Slides for additive vs. Linear functions

Old exercise which we presented.

If $E \subset R$ has positive measure, then $E-E$ contains an open interval around 0 .
We will use this to prove an interestiong theorem.

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

1. $f(x+y)=f(x)+f(y)$ for all $x, y \in R$

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

$$
\text { 1. } f(x+y)=f(x)+f(y) \text { for all } x, y \in R
$$

and

$$
\text { 2. } f(c x)=c f(x) \text { for all } x, c \in R \text {. }
$$

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

$$
\text { 1. } f(x+y)=f(x)+f(y) \text { for all } x, y \in R
$$

and

$$
\text { 2. } f(c x)=c f(x) \text { for all } x, c \in R
$$

In fact, in 1-d, it is easy to check that (2) implies (1).

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

$$
\text { 1. } f(x+y)=f(x)+f(y) \text { for all } x, y \in R
$$

and

$$
\text { 2. } f(c x)=c f(x) \text { for all } x, c \in R
$$

In fact, in 1-d, it is easy to check that (2) implies (1). The question here is whether (1) implies (2).

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

$$
\text { 1. } f(x+y)=f(x)+f(y) \text { for all } x, y \in R
$$

and

$$
\text { 2. } f(c x)=c f(x) \text { for all } x, c \in R
$$

In fact, in 1-d, it is easy to check that (2) implies (1). The question here is whether (1) implies (2).
We call f additive if it satisfies (1).

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

$$
\text { 1. } f(x+y)=f(x)+f(y) \text { for all } x, y \in R
$$

and

$$
\text { 2. } f(c x)=c f(x) \text { for all } x, c \in R
$$

In fact, in 1-d, it is easy to check that (2) implies (1).
The question here is whether (1) implies (2).
We call f additive if it satisfies (1). This is the same as saying that f is a group homomorphism from R to R.

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

$$
\text { 1. } f(x+y)=f(x)+f(y) \text { for all } x, y \in R
$$

and

$$
\text { 2. } f(c x)=c f(x) \text { for all } x, c \in R
$$

In fact, in 1-d, it is easy to check that (2) implies (1).
The question here is whether (1) implies (2).
We call f additive if it satisfies (1). This is the same as saying that f is a group homomorphism from R to R.

Does (1) imply (2)?

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

$$
\text { 1. } f(x+y)=f(x)+f(y) \text { for all } x, y \in R
$$

and

$$
\text { 2. } f(c x)=c f(x) \text { for all } x, c \in R
$$

In fact, in 1-d, it is easy to check that (2) implies (1).
The question here is whether (1) implies (2).
We call f additive if it satisfies (1). This is the same as saying that f is a group homomorphism from R to R.

Does (1) imply (2)? Answer: No.

Linear and Additive functions

As we know, $f: R \rightarrow R$ is linear if

$$
\text { 1. } f(x+y)=f(x)+f(y) \text { for all } x, y \in R
$$

and

$$
\text { 2. } f(c x)=c f(x) \text { for all } x, c \in R \text {. }
$$

In fact, in 1-d, it is easy to check that (2) implies (1).
The question here is whether (1) implies (2).
We call f additive if it satisfies (1). This is the same as saying that f is a group homomorphism from R to R.

Does (1) imply (2)? Answer: No. But yes under the weak assumption of f being measurable.

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear. Proof outline:

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional).

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent.

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.)

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis \mathcal{B} for R (as a Q-vector space).

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis \mathcal{B} for R (as a Q-vector space). (Warning: Axiom of Choice.)

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis \mathcal{B} for R (as a Q-vector space). (Warning: Axiom of Choice.)
Let f be a function from \mathcal{B} to R which takes 1 to $1, \sqrt{2}$ to 3 and is arbitrary on the other elements of \mathcal{B}.

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis \mathcal{B} for R (as a Q-vector space). (Warning: Axiom of Choice.)
Let f be a function from \mathcal{B} to R which takes 1 to $1, \sqrt{2}$ to 3 and is arbitrary on the other elements of \mathcal{B}. By linear algebra, f can be extended to a Q-linear transformation from R to R,

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis \mathcal{B} for R (as a Q-vector space). (Warning: Axiom of Choice.)
Let f be a function from \mathcal{B} to R which takes 1 to $1, \sqrt{2}$ to 3 and is arbitrary on the other elements of \mathcal{B}. By linear algebra, f can be extended to a Q-linear transformation from R to R, meaning (1) holds and (2) holds for $c \in Q$.

