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Introduction Logarithms Sums Generalizability Conclusion

Properties a measure of uncertainty should possess

• Continuous.
• Increase as number of possible events increases.
• Additive.

H(X) = −E log(X = xi) = −
n∑

i=1

P (X = xi) log P (X = xi)

The uncertainty contained in a probability distribution is the average log-probability of an event.
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Introduction Logarithms Sums Generalizability Conclusion

But why logarithms?

I have selected a number between 0 and 31.1

• Can you guess which one?

• You can ask as many questions as you want.
• What is the minimum number of questions you have to ask to be 100% sure?

1@TivadarDanka provided this thought experience.
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Introduction Logarithms Sums Generalizability Conclusion

Let’s do the math
We could pick between 0, . . . , 31, i.e., 32 numbers. Let’s rewrite as an equation,

log2(32) = x

Proof.
If x and b are positive real numbers, and b does not equal 1, then logb(x) = y is equivalent to
by = x,

2x = 32

Create equivalent expressions in the equation that all have equal bases,

2x = 25

Since the bases are the same, the two expressions are only equal if the exponents are also equal,

x = 5
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Introduction Logarithms Sums Generalizability Conclusion

• In other words, we need to take the base two logarithm of 32 to get the number of questions
required, i.e., 5.

• This logic applies to all numbers! If we pick a number between 0 and n − 1, you need
log(2, n) questions to find the number.
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Introduction Logarithms Sums Generalizability Conclusion

Since we are nerds. . .

If we write down the answers in a row, we effectively encode the numbers in n bits.
0 00000
1 00001
2 00010

. . .
31 11111

Each ‘code’ is simply the number in base two.
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Introduction Logarithms Sums Generalizability Conclusion

But why sums?

• No matter which number we picked, 5 questions are needed to find it.
• The average number of bits needed is also 5.

However, we have an assumption here,

Corollary
Each number is picked with an equal probability.

What if this is not the case?
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Introduction Logarithms Sums Generalizability Conclusion

New thought experiment
• Let’s say we’re picking between 0, 1, and 2, but we’re picking 0 50% of the time, while 1 and

2 only 25% of the time.

• How many bits do we need now?
• We should put this into mathematical form!
• Let’s denote the number we pick with X. This is a random variable.

P (X = 0) = 1/2
P (X = 1) = 1/4
P (X = 2) = 1/4

But we can be a bit more ‘careful’ with our ‘bits’, i.e., which question to ask.
Consider this,

1st Q did you pick 0? If the answer is ‘Yes’, the 2nd question is not needed. If not, we proceed!
2nd Q did you pick 1? No matter what the answer is, we know the solution! ‘Yes’ implies 1, ‘No’

implies 2.
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Introduction Logarithms Sums Generalizability Conclusion

Let’s do some math

avg. num. bits = −1
2 log2

(1
2

)
− 1

4 log2

(1
4

)
− 1

4 log2

(1
4

)
= 1

2 log2 2 + 1
4 log2 4 + 1

4 log2 4

= 1
2 + 21

4 + 21
4

= 3
2
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Introduction Logarithms Sums Generalizability Conclusion

The general case

• Suppose we pick between x1, x2, . . . , xn.
• We pick xk with probability pk.

Then the number of questions needed to find k is the base two logarithm of 1/pk,

Num. bits needed to find xk = log2

(
1
pk

)
= − log2 pk
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Introduction Logarithms Sums Generalizability Conclusion

Conclusion

H(X) = −
n∑

i=1

P (X = xi) log P (X = xi)

• The entropy of a random variable is simply the average bits of information needed to guess its
value successfully.

• Even though the formula might seem complicated, its meaning is simple.
• Please see [Shannon ’48] for the original formulations.
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