Class Lectures (for Chapter 3)

Motivation

- Riemann integration is insufficient for many purposes; it does not behave well with respect to limiting operations.
- Lebesgue invented in 1902 what would be called Lebesgue measure and Lebesgue integration theory.

Motivation

- Riemann integration is insufficient for many purposes; it does not behave well with respect to limiting operations.
- Lebesgue invented in 1902 what would be called Lebesgue measure and Lebesgue integration theory.

GOAL: We want to assign a "size" ℓ to ALL subsets of R satisfying

Motivation

- Riemann integration is insufficient for many purposes; it does not behave well with respect to limiting operations.
- Lebesgue invented in 1902 what would be called Lebesgue measure and Lebesgue integration theory.

GOAL: We want to assign a "size" ℓ to ALL subsets of R satisfying

- If $A=[a, b]$, then $\ell(A)=b-a$.

Motivation

- Riemann integration is insufficient for many purposes; it does not behave well with respect to limiting operations.
- Lebesgue invented in 1902 what would be called Lebesgue measure and Lebesgue integration theory.

GOAL: We want to assign a "size" ℓ to ALL subsets of R satisfying

- If $A=[a, b]$, then $\ell(A)=b-a$.
- If A_{1}, A_{2}, \ldots are disjoint sets, then

$$
\ell\left(\bigcup_{i} A_{i}\right)=\sum_{i} \ell\left(A_{i}\right)
$$

Motivation

- Riemann integration is insufficient for many purposes; it does not behave well with respect to limiting operations.
- Lebesgue invented in 1902 what would be called Lebesgue measure and Lebesgue integration theory.

GOAL: We want to assign a "size" ℓ to ALL subsets of R satisfying

- If $A=[a, b]$, then $\ell(A)=b-a$.
- If A_{1}, A_{2}, \ldots are disjoint sets, then

$$
\ell\left(\bigcup_{i} A_{i}\right)=\sum_{i} \ell\left(A_{i}\right)
$$

- For all sets $A \subseteq R$ and $x \in R$,

$$
\ell(A+x)=\ell(A)
$$

$A+x=\{a+x: a \in A\}$.

PROBLEM: This cannot be done assuming the axiom of choice.

PROBLEM: This cannot be done assuming the axiom of choice.
SOLUTION: Drop one of the assumptions but which one?

PROBLEM: This cannot be done assuming the axiom of choice.
SOLUTION: Drop one of the assumptions but which one?
We will drop the assumption that ℓ is defined for ALL subsets. However, it will be defined for all subsets you could ever imagine. This final object will be Lebesgue measure.

PROBLEM: This cannot be done assuming the axiom of choice.
SOLUTION: Drop one of the assumptions but which one?
We will drop the assumption that ℓ is defined for ALL subsets. However, it will be defined for all subsets you could ever imagine. This final object will be Lebesgue measure.

The construction of Lebesgue measure will be quite a bit of work.

Much of the theory of Lebesgue integration deals with limiting operations.

Much of the theory of Lebesgue integration deals with limiting operations.
Question: If f_{n} is a nonnegative continuous function on $[0,1]$ for each n and if

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0
$$

for all $x \in[0,1]$ (we say f_{n} goes to 0 pointwise in this case), does it follow that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0 ?
$$

Question: When will we be able to conclude from the fact that f_{n} goes to 0 pointwise that the integrals converge to 0 ?

Algebras and σ-algebras

Algebras and σ-algebras

Definition

Let X be a nonempty set. An algebra or field of subsets of X is a collection \mathcal{A} of subsets of X which is "closed under finite set theoretic operations"; i.e.
(1). $X \in \mathcal{A}, \emptyset \in \mathcal{A}$
(2). $A_{1}, A_{2}, \ldots, A_{n}$ each in \mathcal{A} implies that $\bigcup_{i=1}^{n} A_{i} \in \mathcal{A}(\mathcal{A}$ is closed under finite unions)
(3). $A \in \mathcal{A}$ implies that $A^{c} \in \mathcal{A}$ (\mathcal{A} is closed under complementation)

Algebras and σ-algebras

Definition

Let X be a nonempty set. An algebra or field of subsets of X is a collection \mathcal{A} of subsets of X which is "closed under finite set theoretic operations"; i.e.
(1). $X \in \mathcal{A}, \emptyset \in \mathcal{A}$
(2). $A_{1}, A_{2}, \ldots, A_{n}$ each in \mathcal{A} implies that $\bigcup_{i=1}^{n} A_{i} \in \mathcal{A}(\mathcal{A}$ is closed under finite unions)
(3). $A \in \mathcal{A}$ implies that $A^{c} \in \mathcal{A}$ (\mathcal{A} is closed under complementation)

Definition

Let X be a nonempty set. A σ-algebra or σ-field of subsets of X is a collection \mathcal{M} of subsets of X which is an algebra and in addition (2) above is replaced by the stronger
(2'). A_{1}, A_{2}, \ldots each in \mathcal{M} implies that $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{M}(\mathcal{M}$ is closed under countable unions)

Generating σ-algebras

Proposition: Given a collection \mathcal{E} of subsets of X (i.e., a subset of $\mathcal{P}(X)$), there is a smallest σ-algebra containing \mathcal{E}, denoted by $\sigma(\mathcal{E})$, called the σ-algebra generated by \mathcal{E}.

Generating σ-algebras

Proposition: Given a collection \mathcal{E} of subsets of X (i.e., a subset of $\mathcal{P}(X)$), there is a smallest σ-algebra containing \mathcal{E}, denoted by $\sigma(\mathcal{E})$, called the σ-algebra generated by \mathcal{E}.
Proof:
Consider

$$
\sigma(\mathcal{E}):=\bigcap_{\mathcal{F} \supseteq \mathcal{E}: \mathcal{F} \text { is a } \sigma \text {-algebra }} \mathcal{F} .
$$

Generating σ-algebras

Proposition: Given a collection \mathcal{E} of subsets of X (i.e., a subset of $\mathcal{P}(X)$), there is a smallest σ-algebra containing \mathcal{E}, denoted by $\sigma(\mathcal{E})$, called the σ-algebra generated by \mathcal{E}.
Proof:
Consider

$$
\sigma(\mathcal{E}):=\bigcap_{\mathcal{F} \supseteq \mathcal{E}: \mathcal{F} \text { is a } \sigma \text {-algebra }} \mathcal{F} .
$$

This is the same as
$\{A: A$ is an element of every σ-algebra which contains $\mathcal{E}\}$.

Generating σ-algebras

Proposition: Given a collection \mathcal{E} of subsets of X (i.e., a subset of $\mathcal{P}(X)$), there is a smallest σ-algebra containing \mathcal{E}, denoted by $\sigma(\mathcal{E})$, called the σ-algebra generated by \mathcal{E}.
Proof:
Consider

$$
\sigma(\mathcal{E}):=\bigcap_{\mathcal{F} \supseteq \mathcal{E}: \mathcal{F} \text { is a } \sigma \text {-algebra }} \mathcal{F} .
$$

This is the same as
$\{A: A$ is an element of every σ-algebra which contains $\mathcal{E}\}$.

1. This is a nonempty intersection since $\mathbb{P}(X) \supseteq \mathcal{E}$

Generating σ-algebras

Proposition: Given a collection \mathcal{E} of subsets of X (i.e., a subset of $\mathcal{P}(X)$), there is a smallest σ-algebra containing \mathcal{E}, denoted by $\sigma(\mathcal{E})$, called the σ-algebra generated by \mathcal{E}.
Proof:
Consider

$$
\sigma(\mathcal{E}):=\bigcap_{\mathcal{F} \supseteq \mathcal{E}: \mathcal{F} \text { is a } \sigma \text {-algebra }} \mathcal{F} .
$$

This is the same as
$\{A: A$ is an element of every σ-algebra which contains $\mathcal{E}\}$.

1. This is a nonempty intersection since $\mathbb{P}(X) \supseteq \mathcal{E}$
2. $\sigma(\mathcal{E})$ contains \mathcal{E} by construction.

Generating σ-algebras

Proposition: Given a collection \mathcal{E} of subsets of X (i.e., a subset of $\mathcal{P}(X)$), there is a smallest σ-algebra containing \mathcal{E}, denoted by $\sigma(\mathcal{E})$, called the σ-algebra generated by \mathcal{E}.
Proof:
Consider

$$
\sigma(\mathcal{E}):=\bigcap_{\mathcal{F} \supseteq \mathcal{E}: \mathcal{F} \text { is a } \sigma \text {-algebra }} \mathcal{F} .
$$

This is the same as
$\{A: A$ is an element of every σ-algebra which contains $\mathcal{E}\}$.

1. This is a nonempty intersection since $\mathbb{P}(X) \supseteq \mathcal{E}$
2. $\sigma(\mathcal{E})$ contains \mathcal{E} by construction.
3. $\sigma(\mathcal{E})$ is a σ-algebra (Check this. It is easier than it might look; it is just very elementary set theory).

Generating σ-algebras

Proposition: Given a collection \mathcal{E} of subsets of X (i.e., a subset of $\mathcal{P}(X)$), there is a smallest σ-algebra containing \mathcal{E}, denoted by $\sigma(\mathcal{E})$, called the σ-algebra generated by \mathcal{E}.
Proof:
Consider

$$
\sigma(\mathcal{E}):=\bigcap_{\mathcal{F} \supseteq \mathcal{E}: \mathcal{F} \text { is a } \sigma \text {-algebra }} \mathcal{F} .
$$

This is the same as
$\{A: A$ is an element of every σ-algebra which contains $\mathcal{E}\}$.

1. This is a nonempty intersection since $\mathbb{P}(X) \supseteq \mathcal{E}$
2. $\sigma(\mathcal{E})$ contains \mathcal{E} by construction.
3. $\sigma(\mathcal{E})$ is a σ-algebra (Check this. It is easier than it might look; it is just very elementary set theory).
This is clearly the smallest σ-algebra containing \mathcal{E} since it is, by construction, contained inside of every σ-algebra which contains \mathcal{E}. OED

The Borel sets

Recall the definition of an open set in R : O is open if for all $x \in O$, there exists $\epsilon>0$ so that $(x-\epsilon, x+\epsilon) \subseteq O$.

The Borel sets

Recall the definition of an open set in R : O is open if for all $x \in O$, there exists $\epsilon>0$ so that $(x-\epsilon, x+\epsilon) \subseteq 0$.

Definition

The σ-algebra generated by the open subsets of R is called the Borel σ-algebra of R and denoted by \mathcal{B}. The sets in here are called Borel sets.

The Borel sets

Recall the definition of an open set in R : O is open if for all $x \in O$, there exists $\epsilon>0$ so that $(x-\epsilon, x+\epsilon) \subseteq O$.

Definition

The σ-algebra generated by the open subsets of R is called the Borel σ-algebra of R and denoted by \mathcal{B}. The sets in here are called Borel sets.

Most sets (and very likely all sets) that you have seen are Borel sets.

Two further classes of sets

Two further classes of sets

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{I} of subsets of X is called a π-system if it is closed under finite intersections; i.e., $A, B \in \mathcal{I}$ implies $A \cap B \in \mathcal{I}$.

Two further classes of sets

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{I} of subsets of X is called a π-system if it is closed under finite intersections; i.e., $A, B \in \mathcal{I}$ implies $A \cap B \in \mathcal{I}$.

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{D} of subsets of X is called a \mathcal{D}-system if
a. $X \in \mathcal{D}$
b. $E, F \in \mathcal{D}$ and $E \subseteq F$ imply $F \backslash E\left(=F \cap E^{c}\right) \in \mathcal{D}$ and
c. $E_{1} \subseteq E_{2} \subseteq E_{3}, \ldots$ and $E_{i} \in \mathcal{D}$ for all i imply $\bigcup_{i} E_{i} \in \mathcal{D}$.

Dynkins $\pi-\lambda$ theorem

It is natural to ask why in the world we would introduce such crazy classes of sets. We will see later that they will be very useful.

Dynkins $\pi-\lambda$ theorem

It is natural to ask why in the world we would introduce such crazy classes of sets. We will see later that they will be very useful.

Theorem

(Theorem 3.8 in JJ). If \mathcal{M} is a collection of subsets of a set X, then \mathcal{M} is a σ-algebra if and only if \mathcal{M} is a π-system and a \mathcal{D}-system.

Dynkins $\pi-\lambda$ theorem

It is natural to ask why in the world we would introduce such crazy classes of sets. We will see later that they will be very useful.

Theorem

(Theorem 3.8 in JJ). If \mathcal{M} is a collection of subsets of a set X, then \mathcal{M} is a σ-algebra if and only if \mathcal{M} is a π-system and a \mathcal{D}-system.

Given a collection of \mathcal{E} of subsets of X, we have previous defined $\sigma(\mathcal{E})$ as the smallest σ-algebra containing \mathcal{E}. We do something similar here.

Dynkins $\pi-\lambda$ theorem

It is natural to ask why in the world we would introduce such crazy classes of sets. We will see later that they will be very useful.

Theorem

(Theorem 3.8 in JJ). If \mathcal{M} is a collection of subsets of a set X, then \mathcal{M} is a σ-algebra if and only if \mathcal{M} is a π-system and a \mathcal{D}-system.

Given a collection of \mathcal{E} of subsets of X, we have previous defined $\sigma(\mathcal{E})$ as the smallest σ-algebra containing \mathcal{E}. We do something similar here.

Definition

We let $\pi(\mathcal{E})(\mathcal{D}(\mathcal{E}))$ be the smallest π-system (\mathcal{D}-system) containing \mathcal{E}.

Dynkins $\pi-\lambda$ theorem

It is natural to ask why in the world we would introduce such crazy classes of sets. We will see later that they will be very useful.

Theorem

(Theorem 3.8 in JJ). If \mathcal{M} is a collection of subsets of a set X, then \mathcal{M} is a σ-algebra if and only if \mathcal{M} is a π-system and a \mathcal{D}-system.

