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Introduction

° CHALMERS

Properties a measure of uncertainty should possess

¢ Continuous.
® Increase as number of possible events increases.
® Additive.

H(X)=—-Elog(X =z;) = —Zn:P(X =uz;)log P(X = x;)

The uncertainty contained in a probability distribution is the average log-probability of an event.
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But why logarithms?

I have selected a number between 0 and 31.

® Can you guess which one?

l@TivadarDanka provided this thought experience.
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CHALMERS

But why logarithms?

I have selected a number between 0 and 31."
® Can you guess which one?
® You can ask as many questions as you want.

® What is the minimum number of questions you have to ask to be 100% sure?

l@TivadarDanka provided this thought experience.
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Logarithms
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Let’s do the math
We could pick between 0,...,31, i.e., 32 numbers. Let’s rewrite as an equation,
log,(32) =z

Proof.

If z and b are positive real numbers, and b does not equal 1, then log,(z) = y is equivalent to

b =z,

O
2" =32

Create equivalent expressions in the equation that all have equal bases,
2* =2°
Since the bases are the same, the two expressions are only equal if the exponents are also equal,

r=25
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® In other words, we need to take the base two logarithm of 32 to get the number of questions
required, i.e., 5.
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CHALMERS

® In other words, we need to take the base two logarithm of 32 to get the number of questions
required, i.e., 5.

® This logic applies to all numbers! If we pick a number between 0 and n — 1, you need
log(2,n) questions to find the number.
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Logarithms
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Since we are nerds. . .

If we write down the answers in a row, we effectively encode the numbers in n bits.
0 00000
1 00001
2 00010

31 11111

Each ‘code’ is simply the number in base two.
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But why sums?

® No matter which number we picked, 5 questions are needed to find it.

® The average number of bits needed is also 5.
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CHALMERS

But why sums?

® No matter which number we picked, 5 questions are needed to find it.
® The average number of bits needed is also 5.
However, we have an assumption here,
Corollary
Each number is picked with an equal probability. J

What if this is not the case?
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New thought experiment

® Let’s say we're picking between 0, 1, and 2, but we’re picking 0 50% of the time, while 1 and
2 only 25% of the time.
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New thought experiment

Let’s say we’re picking between 0, 1, and 2, but we’re picking 0 50% of the time, while 1 and
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® How many bits do we need now?
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New thought experiment

Let’s say we’re picking between 0, 1, and 2, but we’re picking 0 50% of the time, while 1 and
2 only 25% of the time.

® How many bits do we need now?

We should put this into mathematical form!

® Let’s denote the number we pick with X. This is a random variable.

But we can be a bit more ‘careful’ with our ‘bits’, i.e., which question to ask.
Consider this,

1st Q did you pick 07 If the answer is ‘Yes’, the 2nd question is not needed. If not, we proceed!
2nd Q did you pick 1?7 No matter what the answer is, we know the solution! ‘Yes’ implies 1, ‘No’

implies 2.
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Let’s do some math

avg. num bits—fllo (1),l10 (1)7110 (1>
g--—2322 4g24 4g24

1 1
flog22+110g24—|—110g24
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The general case

® Suppose we pick between z1,z2,...,Zn.

® We pick x with probability pg.
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Generalizability

~ CHALMERS

The general case

® Suppose we pick between z1,z2,...,Zn.
® We pick x with probability pg.
Then the number of questions needed to find k is the base two logarithm of 1/py,

Num. bits needed to find xx = log, <1>
Pk

= —log, pk
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H(X) ==Y P(X =u)log P(X =)
=1
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Conclusion
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Conclusion

n
H(X) ==Y P(X =u)log P(X =)
i=1
® The entropy of a random variable is simply the average bits of information needed to guess its
value successfully.
® Even though the formula might seem complicated, its meaning is simple.

® Please see [Shannon 48] for the original formulations.
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