TMS165/MSA350 Stochastic Calculus Written exam Friday 19 August 2022 8.30–12.30

TEACHER AND JOUR ON TELEPHONE: Patrik Albin 031 7723512.

AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Througout this exam $B = \{B(t)\}_{t \ge 0}$ denotes a Brownian motion.

Task 1. Find the quadratic variation process of the Itô process $\{\int_0^t e^{B(s)^2} ds\}_{t \ge 0}$.

(5 points)

Task 2. Show that for a two-dimensional continuous random variable (X, Y) it holds that $\mathbf{E}\{X|\sigma(Y)\} = \int_{-\infty}^{\infty} x \, \frac{f_{X,Y}(x,Y)}{f_Y(Y)} \, dx$. (HINT: For an $A \in \sigma(Y)$ we have $\mathbf{1}_A(\omega) = \mathbf{1}_B(Y(\omega))$ for $\omega \in \Omega$ for some $B \subseteq \mathbb{R}$.) (5 points)

Task 3. Let $\{W(t)\}_{t\geq 0}$ be a Wiener process with drift given by $W(t) = \sigma B(t) + \mu t$ for some constants $\sigma, \mu \in \mathbb{R}$. Find the conditional probability density function of W(t)given that W(s) = x for 0 < s < t. (5 points)

Task 4. Consider a solution X(t) to a (not necessarily time-homogeneous) SDE with generator L_t . Show that if f(x,t) solves the backward PDE $L_t f(x,t) + \frac{\partial f}{\partial t}(x,t) = 0$ for $t \in [0,T]$ with f(x,T) = g(x) then $f(x,t) = \mathbf{E}\{g(X(T))|X(t) = x\}$. (5 points)

Task 5. Consider a solution $\{X(t)\}_{t\geq 0}$ to the Langevin SDE $dX(t) = -\alpha X(t) dt + \sigma dB(t)$. How can an observation of X(t) be used to estimate the parameters $\alpha, \sigma > 0$ if their values are not known? (5 points)

Task 6. Explain what is Itô-Taylor expansion. (5 points)

TMS165/MSA350 Stochastic Calculus Solutions to Written Exam August 2022

Task 1. As the process under consideration is both continuous and FV (as increasing) it has zero quadratic variation.

Task 2. $\int_{-\infty}^{\infty} x \frac{f_{X,Y}(x,Y)}{f_Y(Y)} dx$ is $\sigma(Y)$ -measurable and for $A \in \sigma(Y)$ with $\mathbf{1}_A = \mathbf{1}_B(Y)$ for $B \subseteq \mathbb{R}$ we have $\mathbf{E}\{\mathbf{1}_A \int_{-\infty}^{\infty} x \frac{f_{X,Y}(x,Y)}{f_Y(Y)} dx\} = \int_{-\infty}^{\infty} \mathbf{1}_B(y) \int_{-\infty}^{\infty} x f_{X,Y}(x,y) dxdy = \mathbf{E}\{\mathbf{1}_A X\}.$

Task 3. We have $(W(t)|W(s)=x) = (\sigma B(t)+\mu t|\sigma B(s)+\mu s=x) = \sigma (B(t)-B(s))+\mu t + (\sigma B(s)|\sigma B(s)=x-\mu s)$ so that (W(t)|W(s)=x) is $N(x+\mu(t-s),\sigma^2(t-s))$ -distributed as B(t)-B(s) and B(s) are independent.

Task 4. This is the proof of Theorem 6.6 in Klebaner's book.

Task 5. It is explained on the middle of page 286 in Klebaner's book how to estimate α . As for σ , the solution $X(t) = e^{-\alpha t} (X(0) + \int_0^t \sigma e^{\alpha s} dB(s))$ has quadratic variation process $[X, X](t) = e^{-2\alpha t} \sigma^2 \int_0^t e^{2\alpha s} ds = \frac{\sigma^2}{2\alpha} (1 - e^{-2\alpha t})$ so that we may, e.g., take $\hat{\sigma}^2 = 2 \hat{\alpha} [X, X](t)/(1 - e^{-2\hat{\alpha}t})$ for some suitable t.

Task 6. See Stig Larsson's lecture notes.