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis \mathcal{B} for R (as a Q-vector space). (Warning: Axiom of Choice.)
Let f be a function from \mathcal{B} to R which takes 1 to $1, \sqrt{2}$ to 3 and is arbitrary on the other elements of \mathcal{B}. By linear algebra, f can be extended to a Q-linear transformation from R to R, meaning (1) holds and (2) holds for $c \in Q$. In particular, f is additive.

Linear and Additive functions

Proposition: There exists $f: R \rightarrow R$ which is additive but not linear.
Proof outline:
View R as a vector space over Q (which is then infinite dimensional). One checks that the set $\{1, \sqrt{2}\}$ is linearly independent. (This follows easily from the fact that $\sqrt{2}$ is irrational.) Extend this set to a basis \mathcal{B} for R (as a Q-vector space). (Warning: Axiom of Choice.)
Let f be a function from \mathcal{B} to R which takes 1 to $1, \sqrt{2}$ to 3 and is arbitrary on the other elements of \mathcal{B}. By linear algebra, f can be extended to a Q-linear transformation from R to R, meaning (1) holds and (2) holds for $c \in Q$. In particular, f is additive. But f cannot be R-linear, since any such map $x \rightarrow a x$ which takes 1 to 1 is the identity. QED

Linear and Additive functions

Theorem
If $f: R \rightarrow R$ is additive and measurable, then f is linear.

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

Before we prove this, we begin with a warm up which is weaker.

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

Before we prove this, we begin with a warm up which is weaker.
Proposition: If $f: R \rightarrow R$ is additive and continuous, then f is linear.

Linear and Additive functions

Lemma
If $f: R \rightarrow R$ is additive, then $f(c x)=c f(x)$ for all x and $c \in Q$.

Linear and Additive functions

Lemma

If $f: R \rightarrow R$ is additive, then $f(c x)=c f(x)$ for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Linear and Additive functions

Lemma

If $f: R \rightarrow R$ is additive, then $f(c x)=c f(x)$ for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Proof:

Linear and Additive functions

Lemma

If $f: R \rightarrow R$ is additive, then $f(c x)=c f(x)$ for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Proof:
(1) implies by induction that for positive integer $n, f(n x)=n f(x)$.

Linear and Additive functions

Lemma

If $f: R \rightarrow R$ is additive, then $f(c x)=c f(x)$ for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Proof:
(1) implies by induction that for positive integer $n, f(n x)=n f(x)$.

Therefore if n, m are positive integers, one has

$$
f\left(m \frac{n}{m} x\right)=m f\left(\frac{n}{m} x\right)
$$

Linear and Additive functions

Lemma

If $f: R \rightarrow R$ is additive, then $f(c x)=c f(x)$ for all x and $c \in Q$. In fancy words, f is a linear transformation when R is viewed as a Q vector space.

Proof:
(1) implies by induction that for positive integer $n, f(n x)=n f(x)$.

Therefore if n, m are positive integers, one has

$$
f\left(m \frac{n}{m} x\right)=m f\left(\frac{n}{m} x\right)
$$

giving

$$
f\left(\frac{n}{m} x\right)=\frac{1}{m} f(n x)=\frac{n}{m} f(x) .
$$

Linear and Additive functions

Proposition: If $f: R \rightarrow R$ is additive and continuous, then f is linear.

Linear and Additive functions

Proposition: If $f: R \rightarrow R$ is additive and continuous, then f is linear. Proof: Lemma gives $f(x)=x f(1)$ for all $x \in Q$.

Linear and Additive functions

Proposition: If $f: R \rightarrow R$ is additive and continuous, then f is linear. Proof: Lemma gives $f(x)=x f(1)$ for all $x \in Q$. The two sides are continuous functions which agree on Q.

Linear and Additive functions

Proposition: If $f: R \rightarrow R$ is additive and continuous, then f is linear.
Proof: Lemma gives $f(x)=x f(1)$ for all $x \in Q$. The two sides are continuous functions which agree on Q. Since Q is dense, they must be equal for all x.

Linear and Additive functions

Proposition: If $f: R \rightarrow R$ is additive and continuous, then f is linear.
Proof: Lemma gives $f(x)=x f(1)$ for all $x \in Q$. The two sides are continuous functions which agree on Q. Since Q is dense, they must be equal for all x. Hence f is linear. QED

Linear and Additive functions

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0 .

Linear and Additive functions

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0 . (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:
We assume that $f(1)=1$.

Linear and Additive functions

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0 . (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:
We assume that $f(1)=1$. Fix the interval $(-\epsilon, \epsilon)$ around 0 .

Linear and Additive functions

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0 . (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:
We assume that $f(1)=1$. Fix the interval $(-\epsilon, \epsilon)$ around 0 . If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$.

