
Exercises week 6
prof. Richard Torkar

Oct. 11, 2021

If fallacious reasoning always led to absurd conclusions, it would be found out
at once and corrected. But once an easy, shortcut mode of reasoning has led to
a few correct results, almost everybody accepts it; those who try to warn against
it are not listened to.

Edwin Thompson Jaynes

Exercise 1. For this example we’ll make use of a dataset found in the
PROMISE repository donated by Prof. Martin Shepperd in 2005, and origi-
nally from J. M. Desharnais’ master thesis.1 1 http://promise.site.uottawa.ca/

SERepository/datasets/desharnais.
arff

You can download the file like this,

where is the file?
url <- "https://torkar.github.io/desharnais.csv"
where should we place the file?
destFile <- "~/Downloads/desharnais.csv"
d/l file
download.file(url, destFile)
read the file into d
d <- read.csv("~/Downloads/desharnais.csv")
remove columns we don’t need
d <- d[-c(1)]
str(d) # check format

which provides the output below,

’data.frame’: 77 obs. of 4 variables:
$ Effort : int 5152 5635 805 3829 2149 2821 2569 3913 ...
$ TeamExp : int 2 1 5 1 1 1 3 2 4 4 ...
$ ManagerExp: int 5 1 5 1 1 1 2 3 2 5 ...
$ Language : int 1 1 1 1 1 1 2 1 1 1 ...

We would like to predict Effort (our outcome) for implementing a soft-
ware artifact, given programming language (Language), team experience
(TeamExp), and manager experience (ManagerExp), which are our predic-
tors.

What is your implied DAG? Estimate the causal influence (assuming the
DAG is correct) of language, by designing one or more models.

Exercise 2. Analyzing ordered categorical data (e.g., Likert scale data)
is very common. Each year we see numerous master theses at our division
that use this type of analysis for analyzing surveys etc. Here we’ll use data
that was collected by a researcher at our division (Dr. Richard Berntsson
Svensson).2 2 https://github.com/torkar/

feature-selection-RBSStart by downloading and cleaning the data,

url <- "https://github.com/torkar/feature-selection -RBS/blob/
master/data/data.rds?raw=true"

http://promise.site.uottawa.ca/SERepository/datasets/desharnais.arff
http://promise.site.uottawa.ca/SERepository/datasets/desharnais.arff
http://promise.site.uottawa.ca/SERepository/datasets/desharnais.arff
https://github.com/torkar/feature-selection-RBS
https://github.com/torkar/feature-selection-RBS

exercises week 6 2

destFile <- "~/Downloads/data.rds"
download.file(url, destFile)
f <- readRDS(destFile)
f <- f[-c(1,3:14,16:18)] # rm columns not needed

d <- list(
State = as.integer(f$State),
b_val = as.integer(f$b_val),
alpha = rep(2,3) # 3 twos since b_val are four categories

)

and now d contains three variables.
State, our outcome, is an ordered categorical variable that indicates how

far a requirement has come in the requirements prioritization process. There
are six states a requirement can be in and they are numbered accordingly,

1. Elicited, Dropped

2. Elicited, Prio, Dropped

3. Elicited, Prio, Planned, Dropped

4. Elicited, Prio, Planned, Implemented, Dropped

5. Elicited, Prio, Planned, Implemented, Tested, Dropped

6. Elicited, Prio, Planned, Implemented, Tested, Released

Next, we have b_val (business value), a predictor, which is also ordered
categorical. This is a value the teams set on a requirement indicating how
valuable the requirement is from a business perspective. b_val is 1, .., 4,
where higher is more valuable. Finally, we set a convenience variable called
alpha. This is the value we set for our Dirichlet prior. Remember, we had
K = 4 categories in b_val, thus we have K − 1 priors we need to set, i.e., 3
of them.3 3 Check pp. 392–393 in the book.

First, design a model,M0, where we only predict the grand mean for our
outcome State (we’ll actually predict the borders between the six categories
in our outcome).

Next, design a model,M1, where you also add the ordered categorical
predictor b_val. Is it significant? Chapters 12.3 and 12.4 are your friends. . .

