
Exercises week 8
prof. Richard Torkar

Oct. 17, 2021

Ich habe meine Ergebnisse schon lange gehabt: aber ich weiß noch nicht, wie
ich zu ihnen kommen soll.

Carl Friedrich Gauss

Here we’ll introduce another tool, brms, which many, if not all of you,
will use instead of rethinking, when you do your theses. This tool allows The course book has been translated to

brms: https://bookdown.org/content/
4857/

you to write very complex model specifications in a simple way. However,
with power comes great responsibility. It’s important that we understand
what the models imply, what our priors mean, and that we conduct prior and
posterior predictive checks.

We will create a varying intercepts and varying slopes model and we’ll
compare it with a varying intercepts model. We will use the same data as
previous week, but now we’ll use a new predictor devs as a slope (devs
stands for the total number of developers committing code to the project).

First, download and clean data (you might have already done that, so reuse
the data from last week in that case),

library(tidyverse) # much data wrangling so install this
the below should be on one line!
url <- "https://raw.githubusercontent.com/torkar/BDA-PL/main/

docs/utils.R"
destFile <- "~/Downloads/utils.R"
download.file(url, destFile)
I have no idea where you put it so change below if needed
source("~/Downloads/utils.R")
setup.data()
d <- load.FSE(cleanup=TRUE)
d <- by.project.language(d)
fse.data <- d # save orig data
d$devs_log <- log(d$devs) # log the var since magnitude matters
d$lang_id <- as.integer(d$language) # make int
d <- d[, -c(1:5,7:9)] # rm columns not needed

Next, install some new packages and load them.

first run the below line if you haven’t installed these
install.packages(c("bayesplot", "brms", "ggplot2"))
library(ggplot2) # plotting
library(bayesplot) # for plotting Bayesian stuff
library(brms) # lme4 syntax when specifying models

Now let’s specify a varying intercepts model. In math notation, according
to McElreath, it would look something like this,

https://bookdown.org/content/4857/
https://bookdown.org/content/4857/

exercises week 8 2

n_bugsi ∼ Negative-Binomial(λi, φ)

log(λi) = αLANG_ID[i] varying intercept

α j ∼ Normal(ᾱ,σ) adaptive prior

ᾱ ∼ Normal(0, 1.5) hyperprior

σ ∼ Weibull(2, 1) hyperprior

φ ∼ Gamma(0.01, 0.01) shape parameter

In brms’s lme4 syntax, the second line is written as,

n_bugs ~ 1 + (1 | lang_id)

Let’s now set priors also, and do prior predictive checks,

First check which priors should be set
p <- get_prior(n_bugs ~ 1 + (1 | lang_id),

family = negbinomial ,
data = d)

p

So, these are the priors we must set (and we see some default priors already
set),

prior class coef group ...
student_t(3, 4.2, 2.5) Intercept ...
student_t(3, 0, 2.5) sd ...
student_t(3, 0, 2.5) sd lang_id ...
student_t(3, 0, 2.5) sd Intercept lang_id ...
gamma(0.01, 0.01) shape ...

We need to set a prior on the Intercept, ᾱ, and the standard deviation σ. The
shape prior we can keep since it’s a default prior.

p$prior[1] <- "normal(0,1.5)"
p$prior[2] <- "weibull(2,1)" # same for all sd params

Now we sample only from the priors to do prior predictive checks,

m0 <- brm(n_bugs ~ 1 + (1 | lang_id),
family = negbinomial ,
data = d,
sample_prior = "only", # note this!
prior = p, # and here we use our priors!
iter = 500, # enough for now
chains = 1 # no need to run more
)

pp_check(m0, nsamples = 250) + scale_x_continuous(trans="log")

Clearly we allow some absurd values (look to the right). Let’s go with these
priors for now and sample with data.

m0 <- brm(n_bugs ~ 1 + (1 | lang_id),
family = negbinomial ,
data = d,
iter = 5e3, # up the samples
prior = p)

exercises week 8 3

max(rhat(m0), na.rm = TRUE) # check max Rhat value
min(neff_ratio(m0), na.rm = TRUE) # check min ESS

posterior predictive check
pp_check(m0) + scale_x_continuous(trans="log")

The last line plots our empirical data against what the model predicts. We
clearly see that our model skews to the right.