Linear and Additive functions

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0 . (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:
We assume that $f(1)=1$. Fix the interval $(-\epsilon, \epsilon)$ around 0 . If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$. Kronecker's Theorem says that there exist integers n and m arbitrarily large so that

$$
|n x-m|<\epsilon
$$

Linear and Additive functions

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0 . (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:
We assume that $f(1)=1$. Fix the interval $(-\epsilon, \epsilon)$ around 0 . If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$.
Kronecker's Theorem says that there exist integers n and m arbitrarily large so that

$$
|n x-m|<\epsilon
$$

We then have

$$
f(n x-m)=n f(x)-m=n x-m+n(f(x)-x) .
$$

Linear and Additive functions

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0 . (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:

We assume that $f(1)=1$. Fix the interval $(-\epsilon, \epsilon)$ around 0 . If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$.
Kronecker's Theorem says that there exist integers n and m arbitrarily large so that

$$
|n x-m|<\epsilon
$$

We then have

$$
f(n x-m)=n f(x)-m=n x-m+n(f(x)-x) .
$$

If n, m are very large and $|n x-m|<\epsilon$, then, since $f(x)-x \neq 0$,

Linear and Additive functions

Lemma

If f is additive but not linear, then f is unbounded in every interval about 0 . (I.e., f is additive and bounded in some interval about 0, then it is linear.)

Proof:
We assume that $f(1)=1$. Fix the interval $(-\epsilon, \epsilon)$ around 0 . If f is not linear, then there must exist positive $x \notin Q$ such that $f(x) \neq x$.
Kronecker's Theorem says that there exist integers n and m arbitrarily large so that

$$
|n x-m|<\epsilon
$$

We then have

$$
f(n x-m)=n f(x)-m=n x-m+n(f(x)-x) .
$$

If n, m are very large and $|n x-m|<\epsilon$, then, since $f(x)-x \neq 0$, we have a point in $(-\epsilon, \epsilon)$ whose f value becomes in absolute value as large as we want.

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0 .

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0 . Let $A_{n}=\{x:|f(x)| \leq n\}$.

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0 . Let $A_{n}=\{x:|f(x)| \leq n\}$. By our measurability assumption, the A_{n} 's are measurable, clearly increasing and their union is R.

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0 . Let $A_{n}=\{x:|f(x)| \leq n\}$. By our measurability assumption, the A_{n} 's are measurable, clearly increasing and their union is R. By continuity of measure from below, $m\left(A_{n_{0}}\right)>0$ for some n_{0}.

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0 . Let $A_{n}=\{x:|f(x)| \leq n\}$. By our measurability assumption, the A_{n} 's are measurable, clearly increasing and their union is R. By continuity of measure from below, $m\left(A_{n_{0}}\right)>0$ for some n_{0}. By our exercise, $(-\epsilon, \epsilon) \subseteq A_{n_{0}}-A_{n_{0}}$ for some $\epsilon>0$.

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0 . Let $A_{n}=\{x:|f(x)| \leq n\}$. By our measurability assumption, the A_{n} 's are measurable, clearly increasing and their union is R. By continuity of measure from below, $m\left(A_{n_{0}}\right)>0$ for some n_{0}. By our exercise, $(-\epsilon, \epsilon) \subseteq A_{n_{0}}-A_{n_{0}}$ for some $\epsilon>0$. Then for all $x \in(-\epsilon, \epsilon), x=a-b$ with $a, b \in A_{n_{0}}$ implying that

$$
|f(x)|=|f(a-b)|=|f(a)-f(b)| \leq|f(a)|+|f(b)| \leq 2 n_{0} .
$$

Linear and Additive functions

Theorem

If $f: R \rightarrow R$ is additive and measurable, then f is linear.

By lemma, enough to show that f is bounded in some interval $(-\epsilon, \epsilon)$ around 0 . Let $A_{n}=\{x:|f(x)| \leq n\}$. By our measurability assumption, the A_{n} 's are measurable, clearly increasing and their union is R. By continuity of measure from below, $m\left(A_{n_{0}}\right)>0$ for some n_{0}. By our exercise, $(-\epsilon, \epsilon) \subseteq A_{n_{0}}-A_{n_{0}}$ for some $\epsilon>0$. Then for all $x \in(-\epsilon, \epsilon), x=a-b$ with $a, b \in A_{n_{0}}$ implying that

$$
|f(x)|=|f(a-b)|=|f(a)-f(b)| \leq|f(a)|+|f(b)| \leq 2 n_{0} .
$$

QED