Given a collection of \mathcal{E} of subsets of X, we have previous defined $\sigma(\mathcal{E})$ as the smallest σ-algebra containing \mathcal{E}. We do something similar here.

Definition

We let $\pi(\mathcal{E})(\mathcal{D}(\mathcal{E}))$ be the smallest π-system (\mathcal{D}-system) containing \mathcal{E}.
Theorem
(Theorem 3.9 in JJ, Dynkin's $\pi-\lambda$ Theorem)
If \mathcal{I} is a π-system, then

$$
\mathcal{D}(\mathcal{I})=\sigma(\mathcal{I})
$$

Measures

Measures

Definition

If \mathcal{M} is a σ-algebra of subsets of X, then (X, \mathcal{M}) is called a measurable space.

Measures

Definition

If \mathcal{M} is a σ-algebra of subsets of X, then (X, \mathcal{M}) is called a measurable space.

Definition

If (X, \mathcal{M}) is a measurable space, a measure m on (X, \mathcal{M}) is a mapping from \mathcal{M} to $[0, \infty]$ satisfying the following.

Measures

Definition

If \mathcal{M} is a σ-algebra of subsets of X, then (X, \mathcal{M}) is called a measurable space.

Definition

If (X, \mathcal{M}) is a measurable space, a measure m on (X, \mathcal{M}) is a mapping from \mathcal{M} to $[0, \infty]$ satisfying the following.

1. $m(\emptyset)=0$
2. If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{M}, then

$$
m\left(\bigcup_{i} A_{i}\right)=\sum_{i} m\left(A_{i}\right)
$$

Measures

Definition

If \mathcal{M} is a σ-algebra of subsets of X, then (X, \mathcal{M}) is called a measurable space.

Definition

If (X, \mathcal{M}) is a measurable space, a measure m on (X, \mathcal{M}) is a mapping from \mathcal{M} to $[0, \infty]$ satisfying the following.

1. $m(\emptyset)=0$
2. If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{M}, then

$$
m\left(\bigcup_{i} A_{i}\right)=\sum_{i} m\left(A_{i}\right) .
$$

Definition

A measure space (X, \mathcal{M}, m) is a measurable space (X, \mathcal{M}) together with a measure m on it.

Easy example

Easy example

Example. Let $X=\{1,2,3, \ldots\}$ and consider a vector p_{1}, p_{2}, \ldots of nonnegative numbers with $\sum_{i=1}^{\infty} p_{i}=1$. Then let \mathcal{M} be all subsets of X and for $S \subseteq X$, let

$$
m(S):=\sum_{i \in S} p_{i}
$$

Easy example

Example. Let $X=\{1,2,3, \ldots\}$ and consider a vector p_{1}, p_{2}, \ldots of nonnegative numbers with $\sum_{i=1}^{\infty} p_{i}=1$. Then let \mathcal{M} be all subsets of X and for $S \subseteq X$, let

$$
m(S):=\sum_{i \in S} p_{i}
$$

We will get to more substantial examples soon, including Lebesgue measure.

Basic Properties

Basic Properties

Theorem

Let (X, \mathcal{M}, m) be a measure space.

Basic Properties

Theorem

Let (X, \mathcal{M}, m) be a measure space.
a. (Monotonicity) $E, F \in \mathcal{M}, E \subseteq F$ implies $m(E) \leq m(F)$.

Basic Properties

Theorem

Let (X, \mathcal{M}, m) be a measure space.
a. (Monotonicity) $E, F \in \mathcal{M}, E \subseteq F$ implies $m(E) \leq m(F)$.
b. (Continuity from below) $E_{1} \subseteq E_{2} \subseteq E_{3}, \ldots$ with each $E_{i} \in \mathcal{M}$ implies that

$$
m\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)
$$

Basic Properties

Theorem

Let (X, \mathcal{M}, m) be a measure space.
a. (Monotonicity) $E, F \in \mathcal{M}, E \subseteq F$ implies $m(E) \leq m(F)$.
b. (Continuity from below) $E_{1} \subseteq E_{2} \subseteq E_{3}, \ldots$ with each $E_{i} \in \mathcal{M}$ implies that

$$
m\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)
$$

c. (Subadditivity) $E_{1}, E_{2}, \ldots \in \mathcal{M}$, then

$$
m\left(\bigcup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} m\left(E_{i}\right)
$$

Basic Properties

Theorem

Let (X, \mathcal{M}, m) be a measure space.
a. (Monotonicity) $E, F \in \mathcal{M}, E \subseteq F$ implies $m(E) \leq m(F)$.
b. (Continuity from below) $E_{1} \subseteq E_{2} \subseteq E_{3}, \ldots$ with each $E_{i} \in \mathcal{M}$ implies that

$$
m\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)
$$

c. (Subadditivity) $E_{1}, E_{2}, \ldots \in \mathcal{M}$, then

$$
m\left(\bigcup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} m\left(E_{i}\right)
$$

d. (Continuity from above) $m\left(E_{1}\right)<\infty$ and $E_{1} \supseteq E_{2} \supseteq E_{3}, \ldots$ implies

$$
m\left(\bigcap^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)
$$

Proof of a.

Using finite additivity in the first step and $m \geq 0$ in second step gives

$$
m(F)=m(E)+m(F \backslash E) \geq m(E)
$$

Proof of b.

By (a), $m\left(E_{i}\right)$ is a (weakly) increasing sequence and hence the limit exists (possibly ∞ which is fine).

Proof of b.

By (a), $m\left(E_{i}\right)$ is a (weakly) increasing sequence and hence the limit exists (possibly ∞ which is fine). Let (see picture)

$$
F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{n}:=E_{n} \backslash E_{n-1}, \ldots
$$

Proof of b.

By (a), $m\left(E_{i}\right)$ is a (weakly) increasing sequence and hence the limit exists (possibly ∞ which is fine). Let (see picture)

$$
F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{n}:=E_{n} \backslash E_{n-1}, \ldots
$$

Observe that (1) the F_{i} 's are disjoint,

Proof of b.

By (a), $m\left(E_{i}\right)$ is a (weakly) increasing sequence and hence the limit exists (possibly ∞ which is fine). Let (see picture)

$$
F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{n}:=E_{n} \backslash E_{n-1}, \ldots
$$

Observe that (1) the F_{i} 's are disjoint, (2) $E_{n}=\bigcup_{i=1}^{n} F_{i}$

Proof of b.

By (a), $m\left(E_{i}\right)$ is a (weakly) increasing sequence and hence the limit exists (possibly ∞ which is fine). Let (see picture)

$$
F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{n}:=E_{n} \backslash E_{n-1}, \ldots
$$

Observe that (1) the F_{i} 's are disjoint, (2) $E_{n}=\bigcup_{i=1}^{n} F_{i}$ and (3) $\bigcup_{i=1}^{\infty} E_{i}=\bigcup_{i=1}^{\infty} F_{i}$.

Proof of b.

By (a), $m\left(E_{i}\right)$ is a (weakly) increasing sequence and hence the limit exists (possibly ∞ which is fine). Let (see picture)

$$
F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{n}:=E_{n} \backslash E_{n-1}, \ldots
$$

Observe that (1) the F_{i} 's are disjoint, (2) $E_{n}=\bigcup_{i=1}^{n} F_{i}$ and (3) $\bigcup_{i=1}^{\infty} E_{i}=\bigcup_{i=1}^{\infty} F_{i}$.

We then have, using countable and finite additivity

$$
m\left(\bigcup_{i}^{\infty} E_{i}\right)=m\left(\bigcup_{i}^{\infty} F_{i}\right)=\sum_{i}^{\infty} m\left(F_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i}^{n} m\left(F_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)
$$

Picture for b.

Proof of c.

Let
$F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{3}:=E_{3} \backslash\left(E_{1} \cup E_{2}\right), \ldots F_{n}:=E_{n} \backslash\left(E_{1} \cup \ldots \cup E_{n-1}\right), \ldots$

Proof of c.

Let
$F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{3}:=E_{3} \backslash\left(E_{1} \cup E_{2}\right), \ldots F_{n}:=E_{n} \backslash\left(E_{1} \cup \ldots \cup E_{n-1}\right), \ldots$
Observe that (1) the F_{i} 's are disjoint,

Proof of c.

Let
$F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{3}:=E_{3} \backslash\left(E_{1} \cup E_{2}\right), \ldots F_{n}:=E_{n} \backslash\left(E_{1} \cup \ldots \cup E_{n-1}\right), \ldots$
Observe that (1) the F_{i} 's are disjoint, (2) $\bigcup_{i=1}^{n} E_{i}=\bigcup_{i=1}^{n} F_{i}$

Proof of c.

Let
$F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{3}:=E_{3} \backslash\left(E_{1} \cup E_{2}\right), \ldots F_{n}:=E_{n} \backslash\left(E_{1} \cup \ldots \cup E_{n-1}\right), \ldots$
Observe that (1) the F_{i} 's are disjoint, (2) $\bigcup_{i=1}^{n} E_{i}=\bigcup_{i=1}^{n} F_{i}$ and (3) $\bigcup_{i=1}^{\infty} E_{i}=\bigcup_{i=1}^{\infty} F_{i}$.

Proof of c.

Let
$F_{1}:=E_{1}, F_{2}:=E_{2} \backslash E_{1}, F_{3}:=E_{3} \backslash\left(E_{1} \cup E_{2}\right), \ldots F_{n}:=E_{n} \backslash\left(E_{1} \cup \ldots \cup E_{n-1}\right), \ldots$
Observe that (1) the F_{i} 's are disjoint, (2) $\bigcup_{i=1}^{n} E_{i}=\bigcup_{i=1}^{n} F_{i}$ and (3) $\bigcup_{i=1}^{\infty} E_{i}=\bigcup_{i=1}^{\infty} F_{i}$.

We then have

$$
m\left(\bigcup_{i=1}^{\infty} E_{i}\right)=m\left(\bigcup_{i=1}^{\infty} F_{i}\right)=\sum_{i=1}^{\infty} m\left(F_{i}\right) \leq \sum_{i=1}^{\infty} m\left(E_{i}\right)
$$

Some properties measures may have

Definition

A measure space $(X, \mathcal{M}, m$) is complete if (i) $B \in \mathcal{M}$, (ii) $m(B)=0$ and (iii) $A \subseteq B$ imply that $A \in \mathcal{M}$ (which then of course implies that $m(A)=0)$.

Some properties measures may have

Definition

A measure space $(X, \mathcal{M}, m$) is complete if (i) $B \in \mathcal{M}$, (ii) $m(B)=0$ and (iii) $A \subseteq B$ imply that $A \in \mathcal{M}$ (which then of course implies that $m(A)=0)$.

Definition

A measure space (X, \mathcal{M}, μ) is called finite if $\mu(X)<\infty$. (If $\mu(X)=1$, it is called a probability space.)

Some properties measures may have

Definition

A measure space (X, \mathcal{M}, m) is complete if (i) $B \in \mathcal{M}$, (ii) $m(B)=0$ and (iii) $A \subseteq B$ imply that $A \in \mathcal{M}$ (which then of course implies that $m(A)=0)$.

Definition

A measure space (X, \mathcal{M}, μ) is called finite if $\mu(X)<\infty$. (If $\mu(X)=1$, it is called a probability space.)

Definition

Given a measure space (X, \mathcal{M}, m), a property (formally a subset of X) is said to occur almost everywhere abbreviated a.e. (almost surely abbreviated a.s. if one is doing probability theory) if the set of x 's where the property fails is contained inside of a set of measure 0 .

Some properties measures may have

Definition

A measure space (X, \mathcal{M}, μ) is called σ-finite if there exist subsets A_{1}, A_{2}, \ldots so that $X=\bigcup_{i} A_{i}$ and $\mu\left(A_{i}\right)<\infty$ for all i.

Some properties measures may have

Definition

A measure space (X, \mathcal{M}, μ) is called σ-finite if there exist subsets A_{1}, A_{2}, \ldots so that $X=\bigcup_{i} A_{i}$ and $\mu\left(A_{i}\right)<\infty$ for all i.

Definition

Assume (X, \mathcal{M}, μ) is a measure space with all single points being measurable. An atom is a point x with $\mu(\{x\})>0 .(X, \mathcal{M}, \mu)$ is called atomic if $\mu\left(\mathcal{A}^{c}\right)=0$ where \mathcal{A} is the set of atoms. (X, \mathcal{M}, μ) is called continuous if there is no atom.

Existence and construction of Lebesgue measure

Theorem

There exists a translation invariant measure m on (R, \mathcal{B}) such that $m([a, b])=b-a$ for all $a<b$. (m will then be Lebesgue measure restricted to \mathcal{B}.)

Translation invariant means $m(A+x)=m(A)$ for all $A \in \mathcal{B}$ and $x \in R$.

Existence and construction of Lebesgue measure (5 steps!)

Existence and construction of Lebesgue measure (5 steps!)

STEP 1: Define the general concept of outer measure.

Existence and construction of Lebesgue measure (5 steps!)

STEP 1: Define the general concept of outer measure.
STEP 2: Using the notion of length for intervals in R, we construct Lebesgue outer measure which will be an outer measure (as will be defined in STEP 1). This will be defined for ALL subsets and should be viewed as the first attempt to construct Lebesgue measure. It will not be countably additive.

Existence and construction of Lebesgue measure (5 steps!)

STEP 1: Define the general concept of outer measure.
STEP 2: Using the notion of length for intervals in R, we construct Lebesgue outer measure which will be an outer measure (as will be defined in STEP 1). This will be defined for ALL subsets and should be viewed as the first attempt to construct Lebesgue measure. It will not be countably additive.

STEP 3: Show that the Lebesgue outer measure of an interval is its length.

Existence and construction of Lebesgue measure (5 steps!)

