Information Entropy A walk-through

Richard Torkar

Department of Computer Science and Engineering Chalmers and University of Gothenburg Gothenburg, Sweden

torkarr@chalmers.se

December 29, 2021

CHALMERS

- Continuous.
- Increase as number of possible events increases.
- Additive.

Continuous.

Introduction

- Increase as number of possible events increases.
- Additive.

$$H(X) = -E \log(X = x_i) = -\sum_{i=1}^{n} P(X = x_i) \log P(X = x_i)$$

Information Entropy |

R. Torkar

• Continuous.

Introduction

- Increase as number of possible events increases.
- Additive.

$$H(X) = -E \log(X = x_i) = -\sum_{i=1}^{n} P(X = x_i) \log P(X = x_i)$$

The uncertainty contained in a probability distribution is the average log-probability of an event.

But why logarithms?

I have selected a number between 0 and 31.1

• Can you guess which one?

CHALMERS

¹@TivadarDanka provided this thought experience.

I have selected a number between 0 and 31.¹

- Can you guess which one?
- You can ask as many questions as you want.

¹@TivadarDanka provided this thought experience.

But why logarithms?

I have selected a number between 0 and 31.1

- Can you guess which one?
- You can ask as many questions as you want.
- What is the minimum number of questions you have to ask to be 100% sure?

¹@TivadarDanka provided this thought experience.

Let's do the math

We could pick between $0, \dots, 31$, i.e., 32 numbers. Let's rewrite as an equation,

$$\log_2(32) = x$$

Proof.

If x and b are positive real numbers, and b does not equal 1, then $\log_b(x) = y$ is equivalent to $b^y = x$,

$$2^x = 32$$

Create equivalent expressions in the equation that all have equal bases,

$$2^x = 2^5$$

Since the bases are the same, the two expressions are only equal if the exponents are also equal,

$$x = 5$$

• In other words, we need to take the base two logarithm of 32 to get the number of questions required, i.e., 5.

- In other words, we need to take the base two logarithm of 32 to get the number of questions required, i.e., 5.
- This logic applies to all numbers! If we pick a number between 0 and n-1, you need $\log(2,n)$ questions to find the number.

Since we are nerds...

If we write down the answers in a row, we effectively encode the numbers in n bits.

- 0 00000
- **1** 00001
- **2** 00010

. . .

31 111111

Each 'code' is simply the number in base two.

But why sums?

- No matter which number we picked, 5 questions are needed to find it.
- The average number of bits needed is also 5.

But why sums?

- No matter which number we picked, 5 questions are needed to find it.
- The average number of bits needed is also 5.

However, we have an assumption here,

Corollary

Each number is picked with an equal probability.

What if this is not the case?

• Let's say we're picking between 0, 1, and 2, but we're picking 0.50% of the time, while 1 and 2 only 25% of the time.

- Let's say we're picking between 0, 1, and 2, but we're picking 0 50% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?

- Let's say we're picking between 0, 1, and 2, but we're picking 0 50% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!

- Let's say we're picking between 0, 1, and 2, but we're picking 0 50% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!
- Let's denote the number we pick with X. This is a random variable.

- Let's say we're picking between 0, 1, and 2, but we're picking 0 50% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!
- Let's denote the number we pick with X. This is a random variable.

$$P(X = 0) = 1/2$$

 $P(X = 1) = 1/4$
 $P(X = 2) = 1/4$

Information Entropy

- Let's say we're picking between 0, 1, and 2, but we're picking 0 50% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!
- Let's denote the number we pick with X. This is a random variable.

$$P(X = 0) = 1/2$$

 $P(X = 1) = 1/4$
 $P(X = 2) = 1/4$

But we can be a bit more 'careful' with our 'bits', i.e., which question to ask.

- Let's say we're picking between 0, 1, and 2, but we're picking 0 50% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!
- Let's denote the number we pick with X. This is a random variable.

$$P(X = 0) = 1/2$$

 $P(X = 1) = 1/4$
 $P(X = 2) = 1/4$

But we can be a bit more 'careful' with our 'bits', i.e., which question to ask. Consider this,

1st Q did you pick 0? If the answer is 'Yes', the 2nd question is not needed. If not, we proceed!

2nd Q did you pick 1? No matter what the answer is, we know the solution! 'Yes' implies 1, 'No' implies 2.

Let's do some math

avg. num. bits =
$$-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{4}\log_2\left(\frac{1}{4}\right) - \frac{1}{4}\log_2\left(\frac{1}{4}\right)$$

= $\frac{1}{2}\log_22 + \frac{1}{4}\log_24 + \frac{1}{4}\log_24$
= $\frac{1}{2} + 2\frac{1}{4} + 2\frac{1}{4}$
= $\frac{3}{2}$

The general case

- Suppose we pick between x_1, x_2, \ldots, x_n .
- We pick x_k with probability p_k .

The general case

- Suppose we pick between x_1, x_2, \ldots, x_n .
- We pick x_k with probability p_k .

Then the number of questions needed to find k is the base two logarithm of $1/p_k$,

Num. bits needed to find
$$x_k = \log_2\left(\frac{1}{p_k}\right)$$
$$= -\log_2 p_k$$

Conclusion

Conclusion

$$H(X) = -\sum_{i=1}^{n} P(X = x_i) \log P(X = x_i)$$

Conclusion

$$H(X) = -\sum_{i=1}^{n} P(X = x_i) \log P(X = x_i)$$

- The entropy of a random variable is simply the average bits of information needed to guess its
 value successfully.
- Even though the formula might seem complicated, its meaning is simple.
- Please see [Shannon '48] for the original formulations.

References

Claude Shannon

A Mathematical Theory of Communication

 $1948,\ Bell\ Labs\ Journal$