
Exercises week 7
prof. Richard Torkar

March 31, 2021

Ce que nous connaissons est peu de chose, ce que nous ignorons est immense.

Pierre-Simon Laplace

Exercise 1. Now it’s time to get our hands wet on a controversial dataset.1 1 B. Ray, D. Posnett, V. Filkov, and P. De-
vanbu. A large scale study of programming
languages and code quality in GitHub. In
Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of
Software Engineering, pages 155–165, 2014.
doi: 10.1145/2635868.2635922

This dataset and the study that originally published it, stirred a lot of contro-
versy (it’s as close to all out war as it can get in academia. . .)2 We’re gonna

2 Read more about it here: https:
//www.hillelwayne.com/post/
this-is-how-science-happens/

have a look at it and see if what the original authors claimed is, well, correct.
They wanted to study what the effect of programming languages is on soft-
ware quality. They claimed the design of a language had a significant effect
on software quality.

First, we need to download the dataset (yes, it’s large!) and format it. In
order to do that we have an R script, which Berger et al.3 made and which 3 E. D. Berger, C. Hollenbeck, P. Maj,

O. Vitek, and J. Vitek. On the impact of
programming languages on code quality: A
reproduction study. ACM Trans. Program.
Lang. Syst., 41(4), 2019. doi: 10.1145/

3340571

my colleague Carlo A. Furia4 adapted. Let’s download it, source it, i.e., so

4 USI Università della Svizzera Italiana,
Switzerland

that R will be able to use the functionality the script provides, and then use
functions from the script to download the tar.gz file, decompress it, and do
some cleanup,

library(tidyverse) #much data wrangling so install this
the below should be on one line!
url <- "https://raw.githubusercontent.com/torkar/BDA-PL/main/

docs/utils.R"
change below if needed
destFile <- "~/Downloads/utils.R"
download.file(url, destFile)
I have no idea where you put it so change below if needed
source("~/Downloads/utils.R")
setup.data()
d <- load.FSE(cleanup=TRUE)
d <- by.project.language(d)
d <- d[,-c(2:5,7:8)]
d$project <- as.integer(d$project)
dim(d)

by executing the last call you can check that we have 1127 rows and 3
columns. The first column is project, which is a unique ID for each project
(a project may have several rows in the data). Next, n_bugs is our outcome
(the lower the better). Finally, language_id is what we’re really interested
in.

So, create a number of multilevel models with language and/or project
as varying intercepts. Compare all models with LOO. Finally, do we see a Use hyperparameters/hyperpriors.

significant difference between the 17 languages? Can you infer something
from the variability of projects and languages?

https://www.hillelwayne.com/post/this-is-how-science-happens/
https://www.hillelwayne.com/post/this-is-how-science-happens/
https://www.hillelwayne.com/post/this-is-how-science-happens/

exercises week 7 2

Solution 1. First, we should think about the ontological and epistemolog-
ical justifications concerning the underlying data generation process. Our
outcome is a count 0 → ∞ (recognize this?) Also the information theoret-
ical justification (epistemological) would be to fall back on the maximum
entropy distribution for counts, i.e., low probability and many trials, which
is the Poisson. But, look at the mean (x̄ ≈ 500) and the sample variance
(s2 = 15031006) and it’s obvious we will face challenges down the road. I
wish one would at least once get data which can be used for fitting a Poisson
model. . .

No need to whine about it; instead we rely on the Negative-Binomial,
which can model the variance separately. Let’s create a set of models M =

M0, ..,Mn and compare them with LOO. Please, look carefully at each
model specification below and try to figure out what I’ve tried to accomplish.
Also, the priors might seem tight, but they are actually very broad (please do
prior predictive checks and check for yourself)—remember, we use a log link
and that makes funky things to the priors.

After the models, further down below, I’ll explain the main differences
between the models, and what I wanted to achieve. The lines you should pay
special attention to end with a hash (#) and a number.
set.seed(061215)
m0 <- ulam(
alist(
n_bugs ~ dgampois(lambda, phi),
log(lambda) <- a_l[language_id],
a_l[language_id] ~ dnorm(a_bar, sigma), #1
a_bar ~ dnorm(0, 1),
sigma ~ dexp(1),
phi ~ dexp(1)

), data = d, cores = 4, chains = 4, cmdstan = TRUE,
log_lik = TRUE, iter = 5e3

)

m1 <- ulam(
alist(
n_bugs ~ dgampois(lambda, phi),
log(lambda) <- a_p[project],
a_p[project] ~ dnorm(a_bar, sigma), #2
a_bar ~ dnorm(0, 0.2),
sigma ~ dexp(1),
phi ~ dexp(1)

), data = d, cores = 4, chains = 4, cmdstan = TRUE,
log_lik = TRUE, iter = 5e3

)

m2 <- ulam(
alist(
n_bugs ~ dgampois(lambda, phi),
log(lambda) <- a_l[language_id] + a_p[project],
a_p[project] ~ dnorm(0, sigma_p), #3
sigma_p ~ dexp(1),
a_l[language_id] ~ dnorm(0, sigma_l), #4
sigma_l ~ dexp(1),
phi ~ dexp(1)