STEP 1: Define the general concept of outer measure.
STEP 2: Using the notion of length for intervals in R, we construct Lebesgue outer measure which will be an outer measure (as will be defined in STEP 1). This will be defined for ALL subsets and should be viewed as the first attempt to construct Lebesgue measure. It will not be countably additive.

STEP 3: Show that the Lebesgue outer measure of an interval is its length.
STEP 4: (Caratheodory's Extension theorem). Given an outer measure m^{\star} on an arbitrary set X, there is a σ-algebra \mathcal{M} so that m^{\star} restricted to \mathcal{M} is a complete measure. (This statement as stated here is completely trivial since we could take \mathcal{M} to be $\{\emptyset, X\}$; the proper version of this theorem will be stated later when we introduce some more concepts.)

Existence and construction of Lebesgue measure (5 steps!)

STEP 1: Define the general concept of outer measure.
STEP 2: Using the notion of length for intervals in R, we construct Lebesgue outer measure which will be an outer measure (as will be defined in STEP 1). This will be defined for ALL subsets and should be viewed as the first attempt to construct Lebesgue measure. It will not be countably additive.

STEP 3: Show that the Lebesgue outer measure of an interval is its length.
STEP 4: (Caratheodory's Extension theorem). Given an outer measure m^{\star} on an arbitrary set X, there is a σ-algebra \mathcal{M} so that m^{\star} restricted to \mathcal{M} is a complete measure. (This statement as stated here is completely trivial since we could take \mathcal{M} to be $\{\emptyset, X\}$; the proper version of this theorem will be stated later when we introduce some more concepts.)
STEP 5: Show that for Lebesgue outer measure on R, the \mathcal{M} which will be constructed in Step 4 contains \mathcal{B}.

STEP 1

Define the concept of outer measure.

STEP 1

Define the concept of outer measure.

Definition

An outer measure on a set X is a function μ^{\star} from $\mathcal{P}(X)$ to $[0, \infty]$ satisfying

STEP 1

Define the concept of outer measure.

Definition

An outer measure on a set X is a function μ^{\star} from $\mathcal{P}(X)$ to $[0, \infty]$ satisfying
(i). $\mu^{\star}(\emptyset)=0$.

STEP 1

Define the concept of outer measure.

Definition

An outer measure on a set X is a function μ^{\star} from $\mathcal{P}(X)$ to $[0, \infty]$ satisfying
(i). $\mu^{\star}(\emptyset)=0$.
(ii). $A \subseteq B$ implies that $\mu^{\star}(A) \leq \mu^{\star}(B)$.

STEP 1

Define the concept of outer measure.

Definition

An outer measure on a set X is a function μ^{\star} from $\mathcal{P}(X)$ to $[0, \infty]$ satisfying
(i). $\mu^{\star}(\emptyset)=0$.
(ii). $A \subseteq B$ implies that $\mu^{\star}(A) \leq \mu^{\star}(B)$.
(iii). Given A_{1}, A_{2}, \ldots

$$
\mu^{\star}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{\star}\left(A_{n}\right)
$$

STEP 2

STEP 2: Definition of Lebesgue outer measure.

STEP 2

STEP 2: Definition of Lebesgue outer measure. (If I is an interval, we let $|I|$ denote its length.)

STEP 2

STEP 2: Definition of Lebesgue outer measure. (If I is an interval, we let $|I|$ denote its length.) Let $X=R, A \subseteq X$ and define

$$
\mu^{\star}(A):=\inf \left\{\sum_{i=1}^{\infty}\left|I_{i}\right|: I_{1}, I_{2}, \ldots \text { are open intervals with } A \subseteq \bigcup_{i} I_{i}\right\} .
$$

STEP 2

STEP 2: Definition of Lebesgue outer measure. (If I is an interval, we let $|I|$ denote its length.) Let $X=R, A \subseteq X$ and define

$$
\mu^{\star}(A):=\inf \left\{\sum_{i=1}^{\infty}\left|I_{i}\right|: I_{1}, I_{2}, \ldots \text { are open intervals with } A \subseteq \bigcup_{i} I_{i}\right\} .
$$

Theorem

μ^{\star} is an outer measure on R.

STEP 2

Proof:

STEP 2

Proof:
 (i). $\left(\mu^{\star}(\emptyset)=0.\right)$ This is easy.

STEP 2

Proof:
(i). $\left(\mu^{\star}(\emptyset)=0\right.$.) This is easy.
(ii). ($A \subseteq B$ implies that $\mu^{\star}(A) \leq \mu^{\star}(B)$.) This is essentially trivial since any interval covering of B is an interval covering of A and hence in the definition of $\mu^{\star}(A)$, one is taking an infimum over a larger collection and hence the infimum is smaller.

STEP 2

Proof:
(i). $\left(\mu^{\star}(\emptyset)=0\right.$. $)$ This is easy.
(ii). ($A \subseteq B$ implies that $\mu^{\star}(A) \leq \mu^{\star}(B)$.) This is essentially trivial since any interval covering of B is an interval covering of A and hence in the definition of $\mu^{\star}(A)$, one is taking an infimum over a larger collection and hence the infimum is smaller.
(iii). (Given A_{1}, A_{2}, \ldots

$$
\left.\mu^{\star}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{\star}\left(A_{n}\right) .\right)
$$

STEP 2

Proof:
(i). $\left(\mu^{\star}(\emptyset)=0\right.$.) This is easy.
(ii). ($A \subseteq B$ implies that $\mu^{\star}(A) \leq \mu^{\star}(B)$.) This is essentially trivial since any interval covering of B is an interval covering of A and hence in the definition of $\mu^{\star}(A)$, one is taking an infimum over a larger collection and hence the infimum is smaller.
(iii). (Given A_{1}, A_{2}, \ldots

$$
\left.\mu^{\star}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{\star}\left(A_{n}\right) .\right)
$$

Case 1. $\mu^{\star}\left(A_{n}\right)=\infty$ for some n.

STEP 2

Proof:
(i). $\left(\mu^{\star}(\emptyset)=0\right.$.) This is easy.
(ii). ($A \subseteq B$ implies that $\mu^{\star}(A) \leq \mu^{\star}(B)$.) This is essentially trivial since any interval covering of B is an interval covering of A and hence in the definition of $\mu^{\star}(A)$, one is taking an infimum over a larger collection and hence the infimum is smaller.
(iii). (Given A_{1}, A_{2}, \ldots

$$
\left.\mu^{\star}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{\star}\left(A_{n}\right) .\right)
$$

Case 1. $\mu^{\star}\left(A_{n}\right)=\infty$ for some n.
Then the inequality trivially holds.

STEP 2

Case 2. $\mu^{\star}\left(A_{n}\right)<\infty$ for all n.

STEP 2

Case 2. $\mu^{\star}\left(A_{n}\right)<\infty$ for all n. Let $\epsilon>0$.

STEP 2

Case 2. $\mu^{\star}\left(A_{n}\right)<\infty$ for all n.
Let $\epsilon>0$. For each A_{j}, choose open intervals $I_{1}^{j}, l_{2}^{j}, l_{3}^{j}, \ldots$ so that $A_{j} \subseteq \bigcup_{i=1}^{\infty} l_{i}^{j}$ and

$$
\sum_{i=1}^{\infty}\left|\|_{i}^{j}\right| \leq \mu^{\star}\left(A_{j}\right)+\epsilon / 2^{j}
$$

STEP 2

Case 2. $\mu^{\star}\left(A_{n}\right)<\infty$ for all n.
Let $\epsilon>0$. For each A_{j}, choose open intervals $I_{1}^{j}, l_{2}^{j}, l_{3}^{j}, \ldots$ so that $A_{j} \subseteq \bigcup_{i=1}^{\infty} l_{i}^{j}$ and

$$
\sum_{i=1}^{\infty}\left|f_{i}^{j}\right| \leq \mu^{\star}\left(A_{j}\right)+\epsilon / 2^{j}
$$

Now consider the countable collection of open intervals $\left\{l_{i}^{j}\right\}_{i, j \geq 1}$.

STEP 2

Case 2. $\mu^{\star}\left(A_{n}\right)<\infty$ for all n.
Let $\epsilon>0$. For each A_{j}, choose open intervals $I_{1}^{j}, l_{2}^{j}, l_{3}^{j}, \ldots$ so that $A_{j} \subseteq \bigcup_{i=1}^{\infty} l_{i}^{j}$ and

$$
\sum_{i=1}^{\infty}\left|\ell_{i}^{j}\right| \leq \mu^{\star}\left(A_{j}\right)+\epsilon / 2^{j}
$$

Now consider the countable collection of open intervals $\left\{l_{i}^{j}\right\}_{i, j \geq 1}$. Since the union of these contain each A_{j}, they contain $\bigcup_{j=1} A_{j}$.

STEP 2

Case 2. $\mu^{\star}\left(A_{n}\right)<\infty$ for all n.
Let $\epsilon>0$. For each A_{j}, choose open intervals $I_{1}^{j}, l_{2}^{j}, l_{3}^{j}, \ldots$ so that $A_{j} \subseteq \bigcup_{i=1}^{\infty} l_{i}^{j}$ and

$$
\sum_{i=1}^{\infty}\left|\ell_{i}^{j}\right| \leq \mu^{\star}\left(A_{j}\right)+\epsilon / 2^{j} .
$$

Now consider the countable collection of open intervals $\left\{l_{i}^{j}\right\}_{i, j \geq 1}$. Since the union of these contain each A_{j}, they contain $\bigcup_{j=1} A_{j}$. We therefore have
$\mu^{\star}\left(\bigcup_{j=1} A_{j}\right) \leq \sum_{i, j=1}\left|I_{i}^{j}\right|=\sum_{j=1}\left(\sum_{i=1}\left|I_{i}^{j}\right|\right) \leq \sum_{j=1}\left(\mu^{\star}\left(A_{j}\right)+\epsilon / 2^{j}\right)=\sum_{j=1} \mu^{\star}\left(A_{j}\right)+\epsilon$.

STEP 2

Case 2. $\mu^{\star}\left(A_{n}\right)<\infty$ for all n.
Let $\epsilon>0$. For each A_{j}, choose open intervals $I_{1}^{j}, l_{2}^{j}, l_{3}^{j}, \ldots$ so that $A_{j} \subseteq \bigcup_{i=1}^{\infty} l_{i}^{j}$ and

$$
\sum_{i=1}^{\infty}\left|\ell_{i}^{j}\right| \leq \mu^{\star}\left(A_{j}\right)+\epsilon / 2^{j} .
$$

Now consider the countable collection of open intervals $\left\{l_{i}^{j}\right\}_{i, j \geq 1}$. Since the union of these contain each A_{j}, they contain $\bigcup_{j=1} A_{j}$. We therefore have
$\mu^{\star}\left(\bigcup_{j=1} A_{j}\right) \leq \sum_{i, j=1}\left|I_{i}^{j}\right|=\sum_{j=1}\left(\sum_{i=1}\left|I_{i}^{j}\right|\right) \leq \sum_{j=1}\left(\mu^{\star}\left(A_{j}\right)+\epsilon / 2^{j}\right)=\sum_{j=1} \mu^{\star}\left(A_{j}\right)+\epsilon$.
Looking at the first and last term, since this inequality holds for all $\epsilon>0$, we get

$$
\mu^{\star}\left(\bigcup_{j=1} A_{j}\right) \leq \sum_{j=1} \mu^{\star}\left(A_{j}\right) .
$$

STEP 3

STEP 3

Theorem

For each finite interval I, we have

$$
\mu^{\star}(I)=|I| .
$$

STEP 3

Theorem

For each finite interval I, we have

$$
\mu^{\star}(I)=|I| .
$$

Proof:
It is enough to prove this for closed intervals $I=[a, b]$.

STEP 3

Theorem

For each finite interval I, we have

$$
\mu^{\star}(I)=|I| .
$$

Proof:

It is enough to prove this for closed intervals $I=[a, b]$.
\leq For each $\epsilon,[a, b] \subseteq(a-\epsilon, b+\epsilon)$ and hence $\mu^{\star}(I) \leq b-a+2 \epsilon$.

STEP 3

Theorem

For each finite interval I, we have

$$
\mu^{\star}(I)=|I| .
$$

Proof:
It is enough to prove this for closed intervals $I=[a, b]$.
\leq For each $\epsilon,[a, b] \subseteq(a-\epsilon, b+\epsilon)$ and hence $\mu^{\star}(I) \leq b-a+2 \epsilon$. Since this inequality is true for each ϵ, we get $\mu^{\star}(I) \leq b-a$.

STEP 3

Theorem

For each finite interval I, we have

$$
\mu^{\star}(I)=|I| .
$$

Proof:
It is enough to prove this for closed intervals $I=[a, b]$.
\leq For each $\epsilon,[a, b] \subseteq(a-\epsilon, b+\epsilon)$ and hence $\mu^{\star}(I) \leq b-a+2 \epsilon$. Since this inequality is true for each ϵ, we get $\mu^{\star}(I) \leq b-a$.
\geq Assume $[a, b] \subseteq \bigcup_{i} I_{i}$.

STEP 3

Theorem

For each finite interval I, we have

$$
\mu^{\star}(I)=|I| .
$$

Proof:
It is enough to prove this for closed intervals $I=[a, b]$.
\leq For each $\epsilon,[a, b] \subseteq(a-\epsilon, b+\epsilon)$ and hence $\mu^{\star}(I) \leq b-a+2 \epsilon$. Since this inequality is true for each ϵ, we get $\mu^{\star}(I) \leq b-a$.
\geq Assume $[a, b] \subseteq \bigcup_{i} I_{i}$. By compactness we can find an integer N so that $[a, b] \subseteq \bigcup_{i=1}^{N} l_{i}$.

