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We seek a measure of uncertainty that satisfies three criteria:

1. the measure should be continuous;

2. it should increase as the number of possible events increases; and

3. it should be additive.

The resulting unique measure of the uncertainty of a probability
distribution p with probabilities pi for each possible event i turns out
to be just the average log-probability:

H(p) = −∑
i

pilogpi

This function is known as information entropy. When we want to
choose between distributions (as part of our likelihood) we want
to maximize the information entropy, i.e., maximum entropy,

The distribution that can happen the most ways is also the distribution
with the biggest information entropy. The distribution with the biggest
entropy is the most conservative distribution that obeys its constraints.

In short, the distribution that can happen the greatest number
of ways is the most plausible distribution. Call this distribution the
maximum entropy distribution.

There are many distributions to pick from.1 First, we have 1 S. A. Frank. The common patterns
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the Normal distribution (i.e., Gaussian). If all you know about a bunch
of continuous values is its mean and variance, then Gaussian is the
maximum entropy distribution. The Gaussian distribution has two
parameters we want to estimate, i.e., the mean µ and the standard
deviation σ (this you should know already by now). Normal(µ, σ)

Second, we have the Binomial distribution (also called logistic re-
gression when used), which is maximum entropy if only two things Binomial(n, p)

can happen (yes/no, true/false, alive/dead), and there’s a constant
chance p of each across n trials. The Binomial distribution has one pa- The Bernoulli distribution we use when

n = 1.rameter we want to estimate, i.e., p. However, since we are now using
generalized linear models we also employ a link function to translate
from log-odds to probability space. In the case of the Binomial it’s the
logit link function. logit(pi) = log pi

1−pi

If for some reason the Binomial cannot be used (because there is not
a constant chance p) then we need to model that separately using in-
stead a Beta-Binomial distribution where we estimate two parameters,
p and θ. The Beta-Binomial uses a logit just as the Binomial. Beta-Binomial(N, p, θ)
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Third, the Exponential distribution is constrained to be zero or pos-
itive. It’s often used when we’re dealing with distance or duration. Exponential(λ)

The Exponential distribution has maximum entropy among all non-
negative continuous distributions with the same average displace-
ment. The shape λ, is what we estimate. The Exponential distribution
uses a log link.

Fourth, the Gamma distribution is also constrained to be zero or
positive. The difference is that Gamma can have a peak above zero. Gamma(λ, k)

The Gamma distribution often uses a log link.
Fifth, the Poisson distribution is also a count, like the Binomial’s

0/1. If the number of trials n is very large (and usually unknown) Poisson(λ)

and the probability of a success p is very small, then a binomial dis-
tribution converges to a Poisson distribution with an expected rate of
events per unit time of λ = np. In short, when we have a count going
from 0→ ∞ Poisson is a good first choice.

But the Poisson is picky. We only estimate λ, which represents
both the ‘mean’ and the variance so your outcome variable should
have equal variance and mean. Very often that is not the case and
instead you fall back to Gamma-Poisson, or Negative-Binomial as it is
more commonly known as. The Poisson (and Gamma-Poisson) use Gamma-Poisson(λ, φ) or more com-

monly Negative-Binomial(r, p)a log link function. In the case of the Gamma-Poisson we model two
parameters—we model variance separately, i.e., λ and the variance φ.

Sixth, if you have categories you want to model (e.g., red, white,
blue) then a Multinomial distribution is commonly used with a softmax

link function. a.k.a. multinomial logistic regression,
which often is simply written as Cate-
gorical(p)

Seventh, and last, we have the case of ordered categorical outcomes
(and predictors!), e.g., Likert scale. The convention differs a lot but Ordered-

Logit(φ, κ) is used in the course litera-
ture. While for predictors we set a prior
using the Dirichlet(α) distribution.

Link functions are something we must live with when working
with generalized linear models. One must know when to use a logit

and when to use a log (the two most common ones). Also, we must
understand how to reverse them using inverse-logit and exponentia-
tion.

So, we might now know what the point is with link functions, but
there’s more to it. The examples we see show that it is very important
to do prior predictive checks before running your models. When
our priors go through a link function we simply have a hard time
seeing what they imply on the outcome. Repeat after me: Always be
plotting your priors! A common prior for β parameters is

Normal(0, 1). If one uses such a prior
with a log link function then you are
often on your way to mayhem. . .