Finally, compare the two models using LOO. Does having the predictor
help significantly in improving out of sample predictions?

exercises week 6 3

Solution 1. Below we see our implied DAG,

which we’ve plotted by doing this,

dag <- dagitty("dag{
E <- L
E <- T -> L
E <- M -> L

}")
coordinates(dag) <- list(x=c(E=1,L=1,T=0,M=2) ,

y=c(E=0,L=-1,T=-1,M=-1))
drawdag(dag)

We assume that there is a direct effect of Language on Effort. We also
believe that there’s a direct effect of TeamExp and ManagerExp on Effort,
but there are also direct effects going to Language, from these two entities.
What to do?

Well, impliedConditionalIndependencies(dag) tell us that M y T ,
i.e., ManagerExp is conditionally independent from TeamExp (which is
something one can see directly from the plot).

Using adjustmentSets(dag, exposure="L", outcome="E") gives
this output: { M, T }. In short, conditioning on M or T would suffice. Assuming our DAG is correct!

So, let’s create two models, one where we condition on L and one where
we condition on L and T . Our outcome, Effort, is a count going from 0 →
∞. Hence, a max_ent distribution in this case would be the Poisson. But,
recall, a Poisson has one parameter to estimate, i.e., λ, and it implies that
the mean and the variance should be equal. In our case (check yourself!) it is
definitely not equal. Please, fit a model using Poisson and you

will see the sampler will get into problems
after you start adding predictors.

We need to fall back on modeling the variance as a separate component.
For this we have Negative-Binomial, or as McElreath calls it Gamma-
Poisson (see pp. 373).

m0 <- ulam(
alist(

Effort ~ dgampois(lambda, phi),
log(lambda) <- a[Language],
a[Language] ~ dnorm(0,0.5),
phi ~ dexp(1)

), data = d, cores = 4, chains = 4, cmdstan = TRUE,
iter = 5e3

)

m1 <- ulam(

exercises week 6 4

alist(
Effort ~ dgampois(lambda,phi),
log(lambda) <- a_l[Language] + a_t[TeamExp],
a_l[Language] ~ dnorm(0,0.5),
a_t[TeamExp] ~ dnorm(0,0.5),
phi ~ dexp(1)

), data = d, cores = 4, chains = 4, cmdstan = TRUE,
iter = 5e3

)

Now check the output using precis() and you will see how the effects of
language changes depending on if and which predictors we add. According to
our DAG, if it is ‘true’, we should rely onM1. WithM0 we will presumably
wrongly estimate the causal effect.

As you see I’ve started using
cmdstan=TRUE to use the new and im-
proved sampler. Also, I’ve asked the
sampler for 5000 iterations, in order for the
chains to converge. This is not uncommon
when using Negative-Binomial.

While we’re at it, let’s see how the differences between the three languages
differ between the two models, Please check precis() to see how they

differ!
Thanks to Fredrik Ullman (MSc SE, 2021)
for pointing out an error in the original code
below

post0 <- extract.samples(m0)
post0$diff12 <- post0$a[,1] - post0$a[,2]
post0$diff13 <- post0$a[,1] - post0$a[,3]
post0$diff23 <- post0$a[,2] - post0$a[,3]

post1 <- extract.samples(m1)
post1$diff12 <- post1$a_l[,1] - post1$a_l[,2]
post1$diff13 <- post1$a_l[,1] - post1$a_l[,3]
post1$diff23 <- post1$a_l[,2] - post1$a_l[,3]

plot(precis(post0),pars = c("diff12","diff13","diff23"))
plot(precis(post1),pars = c("diff12","diff13","diff23"))

Note the different horizontal axes.

diff23

diff13

diff12

0.5 1.0 1.5 2.0 2.5
Value

Figure 1: M0: From top to bottom, the three
languages are compared: L1 v. L2, L1 v. L3,
and L2 v. L3.

diff23

diff13

diff12

0.0 0.5 1.0 1.5 2.0
Value

Figure 2: M1: From top to bottom, the three
languages are compared: L1 v. L2, L1 v. L3,
and L2 v. L3.

exercises week 6 5

Solution 2. First, let’s sample and check the estimates for the first model
where we only model the intercepts, i.e., κ. Notice that I use cmdstan = κ is the Greek letter kappa.