STEP 3

Theorem

For each finite interval I, we have

$$
\mu^{\star}(I)=|I| .
$$

Proof:
It is enough to prove this for closed intervals $I=[a, b]$.
\leq For each $\epsilon,[a, b] \subseteq(a-\epsilon, b+\epsilon)$ and hence $\mu^{\star}(I) \leq b-a+2 \epsilon$. Since this inequality is true for each ϵ, we get $\mu^{\star}(I) \leq b-a$.
\geq Assume $[a, b] \subseteq \bigcup_{i} I_{i}$. By compactness we can find an integer N so that $[a, b] \subseteq \bigcup_{i=1}^{N} l_{i}$. To complete the proof we need to show that

$$
b-a \leq \sum_{i=1}^{N}\left|I_{i}\right|
$$

which is very believable to say the least. See the picture for the proof.

STEP 3 Picture

STEP 4: Caratheodory's Theorem

STEP 4: Caratheodory's Theorem

Definition

If μ^{\star} is an outer measure on X, we call a subset $A \subseteq X \mu^{\star}$-measurable (see picture) if for all $E \subseteq X$,

$$
\mu^{\star}(E)=\mu^{\star}(E \cap A)+\mu^{\star}\left(E \cap A^{c}\right)
$$

STEP 4: Caratheodory's Theorem

Definition

If μ^{\star} is an outer measure on X, we call a subset $A \subseteq X \mu^{\star}$-measurable (see picture) if for all $E \subseteq X$,

$$
\mu^{\star}(E)=\mu^{\star}(E \cap A)+\mu^{\star}\left(E \cap A^{c}\right) .
$$

Remark: \leq holds by subadditivity for all A and E. The reverse inequality holds trivially if $\mu^{\star}(E)=\infty$ and so we can assume that $\mu^{\star}(E)$ is finite.

STEP 4: Caratheodory's Theorem

Definition

If μ^{\star} is an outer measure on X, we call a subset $A \subseteq X \mu^{\star}$-measurable (see picture) if for all $E \subseteq X$,

$$
\mu^{\star}(E)=\mu^{\star}(E \cap A)+\mu^{\star}\left(E \cap A^{c}\right) .
$$

Remark: \leq holds by subadditivity for all A and E. The reverse inequality holds trivially if $\mu^{\star}(E)=\infty$ and so we can assume that $\mu^{\star}(E)$ is finite.
Now we can state

Theorem

(Caratheodory's Theorem) If μ^{\star} is an outer measure on X, then the collection \mathcal{M} of μ^{\star}-measurable sets is a σ-algebra and μ^{\star} restricted to \mathcal{M} is a measure, which is also complete.

STEP 4: Caratheodory's Theorem

Definition

If μ^{\star} is an outer measure on X, we call a subset $A \subseteq X \mu^{\star}$-measurable (see picture) if for all $E \subseteq X$,

$$
\mu^{\star}(E)=\mu^{\star}(E \cap A)+\mu^{\star}\left(E \cap A^{c}\right) .
$$

Remark: \leq holds by subadditivity for all A and E. The reverse inequality holds trivially if $\mu^{\star}(E)=\infty$ and so we can assume that $\mu^{\star}(E)$ is finite.
Now we can state

Theorem

(Caratheodory's Theorem) If μ^{\star} is an outer measure on X, then the collection \mathcal{M} of μ^{\star}-measurable sets is a σ-algebra and μ^{\star} restricted to \mathcal{M} is a measure, which is also complete.

Proof after.

STEP 4: Picture

STEP 5

Goal: For Lebesgue outer measure on R, \mathcal{M}, from Step 4, contains \mathcal{B}.

STEP 5

Goal: For Lebesgue outer measure on R, \mathcal{M}, from Step 4, contains \mathcal{B}.

Since \mathcal{M} is a σ-algebra and \mathcal{B} is the smallest σ-algebra containing the sets $(-\infty, a)$ and (b, ∞), it is enough to show that $(-\infty, a) \in \mathcal{M}$.

STEP 5

So we need to show for all E

$$
\begin{equation*}
\mu^{\star}(E) \geq \mu^{\star}(E \cap(-\infty, a))+\mu^{\star}(E \cap(a, \infty)) \tag{1}
\end{equation*}
$$

STEP 5

So we need to show for all E

$$
\begin{equation*}
\mu^{\star}(E) \geq \mu^{\star}(E \cap(-\infty, a))+\mu^{\star}(E \cap(a, \infty)) \tag{1}
\end{equation*}
$$

Let $\left\{I_{i}\right\}$ be an arbitrary covering of E by open intervals.

STEP 5

So we need to show for all E

$$
\begin{equation*}
\mu^{\star}(E) \geq \mu^{\star}(E \cap(-\infty, a))+\mu^{\star}(E \cap(a, \infty)) \tag{1}
\end{equation*}
$$

Let $\left\{I_{i}\right\}$ be an arbitrary covering of E by open intervals. Let $I_{i}^{\prime}:=I_{i} \cap(-\infty, a)$ and $I_{i}^{\prime \prime}:=I_{i} \cap(a, \infty)$ and note that $\left\{I_{i}^{\prime}\right\}\left(\left\{I_{i}^{\prime \prime}\right\}\right)$ is an arbitrary covering of $E \cap(-\infty, a)(E \cap(a, \infty))$ by open intervals.

STEP 5

So we need to show for all E

$$
\begin{equation*}
\mu^{\star}(E) \geq \mu^{\star}(E \cap(-\infty, a))+\mu^{\star}(E \cap(a, \infty)) \tag{1}
\end{equation*}
$$

Let $\left\{I_{i}\right\}$ be an arbitrary covering of E by open intervals. Let $I_{i}^{\prime}:=I_{i} \cap(-\infty, a)$ and $I_{i}^{\prime \prime}:=I_{i} \cap(a, \infty)$ and note that $\left\{I_{i}^{\prime}\right\}\left(\left\{I_{i}^{\prime \prime}\right\}\right)$ is an arbitrary covering of $E \cap(-\infty, a)(E \cap(a, \infty))$ by open intervals. Hence we obtain
$\sum_{i}\left|I_{i}\right|=\sum_{i}\left|I_{i}^{\prime}\right|+\left|I_{i}^{\prime \prime}\right|=\sum_{i}\left|I_{i}^{\prime}\right|+\sum_{i}\left|I_{i}^{\prime \prime}\right| \geq \mu^{\star}(E \cap(-\infty, a))+\mu^{\star}(E \cap(a, \infty))$.

STEP 5

So we need to show for all E

$$
\begin{equation*}
\mu^{\star}(E) \geq \mu^{\star}(E \cap(-\infty, a))+\mu^{\star}(E \cap(a, \infty)) \tag{1}
\end{equation*}
$$

Let $\left\{I_{i}\right\}$ be an arbitrary covering of E by open intervals. Let $I_{i}^{\prime}:=I_{i} \cap(-\infty, a)$ and $I_{i}^{\prime \prime}:=I_{i} \cap(a, \infty)$ and note that $\left\{I_{i}^{\prime}\right\}\left(\left\{I_{i}^{\prime \prime}\right\}\right)$ is an arbitrary covering of $E \cap(-\infty, a)(E \cap(a, \infty))$ by open intervals. Hence we obtain
$\sum_{i}\left|I_{i}\right|=\sum_{i}\left|I_{i}^{\prime}\right|+\left|I_{i}^{\prime \prime}\right|=\sum_{i}\left|I_{i}^{\prime}\right|+\sum_{i}\left|I_{i}^{\prime \prime}\right| \geq \mu^{\star}(E \cap(-\infty, a))+\mu^{\star}(E \cap(a, \infty))$.
Since the LHS is \geq the RHS for all coverings of E by open intervals, we can take the infimum of the LHS over all such coverings and obtain (1).

Putting it all together

On R, we defined an outer measure μ^{\star} (Lebesgue outer measure) in STEP 2.

Putting it all together

On R, we defined an outer measure μ^{\star} (Lebesgue outer measure) in STEP 2.

By STEP 4 (Caratheodory's Theorem), we obtain a measure space $\left(R, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ where \mathcal{M} is the set of μ^{\star}-measurable sets.

Putting it all together

On R, we defined an outer measure μ^{\star} (Lebesgue outer measure) in STEP 2.

By STEP 4 (Caratheodory's Theorem), we obtain a measure space $\left(R, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ where \mathcal{M} is the set of μ^{\star}-measurable sets.

By STEP 3, $\mu^{\star}(I)=|I|$ for all intervals I.

Putting it all together

On R, we defined an outer measure μ^{\star} (Lebesgue outer measure) in STEP 2.

By STEP 4 (Caratheodory's Theorem), we obtain a measure space ($R, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}$) where \mathcal{M} is the set of μ^{\star}-measurable sets.

By STEP 3, $\mu^{\star}(I)=|I|$ for all intervals I.
By STEP 5, $\mathcal{B} \subseteq \mathcal{M}$.

Putting it all together

On R, we defined an outer measure μ^{\star} (Lebesgue outer measure) in STEP 2.

By STEP 4 (Caratheodory's Theorem), we obtain a measure space ($R, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}$) where \mathcal{M} is the set of μ^{\star}-measurable sets.
By STEP 3, $\mu^{\star}(I)=|I|$ for all intervals I.
By STEP 5, $\mathcal{B} \subseteq \mathcal{M}$.
Hence we can restrict μ^{\star} from \mathcal{M} down to \mathcal{B} obtaining the desired measure space $\left(R, \mathcal{B},\left.\mu^{\star}\right|_{\mathcal{B}}\right)$.

Putting it all together

On R, we defined an outer measure μ^{\star} (Lebesgue outer measure) in STEP 2.

By STEP 4 (Caratheodory's Theorem), we obtain a measure space ($R, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}$) where \mathcal{M} is the set of μ^{\star}-measurable sets.

By STEP 3, $\mu^{\star}(I)=|I|$ for all intervals I.
By STEP 5, $\mathcal{B} \subseteq \mathcal{M}$.
Hence we can restrict μ^{\star} from \mathcal{M} down to \mathcal{B} obtaining the desired measure space $\left(R, \mathcal{B},\left.\mu^{\star}\right|_{\mathcal{B}}\right)$.

Finally, it is clear from the definition of the outer measure that $\mu^{\star}(A+x)=\mu^{\star}(A)$ for all sets A and $x \in R$. Hence $\left.\mu^{\star}\right|_{\mathcal{B}}\left(\right.$ as well as $\left.\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ is translation invariant.

Caratheodory's Theorem

Caratheodory's Theorem

Definition

An outer measure on a set X is a function μ^{\star} from $\mathcal{P}(X)$ to $[0, \infty]$ satisfying
(i). $\mu^{\star}(\emptyset)=0$.
(ii). $A \subseteq B$ implies that $\mu^{\star}(A) \leq \mu^{\star}(B)$.
(iii). Given A_{1}, A_{2}, \ldots

$$
\mu^{\star}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{\star}\left(A_{n}\right) .
$$

Caratheodory's Theorem

Definition

An outer measure on a set X is a function μ^{\star} from $\mathcal{P}(X)$ to $[0, \infty]$ satisfying
(i). $\mu^{\star}(\emptyset)=0$.
(ii). $A \subseteq B$ implies that $\mu^{\star}(A) \leq \mu^{\star}(B)$.
(iii). Given A_{1}, A_{2}, \ldots

$$
\mu^{\star}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{\star}\left(A_{n}\right)
$$

Definition

If μ^{\star} is an outer measure on X, we call a subset $A \subseteq X \mu^{\star}$-measurable if for all $E \subseteq X$,

$$
\mu^{\star}(E)=\mu^{\star}(E \cap A)+\mu^{\star}\left(E \cap A^{c}\right)
$$

Caratheodory's Theorem

Theorem

(Caratheodory's Theorem) If μ^{\star} is an outer measure on X, then the collection \mathcal{M} of μ^{\star}-measurable sets is a σ-algebra and μ^{\star} restricted to \mathcal{M} is a measure, which is also complete.

Caratheodory's Theorem

Theorem

(Caratheodory's Theorem) If μ^{\star} is an outer measure on X, then the collection \mathcal{M} of μ^{\star}-measurable sets is a σ-algebra and μ^{\star} restricted to \mathcal{M} is a measure, which is also complete.

The proof will be broken into a number of steps.

Proof of Caratheodory's Theorem

Proof of Caratheodory's Theorem

a. \mathcal{M} is an algebra.

Proof of Caratheodory's Theorem

a. \mathcal{M} is an algebra.
(i). $\emptyset \in \mathcal{M}$ is immediate.

Proof of Caratheodory's Theorem

a. \mathcal{M} is an algebra.
(i). $\emptyset \in \mathcal{M}$ is immediate.
(ii). \mathcal{M} is closed under complementation since the definition is symmetric in A and A^{c}.

Proof of Caratheodory's Theorem

a. \mathcal{M} is an algebra.
(i). $\emptyset \in \mathcal{M}$ is immediate.
(ii). \mathcal{M} is closed under complementation since the definition is symmetric in A and A^{c}.
(iii). We need to show $A, B \in \mathcal{M}$ implies $A \cup B \in \mathcal{M}$.

Proof of Caratheodory's Theorem

a. \mathcal{M} is an algebra.
(i). $\emptyset \in \mathcal{M}$ is immediate.
(ii). \mathcal{M} is closed under complementation since the definition is symmetric in A and A^{c}.
(iii). We need to show $A, B \in \mathcal{M}$ implies $A \cup B \in \mathcal{M}$.

Fix $E \subseteq X$.

Proof of Caratheodory's Theorem

a. \mathcal{M} is an algebra.
(i). $\emptyset \in \mathcal{M}$ is immediate.
(ii). \mathcal{M} is closed under complementation since the definition is symmetric in A and A^{c}.
(iii). We need to show $A, B \in \mathcal{M}$ implies $A \cup B \in \mathcal{M}$.

