Information Entropy

A walk-through

Richard Torkar

Department of Computer Science and Engineering Chalmers and University of Gothenburg Gothenburg, Sweden
torkarr@chalmers.se

December 29, 2021

Properties a measure of uncertainty should possess

Properties a measure of uncertainty should possess

- Continuous.
- Increase as number of possible events increases.
- Additive.

Properties a measure of uncertainty should possess

- Continuous.
- Increase as number of possible events increases.
- Additive.

$$
H(X)=-\mathrm{E} \log \left(X=x_{i}\right)=-\sum_{i=1}^{n} P\left(X=x_{i}\right) \log P\left(X=x_{i}\right)
$$

Properties a measure of uncertainty should possess

- Continuous.
- Increase as number of possible events increases.
- Additive.

$$
H(X)=-\mathrm{E} \log \left(X=x_{i}\right)=-\sum_{i=1}^{n} P\left(X=x_{i}\right) \log P\left(X=x_{i}\right)
$$

The uncertainty contained in a probability distribution is the average log-probability of an event.

But why logarithms?

I have selected a number between 0 and $31 .{ }^{1}$

- Can you guess which one?

[^0]
But why logarithms?

I have selected a number between 0 and $31 .{ }^{1}$

- Can you guess which one?
- You can ask as many questions as you want.

[^1]
But why logarithms?

I have selected a number between 0 and $31 .{ }^{1}$

- Can you guess which one?
- You can ask as many questions as you want.
- What is the minimum number of questions you have to ask to be 100% sure?

[^2]
Let's do the math

We could pick between $0, \ldots, 31$, i.e., 32 numbers. Let's rewrite as an equation,

$$
\log _{2}(32)=x
$$

Proof.

If x and b are positive real numbers, and b does not equal 1 , then $\log _{b}(x)=y$ is equivalent to $b^{y}=x$,

$$
2^{x}=32
$$

Create equivalent expressions in the equation that all have equal bases,

$$
2^{x}=2^{5}
$$

Since the bases are the same, the two expressions are only equal if the exponents are also equal,

$$
x=5
$$

- In other words, we need to take the base two logarithm of 32 to get the number of questions required, i.e., 5 .
- In other words, we need to take the base two logarithm of 32 to get the number of questions required, i.e., 5 .
- This logic applies to all numbers! If we pick a number between 0 and $n-1$, you need $\log (2, n)$ questions to find the number.

Since we are nerds...

If we write down the answers in a row, we effectively encode the numbers in n bits.
000000
100001
200010

3111111
Each 'code' is simply the number in base two.

But why sums?

- No matter which number we picked, 5 questions are needed to find it.
- The average number of bits needed is also 5 .

But why sums?

- No matter which number we picked, 5 questions are needed to find it.
- The average number of bits needed is also 5 .

However, we have an assumption here,
Corollary
Each number is picked with an equal probability.
What if this is not the case?

New thought experiment

- Let's say we're picking between 0,1 , and 2 , but we're picking 050% of the time, while 1 and 2 only 25% of the time.

New thought experiment

- Let's say we're picking between 0,1 , and 2 , but we're picking 050% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?

New thought experiment

- Let's say we're picking between 0,1 , and 2 , but we're picking 050% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!

New thought experiment

- Let's say we're picking between 0,1 , and 2 , but we're picking 050% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!
- Let's denote the number we pick with X. This is a random variable.

New thought experiment

- Let's say we're picking between 0,1 , and 2 , but we're picking 050% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!
- Let's denote the number we pick with X. This is a random variable.

$$
\begin{aligned}
& P(X=0)=1 / 2 \\
& P(X=1)=1 / 4 \\
& P(X=2)=1 / 4
\end{aligned}
$$

New thought experiment

- Let's say we're picking between 0,1 , and 2 , but we're picking 050% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!
- Let's denote the number we pick with X. This is a random variable.

$$
\begin{aligned}
& P(X=0)=1 / 2 \\
& P(X=1)=1 / 4 \\
& P(X=2)=1 / 4
\end{aligned}
$$

But we can be a bit more 'careful' with our 'bits', i.e., which question to ask.

New thought experiment

- Let's say we're picking between 0,1 , and 2 , but we're picking 050% of the time, while 1 and 2 only 25% of the time.
- How many bits do we need now?
- We should put this into mathematical form!
- Let's denote the number we pick with X. This is a random variable.

$$
\begin{aligned}
& P(X=0)=1 / 2 \\
& P(X=1)=1 / 4 \\
& P(X=2)=1 / 4
\end{aligned}
$$

But we can be a bit more 'careful' with our 'bits', i.e., which question to ask.
Consider this,
1st Q did you pick 0 ? If the answer is 'Yes', the 2 nd question is not needed. If not, we proceed! 2nd Q did you pick 1? No matter what the answer is, we know the solution! 'Yes' implies 1, 'No' implies 2.

Let's do some math

avg. num. bits $=-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)-\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)-\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 4+\frac{1}{4} \log _{2} 4 \\
& =\frac{1}{2}+2 \frac{1}{4}+2 \frac{1}{4} \\
& =\frac{3}{2}
\end{aligned}
$$

The general case

- Suppose we pick between $x_{1}, x_{2}, \ldots, x_{n}$.
- We pick x_{k} with probability p_{k}.

The general case

- Suppose we pick between $x_{1}, x_{2}, \ldots, x_{n}$.
- We pick x_{k} with probability p_{k}.

Then the number of questions needed to find k is the base two logarithm of $1 / p_{k}$,

$$
\text { Num. bits needed to find } \begin{aligned}
x_{k} & =\log _{2}\left(\frac{1}{p_{k}}\right) \\
& =-\log _{2} p_{k}
\end{aligned}
$$

Conclusion

$$
H(X)=-\sum_{i=1}^{n} P\left(X=x_{i}\right) \log P\left(X=x_{i}\right)
$$

Conclusion

$$
H(X)=-\sum_{i=1}^{n} P\left(X=x_{i}\right) \log P\left(X=x_{i}\right)
$$

- The entropy of a random variable is simply the average bits of information needed to guess its value successfully.
- Even though the formula might seem complicated, its meaning is simple.
- Please see [Shannon '48] for the original formulations.

References

- Claude Shannon

A Mathematical Theory of Communication
1948, Bell Labs Journal

[^0]: ${ }^{1} @$ TivadarDanka provided this thought experience.

[^1]: ${ }^{1} @$ TivadarDanka provided this thought experience.

[^2]: ${ }^{1} @$ TivadarDanka provided this thought experience.