Varying intercepts and slopes could perhaps capture the characteristics of
the data better? Let’s use the same procedure as above.

p <- get_prior(n_bugs ~ 1 + devs_log + (1 + devs_log | lang_id),
family = negbinomial ,
data = d)

p$prior[1] <- "normal(0,1)"
p$prior[3] <- "lkj(2)" # see pp. 442!
p$prior[5] <- "normal(0,2.5)"
p$prior[6] <- "weibull(2,1)"

Note the formula specification above, 1 + devs_log + (1 + devs_log
| lang_id). Page 441 in the book lists such a model. What’s important
here is that devs_log is a β parameter first, and then we use it as a varying
slopes component (1 + devs_log |... We also need to add a special prior
when dealing with covariance matrices, i.e., the Lewandowski-Kurowicka-
Joe (LKJ) prior. A value of 2 simply states that we are somewhat skeptical
towards extreme correlations.

m1 <- brm(n_bugs ~ 1 + devs_log + (1 + devs_log | lang_id),
family = negbinomial ,
data = d,
sample_prior = "only",
iter = 500,
chains = 1,
prior = p)

pp_check(m1) + scale_x_continuous(trans="log")

Once again we see that the priors allow a range of values so let’s stick with
this for now.

m1 <- brm(n_bugs ~ 1 + devs_log + (1 + devs_log | lang_id),
family = negbinomial ,
data = d,
iter = 5e3,
prior = p)

max(rhat(m1), na.rm = TRUE)
min(neff_ratio(m1), na.rm = TRUE)

pp_check(m1) + scale_x_continuous(trans="log")

There’s still some skew, but it is better (see to the right and compare with the
top plot). Let’s use LOO and see how the models compare.

m0 <- add_criterion(m0, "loo")
m1 <- add_criterion(m1, "loo")
loo_compare(m0, m1) # you’ll get some warnings but it’s ok

exercises week 8 4

And here’s the output,

elpd_diff se_diff
m1 0.0 0.0
m0 -521.9 50.7

where we see that we are > 10 ∆SE away. In short,M1 is superior. Let’s
check what the results imply,

pp_check(m1, type = "violin_grouped", group = "lang_id", y_draw
="points") +

scale_y_continuous(trans = "log2") +
scale_x_discrete(labels=levels(fse.data$language)) +
theme(axis.text.x = element_text(angle=45, hjust=1))

Clearly some languages are ‘better’, i.e., having lower values. Let’s plot the
conditional effect of devs to see how it varies,

conditional_effects(m1)

To the right we see that the more devs the more bugs, but also the more
uncertainty. Finally, let’s plot another version of the violin plot where we
simply use the densities of each estimate.

mcmc_areas(m1, regex_pars = "devs_log]") +
scale_y_discrete(labels=levels(fse.data$language)) +
ggtitle("devs")

According to out model, there’s only one significant language, i.e., C, when
accounting for devs. It has significantly more bugs than any other language
(it doesn’t cross zero).

Can we improve the model? Well, yes. We have a number of variables we
could add (we removed all variables we didn’t need in the beginning). They
could be added as varying slopes. . .

exercises week 8 5

Gaussian Processes (GP) can be quite hard to get right. Additionally, they
are often computationally heavy so it would be nice if we could benefit from
some optimizations. Thankfully Paul Bürkner’s brms makes using GP a bit
easier. Additionally, he has optimized brms to make it faster.

Here we will go through a simple case (it’s in a paper which I conducted
the analysis for).1 The case consists of data from software engineers filling 1 https://rpubs.com/torkar/713862

out a survey (instrument) on a daily and weekly basis. As you will see in
the analysis, modeling a GP is relatively straightforward in brms. I would
recommend you to look at Sect. 3.1–3.2 that cover the weekly and daily
analysis, respectively.

In the two sections you will see how I apply exactly what I have taught
you in this course,

1. Prior predictive checks.

2. Posterior predictive checks.

3. Check diagnostics.

4. Check parameter estimates.

5. Conduct inference if needed.

This case, together with other case, could serve as examples on how to do
these types of analyses, but also on how to report them.

• Analysis of telecom data and feature selection concerning requirements
prioritization: https://github.com/torkar/feature-selection-RBS

• Bayesian analysis of programming language data: https://github.
com/torkar/BDA-PL

• Bayesian analysis from an experiment (part of a MSc thesis): https:
//github.com/torkar/affective_states

• How to connect Bayesian data analysis to utility theory, i.e., practical
significance: https://github.com/torkar/docker-b3

• Replication package for a book chapter on handling missing data in
Bayesian data analysis: https://github.com/torkar/BDA_in_ESE

In all of the above cases you will find replication packages published online.

https://rpubs.com/torkar/713862
https://github.com/torkar/feature-selection-RBS
https://github.com/torkar/BDA-PL
https://github.com/torkar/BDA-PL
https://github.com/torkar/affective_states
https://github.com/torkar/affective_states
https://github.com/torkar/docker-b3
https://github.com/torkar/BDA_in_ESE