Fix $E \subseteq X$. Noting that

$$
A \cup B=(A \cap B) \cup\left(A^{c} \cap B\right) \cup\left(A \cap B^{c}\right)
$$

and that this is a disjoint union, we have, using subadditivity,

$$
\begin{gathered}
\mu^{\star}(E \cap(A \cup B))+\mu^{\star}\left(E \cap(A \cup B)^{c}\right) \leq \\
\mu^{\star}(E \cap(A \cap B))+\mu^{\star}\left(E \cap\left(A^{c} \cap B\right)\right)+\mu^{\star}\left(E \cap\left(A \cap B^{c}\right)\right)+\mu^{\star}\left(E \cap\left(A^{c} \cap B^{c}\right)\right) .
\end{gathered}
$$

Proof of Caratheodory's Theorem

a. \mathcal{M} is an algebra.
(i). $\emptyset \in \mathcal{M}$ is immediate.
(ii). \mathcal{M} is closed under complementation since the definition is symmetric in A and A^{c}.
(iii). We need to show $A, B \in \mathcal{M}$ implies $A \cup B \in \mathcal{M}$.

Fix $E \subseteq X$. Noting that

$$
A \cup B=(A \cap B) \cup\left(A^{c} \cap B\right) \cup\left(A \cap B^{c}\right)
$$

and that this is a disjoint union, we have, using subadditivity,

$$
\mu^{\star}(E \cap(A \cup B))+\mu^{\star}\left(E \cap(A \cup B)^{c}\right) \leq
$$

$\mu^{\star}(E \cap(A \cap B))+\mu^{\star}\left(E \cap\left(A^{c} \cap B\right)\right)+\mu^{\star}\left(E \cap\left(A \cap B^{c}\right)\right)+\mu^{\star}\left(E \cap\left(A^{c} \cap B^{c}\right)\right)$. Using measurability of A applied to $E \cap B$ for the sum of the first two terms and applied to $E \cap B^{c}$ for the sum of the second two terms, this equals

$$
\mu^{\star}(E \cap B)+\mu^{\star}\left(E \cap B^{c}\right)
$$

Proof of Caratheodory's Theorem

a. \mathcal{M} is an algebra.
(i). $\emptyset \in \mathcal{M}$ is immediate.
(ii). \mathcal{M} is closed under complementation since the definition is symmetric in A and A^{c}.
(iii). We need to show $A, B \in \mathcal{M}$ implies $A \cup B \in \mathcal{M}$.

Fix $E \subseteq X$. Noting that

$$
A \cup B=(A \cap B) \cup\left(A^{c} \cap B\right) \cup\left(A \cap B^{c}\right)
$$

and that this is a disjoint union, we have, using subadditivity,

$$
\mu^{\star}(E \cap(A \cup B))+\mu^{\star}\left(E \cap(A \cup B)^{c}\right) \leq
$$

$\mu^{\star}(E \cap(A \cap B))+\mu^{\star}\left(E \cap\left(A^{c} \cap B\right)\right)+\mu^{\star}\left(E \cap\left(A \cap B^{c}\right)\right)+\mu^{\star}\left(E \cap\left(A^{c} \cap B^{c}\right)\right)$. Using measurability of A applied to $E \cap B$ for the sum of the first two terms and applied to $E \cap B^{c}$ for the sum of the second two terms, this equals

$$
\mu^{\star}(E \cap B)+\mu^{\star}\left(E \cap B^{c}\right)=\mu^{\star}(E)
$$

where the last equality follows from the measurability of B. Hence $A \cup B \in \mathcal{M}$.

Proof of Caratheodory's Theorem

b. μ^{\star} is finitely additive on \mathcal{M}.

Proof of Caratheodory's Theorem

b. μ^{\star} is finitely additive on \mathcal{M}.

If $A, B \in \mathcal{M}$ are disjoint, then using measurability of A, we have

$$
\mu^{\star}(A \cup B)=\mu^{\star}((A \cup B) \cap A)+\mu^{\star}\left((A \cup B) \cap A^{c}\right)=\mu^{\star}(A)+\mu^{\star}(B)
$$

Proof of Caratheodory's Theorem

b. μ^{\star} is finitely additive on \mathcal{M}.

If $A, B \in \mathcal{M}$ are disjoint, then using measurability of A, we have

$$
\mu^{\star}(A \cup B)=\mu^{\star}((A \cup B) \cap A)+\mu^{\star}\left((A \cup B) \cap A^{c}\right)=\mu^{\star}(A)+\mu^{\star}(B)
$$

Now use induction. (Note that only one of the two sets was required to be measurable for this.)

Proof of Caratheodory's Theorem

c. \mathcal{M} is a σ-algebra .

Proof of Caratheodory's Theorem

c. \mathcal{M} is a σ-algebra .

Since \mathcal{M} is an algebra, it suffices to show that if $A_{1}, A_{2}, \ldots \in \mathcal{M}$ are disjoint, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{M}$.

Proof of Caratheodory's Theorem

c. \mathcal{M} is a σ-algebra .

Since \mathcal{M} is an algebra, it suffices to show that if $A_{1}, A_{2}, \ldots \in \mathcal{M}$ are disjoint, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{M}$. Now, let $B_{n}:=\bigcup_{i=1}^{n} A_{i}$ and $B:=\bigcup_{i=1}^{\infty} A_{i}$.

Proof of Caratheodory's Theorem

c. \mathcal{M} is a σ-algebra .

Since \mathcal{M} is an algebra, it suffices to show that if $A_{1}, A_{2}, \ldots \in \mathcal{M}$ are disjoint, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{M}$. Now, let $B_{n}:=\bigcup_{i=1}^{n} A_{i}$ and $B:=\bigcup_{i=1}^{\infty} A_{i}$. We have, using measurability of A_{n}, that for all $E \subseteq X$,
$\mu^{\star}\left(E \cap B_{n}\right)=\mu^{\star}\left(E \cap B_{n} \cap A_{n}\right)+\mu^{\star}\left(E \cap B_{n} \cap A_{n}^{c}\right)=\mu^{\star}\left(E \cap A_{n}\right)+\mu^{\star}\left(E \cap B_{n-1}\right)$.

Proof of Caratheodory's Theorem

c. \mathcal{M} is a σ-algebra .

Since \mathcal{M} is an algebra, it suffices to show that if $A_{1}, A_{2}, \ldots \in \mathcal{M}$ are disjoint, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{M}$. Now, let $B_{n}:=\bigcup_{i=1}^{n} A_{i}$ and $B:=\bigcup_{i=1}^{\infty} A_{i}$. We have, using measurability of A_{n}, that for all $E \subseteq X$,
$\mu^{\star}\left(E \cap B_{n}\right)=\mu^{\star}\left(E \cap B_{n} \cap A_{n}\right)+\mu^{\star}\left(E \cap B_{n} \cap A_{n}^{c}\right)=\mu^{\star}\left(E \cap A_{n}\right)+\mu^{\star}\left(E \cap B_{n-1}\right)$.
This argument can be repeated inductively to obtain

$$
\begin{equation*}
\mu^{\star}\left(E \cap B_{n}\right)=\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right) . \tag{2}
\end{equation*}
$$

Proof of Caratheodory's Theorem

Now, using measurability of B_{n} together with (2), we have that for any n

$$
\begin{gathered}
\mu^{\star}(E)=\mu^{\star}\left(E \cap B_{n}\right)+\mu^{\star}\left(E \cap B_{n}^{c}\right)=\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B_{n}^{c}\right) \geq \\
\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B^{c}\right) .
\end{gathered}
$$

Proof of Caratheodory's Theorem

Now, using measurability of B_{n} together with (2), we have that for any n

$$
\begin{gathered}
\mu^{\star}(E)=\mu^{\star}\left(E \cap B_{n}\right)+\mu^{\star}\left(E \cap B_{n}^{c}\right)=\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B_{n}^{c}\right) \geq \\
\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B^{c}\right) .
\end{gathered}
$$

Now looking at the left side and the right side and letting $n \rightarrow \infty$, we obtain

$$
\mu^{\star}(E) \geq \sum_{i=1}^{\infty} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B^{c}\right) \geq
$$

Proof of Caratheodory's Theorem

Now, using measurability of B_{n} together with (2), we have that for any n

$$
\begin{gathered}
\mu^{\star}(E)=\mu^{\star}\left(E \cap B_{n}\right)+\mu^{\star}\left(E \cap B_{n}^{c}\right)=\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B_{n}^{c}\right) \geq \\
\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B^{c}\right) .
\end{gathered}
$$

Now looking at the left side and the right side and letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\mu^{\star}(E) \geq \sum_{i=1}^{\infty} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B^{c}\right) \geq \mu^{\star}(E \cap B)+\mu^{\star}\left(E \cap B^{c}\right) \tag{3}
\end{equation*}
$$

where we used subadditivity and the definition of B in the last inequality.

Proof of Caratheodory's Theorem

Now, using measurability of B_{n} together with (2), we have that for any n

$$
\begin{gathered}
\mu^{\star}(E)=\mu^{\star}\left(E \cap B_{n}\right)+\mu^{\star}\left(E \cap B_{n}^{c}\right)=\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B_{n}^{c}\right) \geq \\
\sum_{i=1}^{n} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B^{c}\right) .
\end{gathered}
$$

Now looking at the left side and the right side and letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\mu^{\star}(E) \geq \sum_{i=1}^{\infty} \mu^{\star}\left(E \cap A_{i}\right)+\mu^{\star}\left(E \cap B^{c}\right) \geq \mu^{\star}(E \cap B)+\mu^{\star}\left(E \cap B^{c}\right) \tag{3}
\end{equation*}
$$

where we used subadditivity and the definition of B in the last inequality. This establishes that $B \in \mathcal{M}$ and therefore that \mathcal{M} is a σ-algebra .

Proof of Caratheodory's Theorem

d. μ^{\star} is countably additive on \mathcal{M}; i.e. $\left(X, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ is a measure space.

Proof of Caratheodory's Theorem

d. μ^{\star} is countably additive on \mathcal{M}; i.e. $\left(X, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ is a measure space.
Let $A_{1}, A_{2}, \ldots \in \mathcal{M}$ be disjoint and let B_{n} and B be as defined in the previous step.

Proof of Caratheodory's Theorem

d. μ^{\star} is countably additive on \mathcal{M}; i.e. $\left(X, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ is a measure space.
Let $A_{1}, A_{2}, \ldots \in \mathcal{M}$ be disjoint and let B_{n} and B be as defined in the previous step.
Note that by subadditivity, the last term in (3) is $\geq \mu^{\star}(E)$ and so we conclude we must have equalities everywhere.

Proof of Caratheodory's Theorem

d. μ^{\star} is countably additive on \mathcal{M}; i.e. $\left(X, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ is a measure space.
Let $A_{1}, A_{2}, \ldots \in \mathcal{M}$ be disjoint and let B_{n} and B be as defined in the previous step.
Note that by subadditivity, the last term in (3) is $\geq \mu^{\star}(E)$ and so we conclude we must have equalities everywhere.
In particular, taking $E=B$, we obtain

$$
\mu^{\star}(B)=\sum_{i=1}^{\infty} \mu^{\star}\left(A_{i}\right)
$$

as desired.

Proof of Caratheodory's Theorem

e. The measure space $\left(X, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ is complete.

Proof of Caratheodory's Theorem

e. The measure space $\left(X, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ is complete. One first observes that any $A \subseteq X$ with $\mu^{\star}(A)=0$ is in \mathcal{M} since for any subset E

$$
\mu^{\star}(E \cap A)+\mu^{\star}\left(E \cap A^{c}\right)=\mu^{\star}\left(E \cap A^{c}\right) \leq \mu^{\star}(E)
$$

Proof of Caratheodory's Theorem

e. The measure space $\left(X, \mathcal{M},\left.\mu^{\star}\right|_{\mathcal{M}}\right)$ is complete. One first observes that any $A \subseteq X$ with $\mu^{\star}(A)=0$ is in \mathcal{M} since for any subset E

$$
\mu^{\star}(E \cap A)+\mu^{\star}\left(E \cap A^{c}\right)=\mu^{\star}\left(E \cap A^{c}\right) \leq \mu^{\star}(E)
$$

Hence if we have $B \in \mathcal{M}, \mu^{\star}(B)=0$ and $A \subseteq B$, it follows that $\mu^{\star}(A)=0$ and hence from the above $A \in \mathcal{M}$, as desired.

Two further classes of sets: REFRESHER

Two further classes of sets: REFRESHER

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{I} of subsets of X is called a π-system if it is closed under finite intersections; i.e., $A, B \in \mathcal{I}$ implies $A \cap B \in \mathcal{I}$.

Two further classes of sets: REFRESHER

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{I} of subsets of X is called a π-system if it is closed under finite intersections; i.e., $A, B \in \mathcal{I}$ implies $A \cap B \in \mathcal{I}$.

Definition
 Let X be a nonempty set.
 A nonempty collection \mathcal{D} of subsets of X is called a \mathcal{D}-system if

Two further classes of sets: REFRESHER

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{I} of subsets of X is called a π-system if it is closed under finite intersections; i.e., $A, B \in \mathcal{I}$ implies $A \cap B \in \mathcal{I}$.

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{D} of subsets of X is called a \mathcal{D}-system if
a. $X \in \mathcal{D}$

Two further classes of sets: REFRESHER

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{I} of subsets of X is called a π-system if it is closed under finite intersections; i.e., $A, B \in \mathcal{I}$ implies $A \cap B \in \mathcal{I}$.

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{D} of subsets of X is called a \mathcal{D}-system if
a. $X \in \mathcal{D}$
b. $E, F \in \mathcal{D}$ and $E \subseteq F$ imply $F \backslash E\left(=F \cap E^{c}\right) \in \mathcal{D}$ and

Two further classes of sets: REFRESHER

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{I} of subsets of X is called a π-system if it is closed under finite intersections; i.e., $A, B \in \mathcal{I}$ implies $A \cap B \in \mathcal{I}$.

