnorm(0,0.2),

c(bW,bJ,bR) ~ dnorm(0,0.5),

c(bWJ,bWR,bJR) ~ dnorm(0,0.25),

sigma ~ dexp(1)

), data=dat_list2 )

I used the same priors as before for the main effects. I used tighter
priors for the interactions. Why? Because interactions represent sub-
categories of data, and if we keep slicing up the sample, differences
can’t keep getting bigger. Again, the most important thing is not to
use flat priors like Normal(0,10) that produce impossible outcomes.

Let’s look to the right and see what precis gives us.
precis(m3)

Reading the parameters this way is not easy. But right away you
might notice that bW is now close to zero and overlaps it a lot on
both sides. NJ wines are no longer on average worse. So the inter-
actions did something. Glancing at the interaction parameters, you
can see that only one of them has much mass away from zero, bWR,
the interaction between NJ wines and red flight, so red NJ wines. To
get the predicted scores for red and white wines from both NJ and
France, for both types of judges, we can use link:
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pred_dat <- data.frame(

W = rep( 0:1 , times=4 ),

J = rep( 0:1 , each=4 ),

R = rep( c(0,0,1,1) , times=2 )

)

mu <- link( m3 , data=pred_dat )

row_labels <- paste( ifelse(pred_dat$W==1,"A","F") ,

ifelse(pred_dat$J==1,"A","F") ,

ifelse(pred_dat$R==1,"R","W") , sep="" )

plot( precis( list(mu=mu) , 2 ) , labels=row_labels )

I’ve added informative labels. FFW means: French wine, French
judge, White wine. So the first four rows are as judged by French
judges. The last four are as judged by American judges. The two
rows that jump out are the 4th and the 2nd-to-last, AFR and FAR.
Those are NJ red wines as judged by French judges and French red
wines as judged by American judges. French judges didn’t like NJ
reds so much (really only one NJ red, if you look back at Problem
1). And American judges liked French reds more. Besides these two
interactions, notice that it is very hard to figure this out from the
table of coefficients.