TRUE and log_lik = TRUE.4 4 log_lik = TRUE ensures that we also
have the log likelihood of each observation
stored. It’s needed for model comparisons.m0 <- ulam(

alist(
State ~ dordlogit(0, kappa),
kappa ~ dnorm(0, 1.5)

), data = d, chains = 4, cores = 4, cmdstan = TRUE,
log_lik = TRUE

)
precis(m0, depth=2)

which gives us the following output,

These models will give some initial warn-
ings during warmup but there’s no need to
worry.

mean sd 5.5% 94.5% n_eff Rhat4
kappa[1] -0.97 0.02 -1.01 -0.94 1740 1
kappa[2] -0.09 0.02 -0.12 -0.06 2696 1
kappa[3] 0.61 0.02 0.58 0.65 3082 1
kappa[4] 0.85 0.02 0.82 0.88 3134 1
kappa[5] 0.89 0.02 0.86 0.92 2908 1

indicating that our chains have converged and that we have good sample sizes
(check the traceplots while you’re at it :)

But what is kappa[i]? Well, kappa[1] is the first border, between Cate-
gory 1 and 2. We can convert them to probability (remember they are on the
logit scale!) like this,

inv_logit(coef(m0))

which spits out this,

kappa[1] kappa[2] kappa[3] kappa[4] kappa[5]
0.2742288 0.4777283 0.6486877 0.7005881 0.7085920

so ≈ 27% of the probability mass is below the first border, and > 70% is
below the fifth border (incl. Category 1, .., 5). If we want to calculate how
much probability mass Category 6 has then we simply do 1 − 0.709 = 0.291.

Next, let’s specify a model where we add the ordered categorical predictor,

Please see pp. 394 for an explanation of
the notation. I know it looks fishy but it’s
important you understand it.

m1 <- ulam(
alist(
State ~ dordlogit(phi, kappa),
phi <- bB * sum(delta_j[1:b_val]),
kappa ~ dnorm(0, 1.5),
bB ~ dnorm(0,1),
vector[4]: delta_j <<- append_row(0, delta),
simplex[3]: delta ~ dirichlet(alpha)

), data = d, chains = 4, cores = 4, cmdstan = TRUE,
log_lik = TRUE

)

and if we look at the estimates of interest we see this, precis(m1, depth=2, omit="kappa")

mean sd 5.5% 94.5% n_eff Rhat4
bB 0.12 0.05 0.04 0.20 1753 1
delta[1] 0.39 0.18 0.11 0.70 1575 1
delta[2] 0.37 0.18 0.10 0.68 1816 1
delta[3] 0.24 0.14 0.05 0.51 2437 1

exercises week 6 6

The overall association of business level βB is positive. But what about our
four categories (i.e. three borders)? Well, as McElreath writes (pp. 395), the
easiest way is to use pairs(), but already by looking at the output above
we see something. We have three borders and if they would have exactly the
same probability mass then they each would have 1

3 , we clearly see that is not
the case, Category 1: > 1

3 , Category 2: > 1
3 , and finally Category 3: ≈ 1

4 .
Next, let’s see what LOO has to say,

compare(m0,m1,func=LOO)

PSIS SE dPSIS dSE pPSIS weight
m1 34045.4 104.13 0.0 NA 6.3 0.78
m0 34048.0 104.16 2.6 4.51 4.9 0.22

hmm. . . so,M1 takes the lead (78% of the weight). However, it’s not a clear
lead. If we calculate a 95% confidence interval,

dPSIS + c(-1,1) * dSE * 95% z value
2.6 + c(-1,1) * 4.51 * 1.96

it’s clearly crossing zero, i.e., CI95% = [−6.2396, 11.4396].
To conclude, adding our predictor business value to the model had an

effect, but it is not statistically significant on the 95%-level according to
LOO. Does it matter? No, in this case we wanted to know if the parameter
was significant, which it actually is. Both conclusions are correct :)