Definition

Let X be a nonempty set.
A nonempty collection \mathcal{D} of subsets of X is called a \mathcal{D}-system if
a. $X \in \mathcal{D}$
b. $E, F \in \mathcal{D}$ and $E \subseteq F$ imply $F \backslash E\left(=F \cap E^{c}\right) \in \mathcal{D}$ and
c. $E_{1} \subseteq E_{2} \subseteq E_{3}, \ldots$ and $E_{i} \in \mathcal{D}$ for all i imply $\bigcup_{i} E_{i} \in \mathcal{D}$.

Dynkins $\pi-\lambda$ theorem: REFRESHER

Dynkins $\pi-\lambda$ theorem: REFRESHER

Definition

We let $\pi(\mathcal{E})(\mathcal{D}(\mathcal{E}))$ be the smallest π-system (\mathcal{D}-system) containing \mathcal{E}.

Dynkins $\pi-\lambda$ theorem: REFRESHER

Definition

We let $\pi(\mathcal{E})(\mathcal{D}(\mathcal{E}))$ be the smallest π-system (\mathcal{D}-system) containing \mathcal{E}.

Theorem

(Theorem 3.9 in JJ, Dynkin's $\pi-\lambda$ Theorem)
If \mathcal{I} is a π-system, then

$$
\mathcal{D}(\mathcal{I})=\sigma(\mathcal{I}) .
$$

Uniqueness of Lebesgue measure on the Borel sets

Uniqueness of Lebesgue measure on the Borel sets

Theorem
Let X be a set and \mathcal{I} be a π-system on X.

Uniqueness of Lebesgue measure on the Borel sets

Theorem
Let X be a set and \mathcal{I} be a π-system on X.
Assume that μ_{1} and μ_{2} are two measures on $(X, \sigma(\mathcal{I}))$ such that

$$
\mu_{1}(X)=\mu_{2}(X)<\infty
$$

Uniqueness of Lebesgue measure on the Borel sets

Theorem
Let X be a set and \mathcal{I} be a π-system on X.
Assume that μ_{1} and μ_{2} are two measures on $(X, \sigma(\mathcal{I}))$ such that

$$
\mu_{1}(X)=\mu_{2}(X)<\infty
$$

and

$$
\mu_{1}(I)=\mu_{2}(I) \forall I \in \mathcal{I} .
$$

Uniqueness of Lebesgue measure on the Borel sets

Theorem
Let X be a set and \mathcal{I} be a π-system on X.
Assume that μ_{1} and μ_{2} are two measures on $(X, \sigma(\mathcal{I}))$ such that

$$
\mu_{1}(X)=\mu_{2}(X)<\infty
$$

and

$$
\mu_{1}(I)=\mu_{2}(I) \forall I \in \mathcal{I} .
$$

Then $\mu_{1}=\mu_{2}$.

Uniqueness of Lebesgue measure on the Borel sets

Theorem

Let X be a set and \mathcal{I} be a π-system on X.
Assume that μ_{1} and μ_{2} are two measures on $(X, \sigma(\mathcal{I}))$ such that

$$
\mu_{1}(X)=\mu_{2}(X)<\infty
$$

and

$$
\mu_{1}(I)=\mu_{2}(I) \forall I \in \mathcal{I} .
$$

Then $\mu_{1}=\mu_{2}$.
Applying this to $X=[0,1]$ and \mathcal{I} being the set of open intervals implies that there is only one measure on $\left([0,1], \mathcal{B}_{[0,1]}\right)$ which agrees with "length" on intervals.

Uniqueness of Lebesgue measure on the Borel sets

Uniqueness of Lebesgue measure on the Borel sets

Proof:

Uniqueness of Lebesgue measure on the Borel sets

Proof:
Assume μ_{1} and μ_{2} are two such measures and let

$$
\mathrm{D}:=\left\{A \in \sigma(\mathcal{I}): \mu_{1}(A)=\mu_{2}(A)\right\}
$$

Uniqueness of Lebesgue measure on the Borel sets

Proof:
Assume μ_{1} and μ_{2} are two such measures and let

$$
\mathrm{D}:=\left\{A \in \sigma(\mathcal{I}): \mu_{1}(A)=\mu_{2}(A)\right\}
$$

Our goal is to show that $\mathrm{D}=\sigma(\mathcal{I})$. (Of course we have \subseteq.)

Uniqueness of Lebesgue measure on the Borel sets

Proof:
Assume μ_{1} and μ_{2} are two such measures and let

$$
\mathrm{D}:=\left\{A \in \sigma(\mathcal{I}): \mu_{1}(A)=\mu_{2}(A)\right\}
$$

Our goal is to show that $\mathrm{D}=\sigma(\mathcal{I})$. (Of course we have \subseteq.)
Step 1: D is a \mathcal{D}-system. (Proof at end.)

Uniqueness of Lebesgue measure on the Borel sets

Proof:
Assume μ_{1} and μ_{2} are two such measures and let

$$
\mathrm{D}:=\left\{A \in \sigma(\mathcal{I}): \mu_{1}(A)=\mu_{2}(A)\right\} .
$$

Our goal is to show that $\mathrm{D}=\sigma(\mathcal{I})$. (Of course we have \subseteq.)
Step 1: D is a \mathcal{D}-system. (Proof at end.)
Step 2. Observe that $\mathcal{I} \subseteq \mathrm{D}$ by assumption.

Uniqueness of Lebesgue measure on the Borel sets

Proof:
Assume μ_{1} and μ_{2} are two such measures and let

$$
\mathrm{D}:=\left\{A \in \sigma(\mathcal{I}): \mu_{1}(A)=\mu_{2}(A)\right\} .
$$

Our goal is to show that $\mathrm{D}=\sigma(\mathcal{I})$. (Of course we have \subseteq.)
Step 1: D is a \mathcal{D}-system. (Proof at end.)
Step 2. Observe that $\mathcal{I} \subseteq \mathrm{D}$ by assumption.
Step 3. Using Dynkin's $\pi-\lambda$ Theorem for the equality and steps 1 and 2 for the containment below, we have

$$
\sigma(\mathcal{I})=\mathcal{D}(\mathcal{I}) \subseteq \mathrm{D}
$$

and hence $\mu_{1}=\mu_{2}$.

Uniqueness of Lebesgue measure on the Borel sets

Lastly, we verify Step 1.

Uniqueness of Lebesgue measure on the Borel sets

Lastly, we verify Step 1.
a. $X \in \mathrm{D}$ by assumption.

Uniqueness of Lebesgue measure on the Borel sets

Lastly, we verify Step 1.
a. $X \in \mathrm{D}$ by assumption.
b. $A, B \in \mathrm{D}$ with $A \subseteq B$ implies that

$$
\mu_{1}(B \backslash A)=\mu_{1}(B)-\mu_{1}(A)=\mu_{2}(B)-\mu_{2}(A)=\mu_{2}(B \backslash A)
$$

and hence $B \backslash A \in \mathrm{D}$.

Uniqueness of Lebesgue measure on the Borel sets

Lastly, we verify Step 1.
a. $X \in \mathrm{D}$ by assumption.
b. $A, B \in \mathrm{D}$ with $A \subseteq B$ implies that

$$
\mu_{1}(B \backslash A)=\mu_{1}(B)-\mu_{1}(A)=\mu_{2}(B)-\mu_{2}(A)=\mu_{2}(B \backslash A)
$$

and hence $B \backslash A \in \mathrm{D}$.
c. If $E_{1} \subseteq E_{2} \subseteq E_{3}, \ldots$ and $E_{i} \in \mathrm{D}$ for all i, then using continuity from below for both measures, we have

$$
\mu_{1}\left(\bigcup_{i} E_{i}\right)=\lim _{n \rightarrow \infty} \mu_{1}\left(E_{n}\right)=\lim _{n \rightarrow \infty} \mu_{2}\left(E_{n}\right)=\mu_{2}\left(\bigcup_{i} E_{i}\right)
$$

and hence $\bigcup_{i} E_{i} \in \mathrm{D}$.

Uniqueness of Lebesgue measure on the Borel sets

Lastly, we verify Step 1.
a. $X \in \mathrm{D}$ by assumption.
b. $A, B \in \mathrm{D}$ with $A \subseteq B$ implies that

$$
\mu_{1}(B \backslash A)=\mu_{1}(B)-\mu_{1}(A)=\mu_{2}(B)-\mu_{2}(A)=\mu_{2}(B \backslash A)
$$

and hence $B \backslash A \in \mathrm{D}$.
c. If $E_{1} \subseteq E_{2} \subseteq E_{3}, \ldots$ and $E_{i} \in \mathrm{D}$ for all i, then using continuity from below for both measures, we have

$$
\mu_{1}\left(\bigcup_{i} E_{i}\right)=\lim _{n \rightarrow \infty} \mu_{1}\left(E_{n}\right)=\lim _{n \rightarrow \infty} \mu_{2}\left(E_{n}\right)=\mu_{2}\left(\bigcup_{i} E_{i}\right)
$$

and hence $\bigcup_{i} E_{i} \in \mathrm{D}$.
a, b, and c imply that D is a \mathcal{D}-system.
QED

Nonmeasurable sets

Question 1: Does there exist a translation invariant measure ℓ on all subsets of R satisfying $\ell([a, b])=b-a$?

Nonmeasurable sets

Question 1: Does there exist a translation invariant measure ℓ on all subsets of R satisfying $\ell([a, b])=b-a$?

Question 2: For Lebesgue outer measure, are all sets measurable?

Nonmeasurable sets

Question 1: Does there exist a translation invariant measure ℓ on all subsets of R satisfying $\ell([a, b])=b-a$?

Question 2: For Lebesgue outer measure, are all sets measurable?
A YES to Question 2 would yield a YES to Question 1 since Lebesgue outer measure is translation invariant.

Nonmeasurable sets

Question 1: Does there exist a translation invariant measure ℓ on all subsets of R satisfying $\ell([a, b])=b-a$?

Question 2: For Lebesgue outer measure, are all sets measurable?
A YES to Question 2 would yield a YES to Question 1 since Lebesgue outer measure is translation invariant.

Theorem

There does not exist a translation invariant measure on all subsets of R which gives length for intervals and hence there exist nonmeasurable sets.

Nonmeasurable sets

Theorem

There does not exist a translation invariant measure on all subsets of R which gives length for intervals and hence there exist nonmeasurable sets.

Nonmeasurable sets

Theorem

There does not exist a translation invariant measure on all subsets of R which gives length for intervals and hence there exist nonmeasurable sets.

Proof.

Nonmeasurable sets

Theorem

There does not exist a translation invariant measure on all subsets of R which gives length for intervals and hence there exist nonmeasurable sets.

Proof.
Assume μ is such a measure.

Nonmeasurable sets

Theorem

There does not exist a translation invariant measure on all subsets of R which gives length for intervals and hence there exist nonmeasurable sets.

Proof.
Assume μ is such a measure. Define an equivalence relation \sim on $[0,1]$ by

$$
x \sim y \text { if } x-y \in Q \text { (} Q \text { denotes the rational numbers) }
$$

Nonmeasurable sets

Theorem

There does not exist a translation invariant measure on all subsets of R which gives length for intervals and hence there exist nonmeasurable sets.

Proof.
Assume μ is such a measure. Define an equivalence relation \sim on $[0,1]$ by

$$
x \sim y \text { if } x-y \in Q \text { (} Q \text { denotes the rational numbers) }
$$

Each equivalence class is countable and so the number of equivalence classes is uncountable.

Nonmeasurable sets

Theorem

There does not exist a translation invariant measure on all subsets of R which gives length for intervals and hence there exist nonmeasurable sets.

Proof.
Assume μ is such a measure. Define an equivalence relation \sim on $[0,1]$ by

$$
x \sim y \text { if } x-y \in Q \text { (} Q \text { denotes the rational numbers) }
$$

Each equivalence class is countable and so the number of equivalence classes is uncountable. Let A consist of one element from each of the equivalence classes.

Nonmeasurable sets

Theorem

There does not exist a translation invariant measure on all subsets of R which gives length for intervals and hence there exist nonmeasurable sets.

Proof.
Assume μ is such a measure. Define an equivalence relation \sim on $[0,1]$ by

$$
x \sim y \text { if } x-y \in Q \text { (} Q \text { denotes the rational numbers) }
$$

Each equivalence class is countable and so the number of equivalence classes is uncountable. Let A consist of one element from each of the equivalence classes. What is $\mu(A)$?

Nonmeasurable sets

Step 1. $\mu(A)>0$.

Nonmeasurable sets

Step 1. $\mu(A)>0$. Subproof.

Nonmeasurable sets

Step 1. $\mu(A)>0$.
Subproof.
We claim that

$$
\begin{equation*}
[0,1] \subseteq \bigcup_{q \in[-1,1] \cap Q}(A+q) \tag{4}
\end{equation*}
$$

Nonmeasurable sets

Step 1. $\mu(A)>0$.
Subproof.
We claim that

$$
\begin{equation*}
[0,1] \subseteq \bigcup_{q \in[-1,1] \cap Q}(A+q) \tag{4}
\end{equation*}
$$

To see this, if $x \in[0,1]$, choose $y \in A$ with $x-y \in Q$. Then $x=y+(x-y) \in A+(x-y)$. Since $x-y \in[-1,1] \cap Q$, we obtain (4).

Nonmeasurable sets

Step 1. $\mu(A)>0$.
Subproof.
We claim that

$$
\begin{equation*}
[0,1] \subseteq \bigcup_{q \in[-1,1] \cap Q}(A+q) \tag{4}
\end{equation*}
$$

To see this, if $x \in[0,1]$, choose $y \in A$ with $x-y \in Q$. Then $x=y+(x-y) \in A+(x-y)$. Since $x-y \in[-1,1] \cap Q$, we obtain (4). Now $\mu(A+q)=\mu(A)$ for all q by the assumed translation invariance.