), data = d, cores = 4, chains = 4, cmdstan = TRUE,

exercises week 7 3

log_lik = TRUE, iter = 5e3
)

m3 <- ulam(
alist(
n_bugs ~ dgampois(lambda, phi),
log(lambda) <- a_l[language_id] + a_p[project],
a_p[project] ~ dnorm(0, sigma_p),
sigma_p ~ dexp(1),
a_l[language_id] ~ dnorm(a_bar, sigma_l), #5
a_bar ~ dnorm(0, 0.5),
sigma_l ~ dexp(1),
phi ~ dexp(1)

), data = d, cores = 4, chains = 4, cmdstan = TRUE,
log_lik = TRUE, iter = 5e3

)

m4 <- ulam(
alist(
n_bugs ~ dgampois(lambda, phi),
log(lambda) <- a_l[language_id] + a_p[project],
a_p[project] ~ dnorm(a_bar_p, sigma_p), #6
sigma_p ~ dexp(1),
a_l[language_id] ~ dnorm(a_bar_l, sigma_l), #7
a_bar_l ~ dnorm(0, 0.5),
a_bar_p ~ dnorm(0, 0.2),
sigma_l ~ dexp(1),
phi ~ dexp(1)

), data = d, cores = 4, chains = 4, cmdstan = TRUE,
log_lik = TRUE, iter = 1e4

)

So,M0 is an MLM where we model language as a varying effect. If you look Varying effects are also called random
effects or group-level effects, I can’t say that
any of those names are particularly good,
but probably exist only to confuse people.

at the hash sign you see that we declare a prior, which then consists of other
parameters, e.g., a_bar is a hyperparameter and we set a hyperprior on the
next line line. M1 is the same but instead we model projects.

InM2 we then use both project and language. Here, however, we model
the variance, σl and σp, separately. In short, I have reason to believe that
modeling this carefully will tell us something. ForM3 we model the mean of
language (using hyperparameters), while inM4 we model the mean of both
language and project (with hyperparameters).

Check the chains, R̂, and effective sample size. Only inM4 we have
reasons to worry. One of the parameters has R̂ = 1.01, which is worrisome,
but we still have effective sample size in the hundreds so I’ll let it slide for
now (you know what to do if you have R̂ slightly above 1.01.

Our models now estimate hundreds of parameters. Let’s have a look at
how many effective parameters we’re estimating now,

PSIS SE dPSIS dSE pPSIS weight
m3 14149.5 128.77 0.0 NA 316.9 0.62
m2 14150.5 128.26 1.0 4.20 316.1 0.37
m4 14159.0 129.44 9.5 4.25 321.5 0.01
m1 14410.0 138.18 260.5 37.17 367.5 0.00
m0 14580.0 154.15 430.5 68.70 53.0 0.00

so the winning model has ≈ 317 effective parameters, but in reality we model

exercises week 7 4

751 parameters. Thanks to our regularizing hyperpriors we avoid overfitting!
Also, you’ll see some warnings from LOO about high Pareto k values, but

rerunning with pointwise comparison will lead to the same output.
In the output we clearly see the models are divided into two clusters.

One where they have a lower PSIS (M3,M2,M4) and one which seems
to not catch up, i.e.,M1 andM0. What LOO is saying is that having both
project and language might be a good idea (i.e., not modelsM0 andM1).
Additionally,M3 andM2 are significantly better thanM4.5 What does this 5 9.5 + c(-1,1) * 4.25 * 1.96 =

[1.17,17.83]mean?
Well, after having accounted for modeling the variance using hyperparam-

eters for both language and project (M2), focusing on modeling the mean for
language using hyperparameters (M3) doesn’t give that much more. Also,
modeling mean and variance for both language and project using hyperpa-
rameters (M4), doesn’t do that much either.

Let’s have a look at the variance using precis(m3),

mean sd 5.5% 94.5% n_eff Rhat4
sigma_p 1.08 0.06 0.99 1.17 2569 1
a_bar 1.29 0.59 0.36 2.24 12383 1
sigma_l 3.65 0.77 2.55 4.98 11899 1
phi 0.74 0.03 0.68 0.79 6720 1

so the variance for project is lower (1.08) than for language (3.65). Let’s plot
projects 18–34 and all our 17 languages,

Figure 1: Project estimates

Figure 2: Language estimates

exercises week 7 5

and we see that there’s clearly more variability among languages. Even
though we do have variability among projects, which we should take into
account.

If we examine the language estimates we see that some languages have
lower number of bugs than others. So, what’s the conclusion, should we use
Languages 12 and 17 in projects from now on? Well, perhaps. . .

But, first we need to think about omitted variable bias; we have more
variables in the data that we could take into account. When we do that we
risk adding colliders and whatnot. Also, this analysis doesn’t say much in
itself—we account for variance from two sources, project and language, but
that’s it.

If you are curious, the answer to the question is, according to me and my
co-authors: it depends.6 6 https://arxiv.org/abs/2101.12591

https://arxiv.org/abs/2101.12591

