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Old exercise which we presented.

If E ⊂ R has positive measure, then E − E contains an open interval
around 0.
We will use this to prove an interestiong theorem.
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Linear and Additive functions

As we know, f : R → R is linear if

1. f (x + y) = f (x) + f (y) for all x , y ∈ R

and
2. f (cx) = cf (x) for all x , c ∈ R.

In fact, in 1-d, it is easy to check that (2) implies (1).
The question here is whether (1) implies (2).

We call f additive if it satisfies (1). This is the same as saying that f is a
group homomorphism from R to R .

Does (1) imply (2)? Answer: No. But yes under the weak assumption of f
being measurable.
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Linear and Additive functions

Proposition: There exists f : R → R which is additive but not linear.

Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One
checks that the set {1,

√
2} is linearly independent. (This follows easily

from the fact that
√
2 is irrational.) Extend this set to a basis B for R (as

a Q-vector space). (Warning: Axiom of Choice.)

Let f be a function from B to R which takes 1 to 1,
√
2 to 3 and is

arbitrary on the other elements of B. By linear algebra, f can be extended
to a Q-linear transformation from R to R , meaning (1) holds and (2) holds
for c ∈ Q. In particular, f is additive. But f cannot be R-linear, since any
such map x → ax which takes 1 to 1 is the identity.
QED
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Linear and Additive functions

Theorem

If f : R → R is additive and measurable, then f is linear.

Before we prove this, we begin with a warm up which is weaker.

Proposition: If f : R → R is additive and continuous, then f is linear.

September 17, 2020 5 / 9



Linear and Additive functions

Theorem

If f : R → R is additive and measurable, then f is linear.

Before we prove this, we begin with a warm up which is weaker.

Proposition: If f : R → R is additive and continuous, then f is linear.

September 17, 2020 5 / 9



Linear and Additive functions

Theorem

If f : R → R is additive and measurable, then f is linear.

Before we prove this, we begin with a warm up which is weaker.

Proposition: If f : R → R is additive and continuous, then f is linear.

September 17, 2020 5 / 9



Linear and Additive functions

Lemma

If f : R → R is additive, then f (cx) = cf (x) for all x and c ∈ Q.

In fancy
words, f is a linear transformation when R is viewed as a Q vector space.

Proof:
(1) implies by induction that for positive integer n, f (nx) = nf (x).
Therefore if n,m are positive integers, one has

f (m
n

m
x) = mf (

n

m
x)

giving

f (
n

m
x) =

1
m
f (nx) =

n

m
f (x).
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Linear and Additive functions

Proposition: If f : R → R is additive and continuous, then f is linear.

Proof: Lemma gives f (x) = xf (1) for all x ∈ Q. The two sides are
continuous functions which agree on Q. Since Q is dense, they must be
equal for all x . Hence f is linear.
QED
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Linear and Additive functions

Lemma
If f is additive but not linear, then f is unbounded in every interval about 0.

(I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:
We assume that f (1) = 1. Fix the interval (−ε, ε) around 0. If f is not
linear, then there must exist positive x 6∈ Q such that f (x) 6= x .
Kronecker’s Theorem says that there exist integers n and m arbitrarily large
so that

|nx −m| < ε.

We then have

f (nx −m) = nf (x)−m = nx −m + n(f (x)− x).

If n,m are very large and |nx −m| < ε, then, since f (x)− x 6= 0, we have
a point in (−ε, ε) whose f value becomes in absolute value as large as we
want.
QED
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Linear and Additive functions

Theorem

If f : R → R is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval (−ε, ε)
around 0. Let An = {x : |f (x)| ≤ n}. By our measurability assumption, the
An’s are measurable, clearly increasing and their union is R . By continuity
of measure from below, m(An0) > 0 for some n0. By our exercise,
(−ε, ε) ⊆ An0 − An0 for some ε > 0. Then for all x ∈ (−ε, ε), x = a− b
with a, b ∈ An0 implying that

|f (x)| = |f (a− b)| = |f (a)− f (b)| ≤ |f (a)|+ |f (b)| ≤ 2n0.
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