Nonmeasurable sets

Step 1. $\mu(A)>0$.
Subproof.
We claim that

$$
\begin{equation*}
[0,1] \subseteq \bigcup_{q \in[-1,1] \cap Q}(A+q) \tag{4}
\end{equation*}
$$

To see this, if $x \in[0,1]$, choose $y \in A$ with $x-y \in Q$. Then $x=y+(x-y) \in A+(x-y)$. Since $x-y \in[-1,1] \cap Q$, we obtain (4). Now $\mu(A+q)=\mu(A)$ for all q by the assumed translation invariance. Therefore, if $\mu(A)=0$, then, by countable additivity, the RHS of (4) would be 0 , a contradiction, since μ of the LHS is 1 .

Nonmeasurable sets

Step 1. $\mu(A)>0$.
Subproof.
We claim that

$$
\begin{equation*}
[0,1] \subseteq \bigcup_{q \in[-1,1] \cap Q}(A+q) \tag{4}
\end{equation*}
$$

To see this, if $x \in[0,1]$, choose $y \in A$ with $x-y \in Q$. Then $x=y+(x-y) \in A+(x-y)$. Since $x-y \in[-1,1] \cap Q$, we obtain (4). Now $\mu(A+q)=\mu(A)$ for all q by the assumed translation invariance. Therefore, if $\mu(A)=0$, then, by countable additivity, the RHS of (4) would be 0 , a contradiction, since μ of the LHS is 1 . Hence $\mu(A)>0$.

Nonmeasurable sets

Step 2. $\mu(A)=0$.

Nonmeasurable sets

Step 2. $\mu(A)=0$. Subproof.

Nonmeasurable sets

Step 2. $\mu(A)=0$.
Subproof.
Clearly

$$
\begin{equation*}
\bigcup_{q \in[0,1] \cap Q}(A+q) \subseteq[0,2] \tag{5}
\end{equation*}
$$

Nonmeasurable sets

Step 2. $\mu(A)=0$.
Subproof.
Clearly

$$
\bigcup_{q \in[0,1] \cap Q}(A+q) \subseteq[0,2]
$$

Claim: The sets arising in the union on the left hand side are disjoint.

Nonmeasurable sets

Step 2. $\mu(A)=0$.
Subproof.
Clearly

$$
\bigcup_{q \in[0,1] \cap Q}(A+q) \subseteq[0,2]
$$

Claim: The sets arising in the union on the left hand side are disjoint. Subproof: If some element u belonged to both $A+q_{1}$ and $A+q_{2}$, we would have $u=a_{1}+q_{1}=a_{2}+q_{2}$ with $a_{1}, a_{2} \in A$.

Nonmeasurable sets

Step 2. $\mu(A)=0$.
Subproof.
Clearly

$$
\bigcup_{q \in[0,1] \cap Q}(A+q) \subseteq[0,2]
$$

Claim: The sets arising in the union on the left hand side are disjoint. Subproof: If some element u belonged to both $A+q_{1}$ and $A+q_{2}$, we would have $u=a_{1}+q_{1}=a_{2}+q_{2}$ with $a_{1}, a_{2} \in A$. Then $a_{1}-a_{2}\left(=q_{2}-q_{1}\right) \in Q$ which implies $a_{1} \sim a_{2}$ and hence $a_{1}=a_{2}$.

Nonmeasurable sets

Step 2. $\mu(A)=0$.
Subproof.
Clearly

$$
\bigcup_{q \in[0,1] \cap Q}(A+q) \subseteq[0,2]
$$

Claim: The sets arising in the union on the left hand side are disjoint. Subproof: If some element u belonged to both $A+q_{1}$ and $A+q_{2}$, we would have $u=a_{1}+q_{1}=a_{2}+q_{2}$ with $a_{1}, a_{2} \in A$. Then $a_{1}-a_{2}\left(=q_{2}-q_{1}\right) \in Q$ which implies $a_{1} \sim a_{2}$ and hence $a_{1}=a_{2}$. This then gives $q_{1}=q_{2}$ also.

Nonmeasurable sets

Step 2. $\mu(A)=0$.
Subproof.
Clearly

$$
\bigcup_{q \in[0,1] \cap Q}(A+q) \subseteq[0,2]
$$

Claim: The sets arising in the union on the left hand side are disjoint. Subproof: If some element u belonged to both $A+q_{1}$ and $A+q_{2}$, we would have $u=a_{1}+q_{1}=a_{2}+q_{2}$ with $a_{1}, a_{2} \in A$. Then $a_{1}-a_{2}\left(=q_{2}-q_{1}\right) \in Q$ which implies $a_{1} \sim a_{2}$ and hence $a_{1}=a_{2}$. This then gives $q_{1}=q_{2}$ also. Each of the sets on the left hand side has measure $\mu(A)$ and hence if $\mu(A)>0$, then the LHS would have infinite measure, contradicting the RHS has measure 2. Hence $\mu(A)=0$. QED

Further Constructions of Measures

Further Constructions of Measures

Definition

If X is a set and \mathcal{A} is an algebra on X, a function μ_{0} from \mathcal{A} to $[0, \infty)$ is called a premeasure

Further Constructions of Measures

Definition

If X is a set and \mathcal{A} is an algebra on X, a function μ_{0} from \mathcal{A} to $[0, \infty)$ is called a premeasure if

1. $m(\emptyset)=0$ and

Further Constructions of Measures

Definition

If X is a set and \mathcal{A} is an algebra on X, a function μ_{0} from \mathcal{A} to $[0, \infty)$ is called a premeasure if

1. $m(\emptyset)=0$ and
2. If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{A} and $\bigcup_{i} A_{i} \in \mathcal{A}$, then

$$
m\left(\bigcup_{i} A_{i}\right)=\sum_{i} m\left(A_{i}\right)
$$

Further Constructions of Measures

Definition

If X is a set and \mathcal{A} is an algebra on X, a function μ_{0} from \mathcal{A} to $[0, \infty)$ is called a premeasure if

1. $m(\emptyset)=0$ and
2. If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{A} and $\bigcup_{i} A_{i} \in \mathcal{A}$, then

$$
m\left(\bigcup_{i} A_{i}\right)=\sum_{i} m\left(A_{i}\right) .
$$

Remark: If \mathcal{A} were a σ-algebra, then this would just be a measure.

Further Constructions of Measures

Definition

If X is a set and \mathcal{A} is an algebra on X, a function μ_{0} from \mathcal{A} to $[0, \infty)$ is called a premeasure if

1. $m(\emptyset)=0$ and
2. If A_{1}, A_{2}, \ldots, are (pairwise) disjoint elements of \mathcal{A} and $\bigcup_{i} A_{i} \in \mathcal{A}$, then

$$
m\left(\bigcup_{i} A_{i}\right)=\sum_{i} m\left(A_{i}\right) .
$$

Remark: If \mathcal{A} were a σ-algebra, then this would just be a measure.

Theorem

(Theorem 1.14 in F) If μ_{0} is a premeasure on (X, \mathcal{A}), then there exists a measure μ on $(X, \sigma(\mathcal{A}))$ with $\mu(A)=\mu_{0}(A)$ for all $A \in \mathcal{A}$. If μ_{0} is σ-finite on X, then μ is unique. (Uniqueness can fail in the non- σ-finite case.)

Distribution functions on $[0,1]$

Distribution functions on $[0,1]$

Proposition: Let μ be a finite Borel measure on $[0,1]$ and define $F:[0,1] \rightarrow[0, \mu([0,1])]$ by

$$
F(x):=\mu([0, x])
$$

Distribution functions on $[0,1]$

Proposition: Let μ be a finite Borel measure on $[0,1]$ and define $F:[0,1] \rightarrow[0, \mu([0,1])]$ by

$$
F(x):=\mu([0, x]) .
$$

Then F is a weakly increasing and right continuous.

Distribution functions on $[0,1]$

Proposition: Let μ be a finite Borel measure on $[0,1]$ and define $F:[0,1] \rightarrow[0, \mu([0,1])]$ by

$$
F(x):=\mu([0, x]) .
$$

Then F is a weakly increasing and right continuous.
Proof:

Distribution functions on $[0,1]$

Proposition: Let μ be a finite Borel measure on $[0,1]$ and define $F:[0,1] \rightarrow[0, \mu([0,1])]$ by

$$
F(x):=\mu([0, x]) .
$$

Then F is a weakly increasing and right continuous.
Proof:
Monotonicity of measures implies F is weakly increasing.

Distribution functions on $[0,1]$

Proposition: Let μ be a finite Borel measure on $[0,1]$ and define $F:[0,1] \rightarrow[0, \mu([0,1])]$ by

$$
F(x):=\mu([0, x]) .
$$

Then F is a weakly increasing and right continuous.
Proof:
Monotonicity of measures implies F is weakly increasing. The right continuity of F follows from continuity from above.

Distribution functions on $[0,1]$

Proposition: Let μ be a finite Borel measure on $[0,1]$ and define $F:[0,1] \rightarrow[0, \mu([0,1])]$ by

$$
F(x):=\mu([0, x])
$$

Then F is a weakly increasing and right continuous.
Proof:
Monotonicity of measures implies F is weakly increasing. The right continuity of F follows from continuity from above. For fixed t,

$$
\lim _{s \downarrow t} F(s)=\lim _{n \rightarrow \infty} F\left(t+\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\left[0, t+\frac{1}{n}\right]\right)=\mu([0, t])=F(t)
$$

QED

Distribution functions on $[0,1]$

Proposition: Let μ be a finite Borel measure on $[0,1]$ and define $F:[0,1] \rightarrow[0, \mu([0,1])]$ by

$$
F(x):=\mu([0, x]) .
$$

Then F is a weakly increasing and right continuous.
Proof:
Monotonicity of measures implies F is weakly increasing. The right continuity of F follows from continuity from above. For fixed t,

$$
\lim _{s \downarrow t} F(s)=\lim _{n \rightarrow \infty} F\left(t+\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\left[0, t+\frac{1}{n}\right]\right)=\mu([0, t])=F(t)
$$

QED

Concerning left continuity, F jumps at the atoms of μ :
$F(t)-\lim _{s \uparrow t} F(s)=\mu([0, t])-\lim _{n \rightarrow \infty} \mu\left(\left[0, t-\frac{1}{n}\right]\right)=\mu([0, t])-\mu([0, t))=\mu(\{t\})$.

Distribution functions on $[0,1]$

Distribution functions on $[0,1]$

So from μ, we got an F or F_{μ}. One can go the other way around from an F to a Borel measure $\mu=\mu_{F}$.

Distribution functions on $[0,1]$

So from μ, we got an F or F_{μ}. One can go the other way around from an F to a Borel measure $\mu=\mu_{F}$.

Proposition: Let F be a nonnegative weakly increasing and right continuous function on $[0,1]$ mapping into $[0, \infty)$. Then there exists a finite Borel measure μ on $[0,1]$ satisfying

$$
F(x):=\mu([0, x]) .
$$

Distribution functions on $[0,1]$

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):
We consider the algebra \mathcal{A} of subsets of $[0,1]$ consisting of a finite union of disjoint intervals which are open on the left and closed on the right and we also allow the set $\{0\}$.

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):
We consider the algebra \mathcal{A} of subsets of $[0,1]$ consisting of a finite union of disjoint intervals which are open on the left and closed on the right and we also allow the set $\{0\}$. One checks that this is an algebra.

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):
We consider the algebra \mathcal{A} of subsets of $[0,1]$ consisting of a finite union of disjoint intervals which are open on the left and closed on the right and we also allow the set $\{0\}$. One checks that this is an algebra.
Given a half open interval $I=(a, b]$, we let

$$
\mu_{0}(I):=F(b)-F(a)
$$

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):
We consider the algebra \mathcal{A} of subsets of $[0,1]$ consisting of a finite union of disjoint intervals which are open on the left and closed on the right and we also allow the set $\{0\}$. One checks that this is an algebra.
Given a half open interval $I=(a, b]$, we let

$$
\mu_{0}(I):=F(b)-F(a)
$$

and we define μ_{0} of a finite number of disjoint intervals just by adding up the above.

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):
We consider the algebra \mathcal{A} of subsets of $[0,1]$ consisting of a finite union of disjoint intervals which are open on the left and closed on the right and we also allow the set $\{0\}$. One checks that this is an algebra.
Given a half open interval $I=(a, b]$, we let

$$
\mu_{0}(I):=F(b)-F(a)
$$

and we define μ_{0} of a finite number of disjoint intervals just by adding up the above. Also let $\mu_{0}(\{0\}):=F(0)$.

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):
We consider the algebra \mathcal{A} of subsets of $[0,1]$ consisting of a finite union of disjoint intervals which are open on the left and closed on the right and we also allow the set $\{0\}$. One checks that this is an algebra.
Given a half open interval $I=(a, b]$, we let

$$
\mu_{0}(I):=F(b)-F(a)
$$

and we define μ_{0} of a finite number of disjoint intervals just by adding up the above. Also let $\mu_{0}(\{0\}):=F(0)$. Then one has to check that this is a premeasure on \mathcal{A}.

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):
We consider the algebra \mathcal{A} of subsets of $[0,1]$ consisting of a finite union of disjoint intervals which are open on the left and closed on the right and we also allow the set $\{0\}$. One checks that this is an algebra.
Given a half open interval $I=(a, b]$, we let

$$
\mu_{0}(I):=F(b)-F(a)
$$

and we define μ_{0} of a finite number of disjoint intervals just by adding up the above. Also let $\mu_{0}(\{0\}):=F(0)$. Then one has to check that this is a premeasure on \mathcal{A}. Having done that, one can apply our previous theorem to give us a measure μ on the Borel sets and then one checks that

$$
F(x):=\mu([0, x])
$$

Distribution functions on $[0,1]$

Outline of Proof (see F. for details):
We consider the algebra \mathcal{A} of subsets of $[0,1]$ consisting of a finite union of disjoint intervals which are open on the left and closed on the right and we also allow the set $\{0\}$. One checks that this is an algebra.
Given a half open interval $I=(a, b]$, we let

$$
\mu_{0}(I):=F(b)-F(a)
$$

and we define μ_{0} of a finite number of disjoint intervals just by adding up the above. Also let $\mu_{0}(\{0\}):=F(0)$. Then one has to check that this is a premeasure on \mathcal{A}. Having done that, one can apply our previous theorem to give us a measure μ on the Borel sets and then one checks that

$$
F(x):=\mu([0, x]) .
$$

QED Note that Lebesgue measure corresponds to $F(x)=x$.

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or the Devil's staircase

Let $C_{0}=[0,1]$.

The Cantor Ternary function or the Devil's staircase

Let $C_{0}=[0,1]$.
Let C_{1} be C_{0} with the middle third removed $(=[0,1] \backslash(1 / 3,2 / 3))$.

The Cantor Ternary function or the Devil's staircase

Let $C_{0}=[0,1]$.
Let C_{1} be C_{0} with the middle third removed $(=[0,1] \backslash(1 / 3,2 / 3))$.
Let C_{2} be obtained from C_{1} by removing the middle third of each interval.

The Cantor Ternary function or the Devil's staircase

Let $C_{0}=[0,1]$.
Let C_{1} be C_{0} with the middle third removed $(=[0,1] \backslash(1 / 3,2 / 3))$.
Let C_{2} be obtained from C_{1} by removing the middle third of each interval. One continues defining C_{3}, \ldots (See picture).

The Cantor Ternary function or the Devil's staircase

Let $C_{0}=[0,1]$.
Let C_{1} be C_{0} with the middle third removed $(=[0,1] \backslash(1 / 3,2 / 3))$.
Let C_{2} be obtained from C_{1} by removing the middle third of each interval. One continues defining C_{3}, \ldots. (See picture). Note C_{n} consists of 2^{n} disjoint closed intervals each of length $1 / 3^{n}$.

The Cantor Ternary function or the Devil's staircase

Let $C_{0}=[0,1]$.
Let C_{1} be C_{0} with the middle third removed $(=[0,1] \backslash(1 / 3,2 / 3))$.
Let C_{2} be obtained from C_{1} by removing the middle third of each interval. One continues defining C_{3}, \ldots. (See picture). Note C_{n} consists of 2^{n} disjoint closed intervals each of length $1 / 3^{n}$.

Definition

The Cantor set, C, is defined to be $\bigcap_{n} C_{n}$.

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or the Devil's staircase

Proposition:

The Cantor Ternary function or the Devil's staircase

Proposition:

1. C is a nonempty compact set.

The Cantor Ternary function or the Devil's staircase

Proposition:

1. C is a nonempty compact set.
2. The Lebesgue measure of C is 0 .

The Cantor Ternary function or the Devil's staircase

Proposition:

1. C is a nonempty compact set.
2. The Lebesgue measure of C is 0 .
3. It has no isolated points and hence is uncountable.

The Cantor Ternary function or the Devil's staircase

Proposition:

1. C is a nonempty compact set.
2. The Lebesgue measure of C is 0 .
3. It has no isolated points and hence is uncountable.

Proof outline of some parts:

The Cantor Ternary function or the Devil's staircase

Proposition:

1. C is a nonempty compact set.
2. The Lebesgue measure of C is 0 .
3. It has no isolated points and hence is uncountable.

Proof outline of some parts:

1. C_{n} is closed and hence, by elementary topology, C is a nonempty compact set.

The Cantor Ternary function or the Devil's staircase

Proposition:

1. C is a nonempty compact set.
2. The Lebesgue measure of C is 0 .
3. It has no isolated points and hence is uncountable.

Proof outline of some parts:

1. C_{n} is closed and hence, by elementary topology, C is a nonempty compact set.
2. From the observation earlier, C_{n} has Lebesgue measure $(2 / 3)^{n}$ and hence C has measure 0 .

The Cantor Ternary function or the Devil's staircase

Proposition:

1. C is a nonempty compact set.
2. The Lebesgue measure of C is 0 .
3. It has no isolated points and hence is uncountable.

Proof outline of some parts:

1. C_{n} is closed and hence, by elementary topology, C is a nonempty compact set.
2. From the observation earlier, C_{n} has Lebesgue measure $(2 / 3)^{n}$ and hence C has measure 0 .
3. Skip.

QED

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or the Devil's staircase

There is a natural Borel measure μ_{C} of total weight 1 on C (so $\left.\mu\left(C^{c}\right)=0\right)$.

The Cantor Ternary function or the Devil's staircase

There is a natural Borel measure μ_{C} of total weight 1 on C (so $\mu\left(C^{c}\right)=0$). It gives measure $(1 / 2)^{n}$ to each of the 2^{n} intervals of length $1 / 3^{n}$.

The Cantor Ternary function or the Devil's staircase

There is a natural Borel measure μ_{C} of total weight 1 on C (so $\mu\left(C^{c}\right)=0$). It gives measure $(1 / 2)^{n}$ to each of the 2^{n} intervals of length $1 / 3^{n}$. One can with some work construct this measure by defining it as above on our "basic intervals" and extending it to all Borel sets.

The Cantor Ternary function or the Devil's staircase

There is a natural Borel measure μ_{C} of total weight 1 on C (so $\mu\left(C^{c}\right)=0$). It gives measure $(1 / 2)^{n}$ to each of the 2^{n} intervals of length $1 / 3^{n}$. One can with some work construct this measure by defining it as above on our "basic intervals" and extending it to all Borel sets.

The important feature of this measure is that it will have no atoms and it will give all of its weight to C, a set of Lebesgue measure 0 . Such measures are called continuous singular.

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or the Devil's staircase The Cantor Ternary function or Devil's Staircase is then the distribution function corresponding to μ_{C}.

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or Devil's Staircase is then the distribution function corresponding to μ_{C}. This function, which we call F_{C}, has the fascinating properties that

The Cantor Ternary function or the Devil's staircase

 The Cantor Ternary function or Devil's Staircase is then the distribution function corresponding to μ_{C}. This function, which we call F_{C}, has the fascinating properties that(i). F is a weakly increasing function on $[0,1]$ with $F(0)=0$ and $F(1)=1$.

The Cantor Ternary function or the Devil's staircase

 The Cantor Ternary function or Devil's Staircase is then the distribution function corresponding to μ_{C}. This function, which we call F_{C}, has the fascinating properties that(i). F is a weakly increasing function on $[0,1]$ with $F(0)=0$ and $F(1)=1$. (ii). F is continuous.

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or Devil's Staircase is then the distribution function corresponding to μ_{C}. This function, which we call F_{C}, has the fascinating properties that
(i). F is a weakly increasing function on $[0,1]$ with $F(0)=0$ and $F(1)=1$.
(ii). F is continuous.
(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$.

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or Devil's Staircase is then the distribution function corresponding to μ_{C}. This function, which we call F_{C}, has the fascinating properties that
(i). F is a weakly increasing function on $[0,1]$ with $F(0)=0$ and $F(1)=1$. (ii). F is continuous.
(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$.

Remarks:

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or Devil's Staircase is then the

 distribution function corresponding to μ_{C}. This function, which we call F_{C}, has the fascinating properties that(i). F is a weakly increasing function on $[0,1]$ with $F(0)=0$ and $F(1)=1$. (ii). F is continuous.
(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$.

Remarks:
a. Somehow the values of F manage to go from 0 up to 1 continuously as we move along $[0,1]$ even though the derivative is 0 Lebesgue-a.e.

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or Devil's Staircase is then the

 distribution function corresponding to μ_{C}. This function, which we call F_{C}, has the fascinating properties that(i). F is a weakly increasing function on $[0,1]$ with $F(0)=0$ and $F(1)=1$.
(ii). F is continuous.
(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$.

Remarks:
a. Somehow the values of F manage to go from 0 up to 1 continuously as we move along $[0,1]$ even though the derivative is 0 Lebesgue-a.e.
b. Note that the fundamental theorem of calculus

$$
\int_{0}^{1} F^{\prime} d x=F(1)-F(0)
$$

fails here!

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or Devil's Staircase is then the

 distribution function corresponding to μ_{C}. This function, which we call F_{C}, has the fascinating properties that(i). F is a weakly increasing function on $[0,1]$ with $F(0)=0$ and $F(1)=1$.
(ii). F is continuous.
(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$.

Remarks:
a. Somehow the values of F manage to go from 0 up to 1 continuously as we move along $[0,1]$ even though the derivative is 0 Lebesgue-a.e.
b. Note that the fundamental theorem of calculus

$$
\int_{0}^{1} F^{\prime} d x=F(1)-F(0)
$$

fails here! This failure of the fundamental theorem of calculus will be put into a more general context later on but we wanted to introduce this example already here.

The Cantor Ternary function or the Devil's staircase

The Cantor Ternary function or the Devil's staircase

(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$

The Cantor Ternary function or the Devil's staircase

(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$

Proof: Since $m\left(C^{c}\right)=1$, enough to show $F^{\prime}(x)=0$ if $x \notin C$.

The Cantor Ternary function or the Devil's staircase

(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$

Proof: Since $m\left(C^{c}\right)=1$, enough to show $F^{\prime}(x)=0$ if $x \notin C$. C is closed so choose $\epsilon>0$ so that $(x-\epsilon, x+\epsilon) \subseteq C^{c}$ and so $\mu_{C}((x-\epsilon, x+\epsilon))=0$.

The Cantor Ternary function or the Devil's staircase

(iii). $F^{\prime}=0$ (Lebesgue)-a.e. on $[0,1]$

Proof: Since $m\left(C^{c}\right)=1$, enough to show $F^{\prime}(x)=0$ if $x \notin C$. C is closed so choose $\epsilon>0$ so that $(x-\epsilon, x+\epsilon) \subseteq C^{c}$ and so $\mu_{C}((x-\epsilon, x+\epsilon))=0$. Hence F is constant on $(x-\epsilon, x+\epsilon)$. QED

The Borel Cantelli Lemma

The Borel Cantelli Lemma

Definition

If E_{1}, E_{2}, \ldots is a sequence of measurable sets in a measure space, we let

$$
\limsup E_{i}:=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} E_{k}\right)
$$

The Borel Cantelli Lemma

Definition

If E_{1}, E_{2}, \ldots is a sequence of measurable sets in a measure space, we let

$$
\limsup E_{i}:=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} E_{k}\right)
$$

which is also often written as (E_{n} i.o.) with i.o. meaning infinitely often since it means that x is contained inside of infinitely many E_{n} 's.

The Borel Cantelli Lemma

Definition

If E_{1}, E_{2}, \ldots is a sequence of measurable sets in a measure space, we let

$$
\limsup E_{i}:=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} E_{k}\right)
$$

which is also often written as (E_{n} i.o.) with i.o. meaning infinitely often since it means that x is contained inside of infinitely many E_{n} 's.

Lemma: (First Borel-Cantelli Lemma)

The Borel Cantelli Lemma

Definition

If E_{1}, E_{2}, \ldots is a sequence of measurable sets in a measure space, we let

$$
\limsup E_{i}:=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} E_{k}\right)
$$

which is also often written as (E_{n} i.o.) with i.o. meaning infinitely often since it means that x is contained inside of infinitely many E_{n} 's.

Lemma: (First Borel-Cantelli Lemma) Let E_{1}, E_{2}, \ldots be a sequence of measurable sets in the measure space (X, \mathcal{M}, m).

The Borel Cantelli Lemma

Definition

If E_{1}, E_{2}, \ldots is a sequence of measurable sets in a measure space, we let

$$
\limsup E_{i}:=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} E_{k}\right)
$$

which is also often written as (E_{n} i.o.) with i.o. meaning infinitely often since it means that x is contained inside of infinitely many E_{n} 's.

Lemma: (First Borel-Cantelli Lemma) Let E_{1}, E_{2}, \ldots be a sequence of measurable sets in the measure space (X, \mathcal{M}, m). If $\sum_{i} m\left(E_{i}\right)<\infty$, then

$$
m\left(\lim \sup E_{i}\right)=0
$$

This is a crucial lemma in probability theory.

The Borel Cantelli Lemma

Definition

If E_{1}, E_{2}, \ldots is a sequence of measurable sets in a measure space, we let

$$
\limsup E_{i}:=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} E_{k}\right)
$$

which is also often written as (E_{n} i.o.) with i.o. meaning infinitely often since it means that x is contained inside of infinitely many E_{n} 's.

Lemma: (First Borel-Cantelli Lemma) Let E_{1}, E_{2}, \ldots be a sequence of measurable sets in the measure space (X, \mathcal{M}, m). If $\sum_{i} m\left(E_{i}\right)<\infty$, then

$$
m\left(\lim \sup E_{i}\right)=0
$$

This is a crucial lemma in probability theory.

The Borel Cantelli Lemma

Proof:

The Borel Cantelli Lemma

Proof:
For each n, we have by subadditivity that

$$
\left.m\left(\limsup E_{i}\right) \leq m\left(\bigcup_{k=n}^{\infty} E_{i}\right)\right) \leq \sum_{k=n}^{\infty} m\left(E_{i}\right)
$$

The Borel Cantelli Lemma

Proof:

For each n, we have by subadditivity that

$$
\left.m\left(\limsup E_{i}\right) \leq m\left(\bigcup_{k=n}^{\infty} E_{i}\right)\right) \leq \sum_{k=n}^{\infty} m\left(E_{i}\right)
$$

Since this holds for each n and the RHS is the tail of a convergent series, we have that $m\left(\lim \sup E_{i}\right)=0$. QED

